Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 12/2022

03.06.2022 | Technical Article

A New Dominance Distribution Method to Select Materials with Higher Fatigue Resistance under Property Scatter and Load Uncertainty

verfasst von: X. Bai, P. Zhang, Q. Wang, R. Liu, Z. J. Zhang, Q. Q. Duan, E. N. Yang, H. Bo, Z. F. Zhang

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 12/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The fatigue properties of materials are dispersive and vary with service loads. Few methods can be used to guide the selection of materials in anti-fatigue design. In this study, for the first time, a new dominance distribution method to select the materials with higher fatigue resistance is proposed by the quantification of the scatter of fatigue lives and strengths and the simulation of possible load histories; accordingly, two kinds of diagrams are developed to display the dominance distributions of longer fatigue lives for the materials bearing cyclic constant and variable amplitude loads. After the fatigue tests of two Al-Si casting alloys, the dominance distribution method was used for their comparisons. The results indicate that the dominance distributions can clearly display the longer fatigue lives of the materials under different possible loading distributions and different reliability design index, and the dominance distribution diagrams can facilitate engineers to quickly select the materials with higher fatigue resistance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J. Schijve, Fatigue of Structures and Materials, Springer, New York, 2001. J. Schijve, Fatigue of Structures and Materials, Springer, New York, 2001.
2.
Zurück zum Zitat Z.F. Zhang, L. Li, Z.J. Zhang, and P. Zhang, Twin Boundary: Controllable Interface to Fatigue Cracking, J. Mater. Sci. Technol., 2017, 33(7), p 603–606. CrossRef Z.F. Zhang, L. Li, Z.J. Zhang, and P. Zhang, Twin Boundary: Controllable Interface to Fatigue Cracking, J. Mater. Sci. Technol., 2017, 33(7), p 603–606. CrossRef
3.
Zurück zum Zitat L. Chen, D. Zeng, Z. Liu, S. Bai, and J. Li, Improving the Fatigue Crack Propagation Resistance and Damage Tolerance of 2524–T3 Alloy with Amorphous Electroless Ni-P Coating, J. Mater. Eng. Perform., 2018, 27(2), p 881–888. CrossRef L. Chen, D. Zeng, Z. Liu, S. Bai, and J. Li, Improving the Fatigue Crack Propagation Resistance and Damage Tolerance of 2524–T3 Alloy with Amorphous Electroless Ni-P Coating, J. Mater. Eng. Perform., 2018, 27(2), p 881–888. CrossRef
4.
Zurück zum Zitat M.K.T. Srivatsan, V. Vasudevan, D. Tammana, and B. Poorganji, Influence of Cyclic Straining on Fatigue, Deformation, and Fracture Behavior of High-Strength Alloy Steel, J. Mater. Eng. Perform., 2015, 25, p 138–150. M.K.T. Srivatsan, V. Vasudevan, D. Tammana, and B. Poorganji, Influence of Cyclic Straining on Fatigue, Deformation, and Fracture Behavior of High-Strength Alloy Steel, J. Mater. Eng. Perform., 2015, 25, p 138–150.
5.
Zurück zum Zitat K. Gillner, M. Henrich, and S. Münstermann, Numerical Study of Inclusion Parameters and Their Influence on Fatigue Lifetime, Int. J. Fatigue, 2018, 111, p 70–80. CrossRef K. Gillner, M. Henrich, and S. Münstermann, Numerical Study of Inclusion Parameters and Their Influence on Fatigue Lifetime, Int. J. Fatigue, 2018, 111, p 70–80. CrossRef
6.
Zurück zum Zitat H.W. Fu, B. Doenges, U. Krupp, U. Pietsch, C.P. Fritzen, X.B. Yun, and H.J. Christ, Microcrack Initiation Mechanism of a Duplex Stainless Steel Under Very High Cycle Fatigue Loading Condition: the Significance of Load Partitioning, and Micro Residual Stresses, Acta Mater., 2020, 199, p 278–287. CrossRef H.W. Fu, B. Doenges, U. Krupp, U. Pietsch, C.P. Fritzen, X.B. Yun, and H.J. Christ, Microcrack Initiation Mechanism of a Duplex Stainless Steel Under Very High Cycle Fatigue Loading Condition: the Significance of Load Partitioning, and Micro Residual Stresses, Acta Mater., 2020, 199, p 278–287. CrossRef
7.
Zurück zum Zitat W. Jiang, P. Li, W.X. Yao, S.S. Rui, H.J. Shi, and J. Huang, The Effect of Porosity Size on the High Cycle Fatigue Life of Nickel-Based Single Crystal Super Alloy at 980 °C, Int. J. Fatigue, 2021, 147, p 106191. CrossRef W. Jiang, P. Li, W.X. Yao, S.S. Rui, H.J. Shi, and J. Huang, The Effect of Porosity Size on the High Cycle Fatigue Life of Nickel-Based Single Crystal Super Alloy at 980 °C, Int. J. Fatigue, 2021, 147, p 106191. CrossRef
8.
Zurück zum Zitat S. Picak, T. Wegener, S.V. Sajadifar, C. Sobrero, J. Richter, H. Kim, T. Niendorf, and I. Karaman, On The Low-Cycle Fatigue Response of CoCrNiFeMn High Entropy Alloy with Ultra-Fine Grain Structure, Acta Mater., 2021, 205, p 116540. CrossRef S. Picak, T. Wegener, S.V. Sajadifar, C. Sobrero, J. Richter, H. Kim, T. Niendorf, and I. Karaman, On The Low-Cycle Fatigue Response of CoCrNiFeMn High Entropy Alloy with Ultra-Fine Grain Structure, Acta Mater., 2021, 205, p 116540. CrossRef
9.
Zurück zum Zitat Y. Furuya, A New Model for Predicting the Gigacycle Fatigue Strength of High-Strength Steels, Mater. Sci. Eng. A, 2019, 743, p 445–452. CrossRef Y. Furuya, A New Model for Predicting the Gigacycle Fatigue Strength of High-Strength Steels, Mater. Sci. Eng. A, 2019, 743, p 445–452. CrossRef
10.
Zurück zum Zitat H.R. Ammar, A.M. Samuel, and F.H. Samuel, Effects of Surface Porosity on the Fatigue Strength of AE425 and PM390 Hypereutectic Al-Si Casting Alloys at Medium and Elevated Temperatures, Mater. Sci. Eng. A, 2008, 473(1), p 58–64. CrossRef H.R. Ammar, A.M. Samuel, and F.H. Samuel, Effects of Surface Porosity on the Fatigue Strength of AE425 and PM390 Hypereutectic Al-Si Casting Alloys at Medium and Elevated Temperatures, Mater. Sci. Eng. A, 2008, 473(1), p 58–64. CrossRef
11.
Zurück zum Zitat H. Ito, Y. Suzuki, H. Nishikawa, M. Kinefuchi, M. Enoki, and K. Shibanuma, Multiscale Model Prediction of Ferritic Steel Fatigue Strength Based on Microstructural Information, Tensile Properties, and Loading Conditions (No Adjustable Material Constants), Int. J. Mech. Sci., 2020, 170, p 105339. CrossRef H. Ito, Y. Suzuki, H. Nishikawa, M. Kinefuchi, M. Enoki, and K. Shibanuma, Multiscale Model Prediction of Ferritic Steel Fatigue Strength Based on Microstructural Information, Tensile Properties, and Loading Conditions (No Adjustable Material Constants), Int. J. Mech. Sci., 2020, 170, p 105339. CrossRef
12.
Zurück zum Zitat E. Haibach, Analytical Strength Assessment of Components in Mechanical Engineering: FKM-Guideline, 6th ed. VDMA, Karnataka, 2012. E. Haibach, Analytical Strength Assessment of Components in Mechanical Engineering: FKM-Guideline, 6th ed. VDMA, Karnataka, 2012.
13.
Zurück zum Zitat DVS 1608, Design and Strength Assessment of Welded Structures from Aluminium Alloys in Railway Applications. (2011) DVS 1608, Design and Strength Assessment of Welded Structures from Aluminium Alloys in Railway Applications. (2011)
14.
Zurück zum Zitat DVS 1612, Design and Endurance Strength Evaluation for Welded Steel Joints in Railway Vehicle Construction. (2009) DVS 1612, Design and Endurance Strength Evaluation for Welded Steel Joints in Railway Vehicle Construction. (2009)
15.
Zurück zum Zitat Z.Y. Ma, X.X. Wang, H.F. Chen, F.Z. Xuan, and Y.H. Liu, A Unified Direct Method for Ratchet and Fatigue Analysis of Structures Subjected to Arbitrary Cyclic Thermal-Mechanical Load Histories, Int. J. Mech. Sci., 2021, 194, p 106190. CrossRef Z.Y. Ma, X.X. Wang, H.F. Chen, F.Z. Xuan, and Y.H. Liu, A Unified Direct Method for Ratchet and Fatigue Analysis of Structures Subjected to Arbitrary Cyclic Thermal-Mechanical Load Histories, Int. J. Mech. Sci., 2021, 194, p 106190. CrossRef
16.
Zurück zum Zitat BS EN 1993-1-9, Eurocode 3: Design of Steel Structures - Part 1-9: Fatigue. (2005) BS EN 1993-1-9, Eurocode 3: Design of Steel Structures - Part 1-9: Fatigue. (2005)
17.
Zurück zum Zitat BS EN 1999-1-3, Eurocode 9: Design of Aluminium Structures - Part 1-3: Structures Susceptible to Fatigue, British. (2007) BS EN 1999-1-3, Eurocode 9: Design of Aluminium Structures - Part 1-3: Structures Susceptible to Fatigue, British. (2007)
18.
Zurück zum Zitat MIL-HDBK-17, USA Department of Defense Handbook - Composite Materials Handbook. (2012) MIL-HDBK-17, USA Department of Defense Handbook - Composite Materials Handbook. (2012)
19.
Zurück zum Zitat J.A. Cassiday, Failure of Materials in Mechanical Design, 2nd ed. Wiley, New Jersey, 1981. J.A. Cassiday, Failure of Materials in Mechanical Design, 2nd ed. Wiley, New Jersey, 1981.
20.
Zurück zum Zitat V.S. Petinov, In-Service Fatigue Reliability of Structures, Springer, Cham, 2018.CrossRef V.S. Petinov, In-Service Fatigue Reliability of Structures, Springer, Cham, 2018.CrossRef
21.
Zurück zum Zitat L.Y. Xie, N.X. Wu, and W.X. Qian, Time Domain Series System Definition and Gear Set Reliability Modeling, Reliab. Eng. Syst. Saf., 2016, 155, p 97–104. CrossRef L.Y. Xie, N.X. Wu, and W.X. Qian, Time Domain Series System Definition and Gear Set Reliability Modeling, Reliab. Eng. Syst. Saf., 2016, 155, p 97–104. CrossRef
22.
Zurück zum Zitat S.P. Zhu, H.Z. Huang, Y. Li, Y. Liu, and Y. Yang, Probabilistic Modeling of Damage Accumulation for Time-Dependent Fatigue Reliability Analysis of Railway Axle Steels, Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit, 2015, 229(1), p 23–33. CrossRef S.P. Zhu, H.Z. Huang, Y. Li, Y. Liu, and Y. Yang, Probabilistic Modeling of Damage Accumulation for Time-Dependent Fatigue Reliability Analysis of Railway Axle Steels, Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit, 2015, 229(1), p 23–33. CrossRef
23.
Zurück zum Zitat S.P. Zhu, Q. Liu, J. Zhou, and Z.Y. Yu, Fatigue Reliability Assessment of Turbine Discs Under Multi-Source Uncertainties, Fatigue Fract. Eng. Mater. Struct., 2018, 41(6), p 1291–1305. CrossRef S.P. Zhu, Q. Liu, J. Zhou, and Z.Y. Yu, Fatigue Reliability Assessment of Turbine Discs Under Multi-Source Uncertainties, Fatigue Fract. Eng. Mater. Struct., 2018, 41(6), p 1291–1305. CrossRef
24.
Zurück zum Zitat D. Liao, S.P. Zhu, B. Keshtegar, G. Qian, and Q. Wang, Probabilistic Framework for Fatigue Life Assessment of Notched Components Under Size Effects, Int. J. Mech. Sci., 2020, 181, p 105685. CrossRef D. Liao, S.P. Zhu, B. Keshtegar, G. Qian, and Q. Wang, Probabilistic Framework for Fatigue Life Assessment of Notched Components Under Size Effects, Int. J. Mech. Sci., 2020, 181, p 105685. CrossRef
25.
Zurück zum Zitat X.P. Niu, S.P. Zhu, J.C. He, Y. Ai, K. Shi, and L. Zhang, Fatigue Reliability Design and Assessment of Reactor Pressure Vessel Structures: Concepts and Validation, Int. J. Fatigue, 2021, 153, p 106524. CrossRef X.P. Niu, S.P. Zhu, J.C. He, Y. Ai, K. Shi, and L. Zhang, Fatigue Reliability Design and Assessment of Reactor Pressure Vessel Structures: Concepts and Validation, Int. J. Fatigue, 2021, 153, p 106524. CrossRef
26.
Zurück zum Zitat B.F. Zhao, L.Y. Xie, L. Wang, Z.Y. Hu, S. Zhou, and X. Bai, A New Multiaxial Fatigue Life Prediction Model for Aircraft Aluminum Alloy, Int. J. Fatigue, 2021, 143, p 105993. CrossRef B.F. Zhao, L.Y. Xie, L. Wang, Z.Y. Hu, S. Zhou, and X. Bai, A New Multiaxial Fatigue Life Prediction Model for Aircraft Aluminum Alloy, Int. J. Fatigue, 2021, 143, p 105993. CrossRef
27.
Zurück zum Zitat X. Bai, P. Zhang, Z.J. Zhang, R. Liu, and Z.F. Zhang, New Method for Determining P-S-N Curves in Terms of Equivalent Fatigue Lives, Fatigue Fract. Eng. Mater. Struct., 2019, 42(10), p 2340–2353. CrossRef X. Bai, P. Zhang, Z.J. Zhang, R. Liu, and Z.F. Zhang, New Method for Determining P-S-N Curves in Terms of Equivalent Fatigue Lives, Fatigue Fract. Eng. Mater. Struct., 2019, 42(10), p 2340–2353. CrossRef
28.
Zurück zum Zitat ISO 12107, Metallic Materials-Fatigue Testing-Statistical Planning and Analysis of Data, ISO. (2003) ISO 12107, Metallic Materials-Fatigue Testing-Statistical Planning and Analysis of Data, ISO. (2003)
29.
Zurück zum Zitat M. Wang, J.C. Pang, H.Q. Liu, S.X. Li, and Z.F. Zhang, Influence of Microstructures on the Tensile and Low-Cycle Fatigue Damage Behaviors of Cast Al12Si4Cu3NiMg Alloy, Mater. Sci. Eng. A, 2019, 759, p 797–803. CrossRef M. Wang, J.C. Pang, H.Q. Liu, S.X. Li, and Z.F. Zhang, Influence of Microstructures on the Tensile and Low-Cycle Fatigue Damage Behaviors of Cast Al12Si4Cu3NiMg Alloy, Mater. Sci. Eng. A, 2019, 759, p 797–803. CrossRef
30.
Zurück zum Zitat H.Q. Liu, J.C. Pang, M. Wang, S.X. Li, and Z.F. Zhang, The Effect of Thermal Exposure on the Microstructure and Mechanical Properties of Multiphase AlSi12Cu4MgNi2 Alloy, Mater. Charact., 2020, 159, p 110032–110032. CrossRef H.Q. Liu, J.C. Pang, M. Wang, S.X. Li, and Z.F. Zhang, The Effect of Thermal Exposure on the Microstructure and Mechanical Properties of Multiphase AlSi12Cu4MgNi2 Alloy, Mater. Charact., 2020, 159, p 110032–110032. CrossRef
31.
Zurück zum Zitat Y.K. Zhu, Q.Y. Chen, Q. Wang, H.Y. Yu, R. Li, J.P. Hou, Z.J. Zhang, G.P. Zhang, and Z.F. Zhang, Effect of Stress Profile on Microstructure Evolution of Cold-Drawn Commercially Pure Aluminum Wire Analyzed by Finite Element Simulation, J. Mater. Sci. Technol., 2018, 34(7), p 1214–1221. CrossRef Y.K. Zhu, Q.Y. Chen, Q. Wang, H.Y. Yu, R. Li, J.P. Hou, Z.J. Zhang, G.P. Zhang, and Z.F. Zhang, Effect of Stress Profile on Microstructure Evolution of Cold-Drawn Commercially Pure Aluminum Wire Analyzed by Finite Element Simulation, J. Mater. Sci. Technol., 2018, 34(7), p 1214–1221. CrossRef
32.
Zurück zum Zitat M.Z. Wu, J.W. Zhang, Y.B. Zhang, and H.Q. Wang, Effects of Mg Content on the Fatigue Strength and Fracture Behavior of Al-Si-Mg Casting Alloys, J. Mater. Eng. Perform., 2018, 27, p 5992–6003. CrossRef M.Z. Wu, J.W. Zhang, Y.B. Zhang, and H.Q. Wang, Effects of Mg Content on the Fatigue Strength and Fracture Behavior of Al-Si-Mg Casting Alloys, J. Mater. Eng. Perform., 2018, 27, p 5992–6003. CrossRef
33.
Zurück zum Zitat C. Ye, C. Zhang, J. Zhao, and Y. Dong, Effects of Post-Processing on the Surface Finish, Porosity, Residual Stresses, and Fatigue Performance of Additive Manufactured Metals: A Review, J. Mater. Eng. Perform., 2021, 30, p 6407–6425. CrossRef C. Ye, C. Zhang, J. Zhao, and Y. Dong, Effects of Post-Processing on the Surface Finish, Porosity, Residual Stresses, and Fatigue Performance of Additive Manufactured Metals: A Review, J. Mater. Eng. Perform., 2021, 30, p 6407–6425. CrossRef
34.
Zurück zum Zitat P. Strzelecki, and T. Tomaszewski, Application of Weibull distribution to describe S-N curve with using small number specimens, AIP Conference Proceedings, Vol 1780, AIP Publishing LLC, New York, 2016, p 020007 P. Strzelecki, and T. Tomaszewski, Application of Weibull distribution to describe S-N curve with using small number specimens, AIP Conference Proceedings, Vol 1780, AIP Publishing LLC, New York, 2016, p 020007
35.
Zurück zum Zitat L. Jing, and J. Pan, A Maximum Likelihood Method for Estimating P-S-N Curves, Int. J. Fatigue, 1997, 19(5), p 415–419. CrossRef L. Jing, and J. Pan, A Maximum Likelihood Method for Estimating P-S-N Curves, Int. J. Fatigue, 1997, 19(5), p 415–419. CrossRef
36.
Zurück zum Zitat N. Theodore, High Cycle Fatigue: A Mechanics of Materials Perspective, Elsevier, Netherlands, 2006. N. Theodore, High Cycle Fatigue: A Mechanics of Materials Perspective, Elsevier, Netherlands, 2006.
37.
Zurück zum Zitat J.J. Xiong, and R.A. Shenoi, Fatigue and Fracture Reliability Engineering, Springer, New York, 2011.CrossRef J.J. Xiong, and R.A. Shenoi, Fatigue and Fracture Reliability Engineering, Springer, New York, 2011.CrossRef
38.
Zurück zum Zitat M. Rieger, C. Moser, P. Brunnhofer, D. Simunek, F.J. Weber, A. Deisl, H.P. Gänser, R. Pippan, and N. Enzinger, Fatigue Crack Growth In Full-Scale Railway Axles – Influence of Secondary Stresses and Load Sequence Effects, Int. J. Fatigue, 2020, 132, p 105360. CrossRef M. Rieger, C. Moser, P. Brunnhofer, D. Simunek, F.J. Weber, A. Deisl, H.P. Gänser, R. Pippan, and N. Enzinger, Fatigue Crack Growth In Full-Scale Railway Axles – Influence of Secondary Stresses and Load Sequence Effects, Int. J. Fatigue, 2020, 132, p 105360. CrossRef
39.
Zurück zum Zitat L. Náhlík, P. Pokorný, M. Ševčík, R. Fajkoš, P. Matušek, and P. Hutař, Fatigue Lifetime Estimation of Railway Axles, Eng. Fail. Anal., 2017, 73, p 139–157. CrossRef L. Náhlík, P. Pokorný, M. Ševčík, R. Fajkoš, P. Matušek, and P. Hutař, Fatigue Lifetime Estimation of Railway Axles, Eng. Fail. Anal., 2017, 73, p 139–157. CrossRef
40.
Zurück zum Zitat S. Konuma, and S. Ichikawa, Design and Evaluation of Hardware Pseudo-Random Number Generator MT19937, IEICE Trans. Inf. Syst., 2005, 88D, p 2876–2879. CrossRef S. Konuma, and S. Ichikawa, Design and Evaluation of Hardware Pseudo-Random Number Generator MT19937, IEICE Trans. Inf. Syst., 2005, 88D, p 2876–2879. CrossRef
41.
Zurück zum Zitat M. Matsumoto, and T. Nishimura, Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudo-Random Number Generator, ACM Trans. Model. Comput. Simul., 1998, 8(1), p 3–30. CrossRef M. Matsumoto, and T. Nishimura, Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudo-Random Number Generator, ACM Trans. Model. Comput. Simul., 1998, 8(1), p 3–30. CrossRef
42.
Zurück zum Zitat G. Kten, and G. Ahmet, Generating Low-Discrepancy Sequences from the Normal Distribution: Box-Muller or Inverse Transform, Math. Comput. Model., 2011, 53(5–6), p 1268–1281. G. Kten, and G. Ahmet, Generating Low-Discrepancy Sequences from the Normal Distribution: Box-Muller or Inverse Transform, Math. Comput. Model., 2011, 53(5–6), p 1268–1281.
Metadaten
Titel
A New Dominance Distribution Method to Select Materials with Higher Fatigue Resistance under Property Scatter and Load Uncertainty
verfasst von
X. Bai
P. Zhang
Q. Wang
R. Liu
Z. J. Zhang
Q. Q. Duan
E. N. Yang
H. Bo
Z. F. Zhang
Publikationsdatum
03.06.2022
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 12/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-07031-9

Weitere Artikel der Ausgabe 12/2022

Journal of Materials Engineering and Performance 12/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.