Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 12/2022

24.05.2022 | Technical Article

Neural Network Modeling of NiTiHf Shape Memory Alloy Transformation Temperatures

verfasst von: H. Abedi, K. S. Baghbaderani, A. Alafaghani, M. Nematollahi, F. Kordizadeh, M. M. Attallah, A. Qattawi, M. Elahinia

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 12/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Data-driven techniques are used to predict the transformation temperatures (TTs) of NiTiHf shape memory alloy. A machine learning (ML) approach is used to overcome the high-dimensional dependency of NiTiHf TTs on numerous factors, as well as the lack of fully known governing physics. The elemental composition, thermal treatments, and post-processing steps that are commonly used to process NiTiHf and have an impact on the material phase transitions are used as input parameters of the neural network model (NN) to design the TTs. Such a feature selection led to the use of most of the accessible information in the literature on NiTiHf TTs, as all processing features required to be fed into the NN model. Considering most of the regular NiTiHf processing factors also enables the option of tuning additional characteristics of NiTiHf in addition to the TTs. The work is unique as all the four main TTs and their associated peak transformation temperatures are predicted to have complete control over the material phase change thresholds. Since 1995, extensive experimental research has been conducted to design NiTiHf TTs with a large temperature range of around 800 °C, paving the path for the current work’s ML algorithms to be fed. A thorough data collection is created using both unpublished data and available literature and then analyzed to select twenty input parameters to feed the NN model. To forecast the NiTiHf TTs, a total of 173 data points were gathered, verified, and selected. The model's overall determination factor (R2) was 0.96, suggesting the viability of the proposed NN model in demonstrating the link between material composition and processing factors, as well as identifying the TTs of NiTiHf alloy. The effort additionally validates the generated results against existing data in the literature. The validation confirms the significance of the proposed model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat A.D. Spear, S.R. Kalidindi, B. Meredig, A. Kontsos, and J.B. le Graverend, Data-Driven Materials Investigations: The Next Frontier in Understanding and Predicting Fatigue Behavior, Jom, 2018, 70(7), p 1143–1146.CrossRef A.D. Spear, S.R. Kalidindi, B. Meredig, A. Kontsos, and J.B. le Graverend, Data-Driven Materials Investigations: The Next Frontier in Understanding and Predicting Fatigue Behavior, Jom, 2018, 70(7), p 1143–1146.CrossRef
2.
Zurück zum Zitat J. Ling, M. Hutchinson, E. Antono, S. Paradiso, and B. Meredig, High-Dimensional Materials and Process Optimization Using Data-driven Experimental Design with Well-calibrated Uncertainty Estimates, Integr. Mater. Manuf. Innov., 2017, 6(3), p 207–217.CrossRef J. Ling, M. Hutchinson, E. Antono, S. Paradiso, and B. Meredig, High-Dimensional Materials and Process Optimization Using Data-driven Experimental Design with Well-calibrated Uncertainty Estimates, Integr. Mater. Manuf. Innov., 2017, 6(3), p 207–217.CrossRef
3.
Zurück zum Zitat S. Curtarolo, G.L.W. Hart, M.B. Nardelli, N. Mingo, S. Sanvito, and O. Levy, The High-throughput Highway to Computational Materials Design, Nat. Mater., 2013, 12(3), p 191–201.CrossRef S. Curtarolo, G.L.W. Hart, M.B. Nardelli, N. Mingo, S. Sanvito, and O. Levy, The High-throughput Highway to Computational Materials Design, Nat. Mater., 2013, 12(3), p 191–201.CrossRef
4.
Zurück zum Zitat Y. Liu, T. Zhao, W. Ju, S. Shi, S. Shi, and S. Shi, Materials Discovery and Design using Machine Learning, J. Mater., 2017, 3(3), p 159–177. Y. Liu, T. Zhao, W. Ju, S. Shi, S. Shi, and S. Shi, Materials Discovery and Design using Machine Learning, J. Mater., 2017, 3(3), p 159–177.
5.
Zurück zum Zitat J.M. Cole, A Design-to-device Pipeline for Data-driven Materials Discovery, Acc. Chem. Res., 2020, 53(3), p 599–610.CrossRef J.M. Cole, A Design-to-device Pipeline for Data-driven Materials Discovery, Acc. Chem. Res., 2020, 53(3), p 599–610.CrossRef
6.
Zurück zum Zitat N.S. Johnson, P.S. Vulimiri, A.C. To, X. Zhang, C.A. Brice, B.B. Kappes, and A.P. Stebner, Invited Review: Machine Learning for Materials Developments in Metals Additive Manufacturing, Addit. Manuf., 2020, 36, p 101641. N.S. Johnson, P.S. Vulimiri, A.C. To, X. Zhang, C.A. Brice, B.B. Kappes, and A.P. Stebner, Invited Review: Machine Learning for Materials Developments in Metals Additive Manufacturing, Addit. Manuf., 2020, 36, p 101641.
7.
Zurück zum Zitat W. Yan, S. Lin, O.L. Kafka, Y. Lian, C. Yu, Z. Liu, J. Yan, S. Wolff, H. Wu, E. Ndip-Agbor, and M. Mozaffar, Data-Driven Multi-scale Multi-physics Models to Derive Process–Structure–Property Relationships for Additive Manufacturing, Comput. Mech., 2018, 61(5), p 521–541.CrossRef W. Yan, S. Lin, O.L. Kafka, Y. Lian, C. Yu, Z. Liu, J. Yan, S. Wolff, H. Wu, E. Ndip-Agbor, and M. Mozaffar, Data-Driven Multi-scale Multi-physics Models to Derive Process–Structure–Property Relationships for Additive Manufacturing, Comput. Mech., 2018, 61(5), p 521–541.CrossRef
8.
Zurück zum Zitat X. Qi, G. Chen, Y. Li, X. Cheng, and C. Li, Applying Neural-Network-Based Machine Learning to Additive Manufacturing: Current Applications, Challenges, and Future Perspectives, Engineering, 2019, 5(4), p 721–729.CrossRef X. Qi, G. Chen, Y. Li, X. Cheng, and C. Li, Applying Neural-Network-Based Machine Learning to Additive Manufacturing: Current Applications, Challenges, and Future Perspectives, Engineering, 2019, 5(4), p 721–729.CrossRef
9.
Zurück zum Zitat L. Ward, A. Agrawal, A. Choudhary, and C. Wolverton, A General-purpose Machine Learning Framework for Predicting Properties of Inorganic Materials, NPJ Comput. Mater., 2016, 2(1), p 1–7.CrossRef L. Ward, A. Agrawal, A. Choudhary, and C. Wolverton, A General-purpose Machine Learning Framework for Predicting Properties of Inorganic Materials, NPJ Comput. Mater., 2016, 2(1), p 1–7.CrossRef
10.
Zurück zum Zitat L.M. Ghiringhelli, J. Vybiral, S.V. Levchenko, C. Draxl, and M. Scheffler, Big Data of Materials Science: Critical Role of the Descriptor, Phys. Rev. Lett., 2015, 114(10), p 1–5.CrossRef L.M. Ghiringhelli, J. Vybiral, S.V. Levchenko, C. Draxl, and M. Scheffler, Big Data of Materials Science: Critical Role of the Descriptor, Phys. Rev. Lett., 2015, 114(10), p 1–5.CrossRef
11.
Zurück zum Zitat V. Stanev, C. Oses, A.G. Kusne, E. Rodriguez, J. Paglione, S. Curtarolo, and I. Takeuchi, Machine Learning Modeling of Superconducting Critical Temperature, NPJ Comput. Mater., 2018, 4(1), p 1–14.CrossRef V. Stanev, C. Oses, A.G. Kusne, E. Rodriguez, J. Paglione, S. Curtarolo, and I. Takeuchi, Machine Learning Modeling of Superconducting Critical Temperature, NPJ Comput. Mater., 2018, 4(1), p 1–14.CrossRef
12.
Zurück zum Zitat F. Ren, L. Ward, T. Williams, K.J. Laws, C. Wolverton, J. Hattrick-Simpers, and A. Mehta, Accelerated Discovery of Metallic Glasses Through Iteration of Machine Learning and High-Throughput Experiments, Sci. Adv., 2018, 4(4), p eaaq1566.CrossRef F. Ren, L. Ward, T. Williams, K.J. Laws, C. Wolverton, J. Hattrick-Simpers, and A. Mehta, Accelerated Discovery of Metallic Glasses Through Iteration of Machine Learning and High-Throughput Experiments, Sci. Adv., 2018, 4(4), p eaaq1566.CrossRef
13.
Zurück zum Zitat O. Isayev, C. Oses, C. Toher, E. Gossett, S. Curtarolo, and A. Tropsha, Universal Fragment Descriptors for Predicting Properties of Inorganic Crystals, Nat. Commun., 2017, 8, p 1–12.CrossRef O. Isayev, C. Oses, C. Toher, E. Gossett, S. Curtarolo, and A. Tropsha, Universal Fragment Descriptors for Predicting Properties of Inorganic Crystals, Nat. Commun., 2017, 8, p 1–12.CrossRef
14.
Zurück zum Zitat A.O. Oliynyk, E. Antono, T.D. Sparks, L. Ghadbeigi, M.W. Gaultois, B. Meredig, and A. Mar, High-Throughput Machine-Learning-Driven Synthesis of Full-Heusler Compounds, Chem. Mater., 2016, 28(20), p 7324–7331.CrossRef A.O. Oliynyk, E. Antono, T.D. Sparks, L. Ghadbeigi, M.W. Gaultois, B. Meredig, and A. Mar, High-Throughput Machine-Learning-Driven Synthesis of Full-Heusler Compounds, Chem. Mater., 2016, 28(20), p 7324–7331.CrossRef
15.
Zurück zum Zitat G. Krauss, in Steels: processing, structure, and performance (2015) G. Krauss, in Steels: processing, structure, and performance (2015)
16.
Zurück zum Zitat A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K.A. Persson, Commentary: The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation Commentary: The Materials Project: A Materials Genome, APL Mater., 2013, 1, p 011002.CrossRef A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K.A. Persson, Commentary: The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation Commentary: The Materials Project: A Materials Genome, APL Mater., 2013, 1, p 011002.CrossRef
17.
Zurück zum Zitat E. Kim, K. Huang, A. Saunders, A. Mccallum, G. Ceder, and E. Olivetti, Materials Synthesis Insights from Scientific Literature Via Text Extraction and Machine Learning, Chem. Mater., 2017, 29(21), p 9436–9444.CrossRef E. Kim, K. Huang, A. Saunders, A. Mccallum, G. Ceder, and E. Olivetti, Materials Synthesis Insights from Scientific Literature Via Text Extraction and Machine Learning, Chem. Mater., 2017, 29(21), p 9436–9444.CrossRef
18.
Zurück zum Zitat E. Kim, K. Huang, S. Jegelka, and E. Olivetti, Virtual Screening of Inorganic Materials Synthesis Parameters with Deep Learning, NPJ. Comput. Mater., 2017, 3(1), p 1–9.CrossRef E. Kim, K. Huang, S. Jegelka, and E. Olivetti, Virtual Screening of Inorganic Materials Synthesis Parameters with Deep Learning, NPJ. Comput. Mater., 2017, 3(1), p 1–9.CrossRef
19.
Zurück zum Zitat V. Tshitoyan, J. Dagdelen, L. Weston, A. Dunn, Z. Rong, O. Kononova, K.A. Persson, G. Ceder, and A. Jain, Unsupervised Word Embeddings Capture Latent Knowledge From Materials Science Literature, Nature, 2019, 571, p 95–98.CrossRef V. Tshitoyan, J. Dagdelen, L. Weston, A. Dunn, Z. Rong, O. Kononova, K.A. Persson, G. Ceder, and A. Jain, Unsupervised Word Embeddings Capture Latent Knowledge From Materials Science Literature, Nature, 2019, 571, p 95–98.CrossRef
20.
Zurück zum Zitat L. Scime and J. Beuth, Using Machine Learning to Identify In-situ Melt Pool Signatures Indicative of Flaw Formation in a Laser Powder Bed Fusion Additive Manufacturing Process, Addit. Manuf., 2019, 25, p 151–165. L. Scime and J. Beuth, Using Machine Learning to Identify In-situ Melt Pool Signatures Indicative of Flaw Formation in a Laser Powder Bed Fusion Additive Manufacturing Process, Addit. Manuf., 2019, 25, p 151–165.
21.
Zurück zum Zitat T. Prater, Database Development for Additive Manufacturing, 2017, Prog. Addit. Manuf., 2(1), p 11–18. T. Prater, Database Development for Additive Manufacturing, 2017, Prog. Addit. Manuf., 2(1), p 11–18.
22.
Zurück zum Zitat R. Pollice, G. dos Passos Gomes, M. Aldeghi, R.J. Hickman, M. Krenn, C. Lavigne, M. Lindner-D’Addario, A. Nigam, C.T. Ser, Z. Yao, and A. Aspuru-Guzik, Data-Driven Strategies for Accelerated Materials Design, Acc. Chem. Res., 2021, 54(4), p 849–860.CrossRef R. Pollice, G. dos Passos Gomes, M. Aldeghi, R.J. Hickman, M. Krenn, C. Lavigne, M. Lindner-D’Addario, A. Nigam, C.T. Ser, Z. Yao, and A. Aspuru-Guzik, Data-Driven Strategies for Accelerated Materials Design, Acc. Chem. Res., 2021, 54(4), p 849–860.CrossRef
23.
Zurück zum Zitat D. Chen, D.I.W. Levin, S. Sueda, and W. Matusik, Data-driven Finite Elements for Geometry and Material Design, ACM Trans. Graph., 2015, 34(4), p 1–10. D. Chen, D.I.W. Levin, S. Sueda, and W. Matusik, Data-driven Finite Elements for Geometry and Material Design, ACM Trans. Graph., 2015, 34(4), p 1–10.
24.
Zurück zum Zitat J. Xiong, S.Q. Shi, and T.Y. Zhang, A Machine-learning Approach to Predicting and Understanding the Properties of Amorphous Metallic Alloys, Mater. Des., 2020, 187, p 108378.CrossRef J. Xiong, S.Q. Shi, and T.Y. Zhang, A Machine-learning Approach to Predicting and Understanding the Properties of Amorphous Metallic Alloys, Mater. Des., 2020, 187, p 108378.CrossRef
25.
Zurück zum Zitat X. Huang, H. Wang, W. Xue, A. Ullah, S. Xiang, H. Huang, L. Meng, G. Ma, and G. Zhang, A Combined Machine Learning Model for the Prediction of Time-Temperature-Transformation Diagrams of High-Alloy Steels, J. Alloys Compd., 2020, 823, p 153694.CrossRef X. Huang, H. Wang, W. Xue, A. Ullah, S. Xiang, H. Huang, L. Meng, G. Ma, and G. Zhang, A Combined Machine Learning Model for the Prediction of Time-Temperature-Transformation Diagrams of High-Alloy Steels, J. Alloys Compd., 2020, 823, p 153694.CrossRef
26.
Zurück zum Zitat C. Zou, J. Li, W.Y. Wang, Y. Zhang, D. Lin, R. Yuan, X. Wang, B. Tang, J. Wang, X. Gao, and H. Kou, Integrating Data Mining and Machine Learning to Discover High-strength Ductile Titanium Alloys, Acta Mater., 2020, 202, p 211–221.CrossRef C. Zou, J. Li, W.Y. Wang, Y. Zhang, D. Lin, R. Yuan, X. Wang, B. Tang, J. Wang, X. Gao, and H. Kou, Integrating Data Mining and Machine Learning to Discover High-strength Ductile Titanium Alloys, Acta Mater., 2020, 202, p 211–221.CrossRef
27.
Zurück zum Zitat J. Li, B. Xie, Q. Fang, B. Liu, Y. Liu, and P.K. Liaw, High-throughput Simulation Combined Machine Learning Search for Optimum Elemental Composition in Medium Entropy Alloy, J. Mater. Sci. Technol., 2021, 68, p 70–75.CrossRef J. Li, B. Xie, Q. Fang, B. Liu, Y. Liu, and P.K. Liaw, High-throughput Simulation Combined Machine Learning Search for Optimum Elemental Composition in Medium Entropy Alloy, J. Mater. Sci. Technol., 2021, 68, p 70–75.CrossRef
28.
Zurück zum Zitat P. Liu, H. Huang, S. Antonov, C. Wen, D. Xue, H. Chen, L. Li, Q. Feng, T. Omori, and Y. Su, Machine Learning Assisted Design of γ′-Strengthened Co-Base Superalloys with Multi-Performance Optimization, NPJ Comput Mater., 2020, 6(1), p 1–9.CrossRef P. Liu, H. Huang, S. Antonov, C. Wen, D. Xue, H. Chen, L. Li, Q. Feng, T. Omori, and Y. Su, Machine Learning Assisted Design of γ′-Strengthened Co-Base Superalloys with Multi-Performance Optimization, NPJ Comput Mater., 2020, 6(1), p 1–9.CrossRef
29.
Zurück zum Zitat F. Yang, Z. Li, Q. Wang, B. Jiang, B. Yan, P. Zhang, W. Xu, C. Dong, and P.K. Liaw, Cluster-Formula-Embedded Machine Learning for Design of Multicomponent β-Ti Alloys with Low Young’s Modulus, NPJ Comput. Mater., 2020, 6(1), p 1–11.CrossRef F. Yang, Z. Li, Q. Wang, B. Jiang, B. Yan, P. Zhang, W. Xu, C. Dong, and P.K. Liaw, Cluster-Formula-Embedded Machine Learning for Design of Multicomponent β-Ti Alloys with Low Young’s Modulus, NPJ Comput. Mater., 2020, 6(1), p 1–11.CrossRef
30.
Zurück zum Zitat J. Li, Y. Zhang, X. Cao, Q. Zeng, Y. Zhuang, X. Qian, and H. Chen, Accelerated Discovery of High-Strength Aluminum Alloys by Machine Learning, Commun. Mater., 2020, 1(1), p 1–10.CrossRef J. Li, Y. Zhang, X. Cao, Q. Zeng, Y. Zhuang, X. Qian, and H. Chen, Accelerated Discovery of High-Strength Aluminum Alloys by Machine Learning, Commun. Mater., 2020, 1(1), p 1–10.CrossRef
31.
Zurück zum Zitat C. Xinyu, Z. Yingbo, L. Jiaheng, and C. Hui, Composition Design of 7XXX Aluminum Alloys Optimizing Stress Corrosion Cracking Resistance using Machine Learning Mater, Res. Express, 2020, 7(4), p 046506.CrossRef C. Xinyu, Z. Yingbo, L. Jiaheng, and C. Hui, Composition Design of 7XXX Aluminum Alloys Optimizing Stress Corrosion Cracking Resistance using Machine Learning Mater, Res. Express, 2020, 7(4), p 046506.CrossRef
32.
Zurück zum Zitat C. Wen, Y. Zhang, C. Wang, D. Xue, Y. Bai, S. Antonov, L. Dai, T. Lookman, and Y. Su, Machine Learning Assisted Design of High Entropy Alloys with Desired Property, Acta Mater., 2019, 170, p 109–117.CrossRef C. Wen, Y. Zhang, C. Wang, D. Xue, Y. Bai, S. Antonov, L. Dai, T. Lookman, and Y. Su, Machine Learning Assisted Design of High Entropy Alloys with Desired Property, Acta Mater., 2019, 170, p 109–117.CrossRef
33.
Zurück zum Zitat Y.J. Chang, C.Y. Jui, W.J. Lee, and A.C. Yeh, Prediction of the Composition and Hardness of High-Entropy Alloys by Machine Learning, Jom, 2019, 71(10), p 3433–3442.CrossRef Y.J. Chang, C.Y. Jui, W.J. Lee, and A.C. Yeh, Prediction of the Composition and Hardness of High-Entropy Alloys by Machine Learning, Jom, 2019, 71(10), p 3433–3442.CrossRef
34.
Zurück zum Zitat K. Koenuma, A. Yamanaka, I. Watanabe, and T. Kuwabara, Estimation of Texture-Dependent Stress-Strain Curve and r-Value of Aluminum Alloy Sheet Using Deep Learning, Mater. Trans., 2020, 12, p 2276–2283.CrossRef K. Koenuma, A. Yamanaka, I. Watanabe, and T. Kuwabara, Estimation of Texture-Dependent Stress-Strain Curve and r-Value of Aluminum Alloy Sheet Using Deep Learning, Mater. Trans., 2020, 12, p 2276–2283.CrossRef
35.
Zurück zum Zitat M. Sasaki, S. Ju, Y. Xu, J. Shiomi, and M. Goto, “Identifying Optimal Strain in Bismuth Telluride Thermoelectric Film by Combinatorial Gradient Thermal Annealing and Machine Learning, ACS Comb. Sci., 2020, 22, p 782–790.CrossRef M. Sasaki, S. Ju, Y. Xu, J. Shiomi, and M. Goto, “Identifying Optimal Strain in Bismuth Telluride Thermoelectric Film by Combinatorial Gradient Thermal Annealing and Machine Learning, ACS Comb. Sci., 2020, 22, p 782–790.CrossRef
36.
Zurück zum Zitat G.D. Pang, Y.C. Lin, Y.L. Qiu, Y.Q. Jiang, Y.W. Xiao, and M.S. Chen, Dislocation Density-Based Model and Stacked Auto-Encoder Model for Ti-55511 Alloy with Basket-weave Microstructures Deformed in α + β Region, Adv. Eng. Mater., 2021, 23(4), p 1–9.CrossRef G.D. Pang, Y.C. Lin, Y.L. Qiu, Y.Q. Jiang, Y.W. Xiao, and M.S. Chen, Dislocation Density-Based Model and Stacked Auto-Encoder Model for Ti-55511 Alloy with Basket-weave Microstructures Deformed in α + β Region, Adv. Eng. Mater., 2021, 23(4), p 1–9.CrossRef
37.
Zurück zum Zitat A. Alafaghani, M.A. Ablat, H. Abedi, and A. Qattawi, Modeling the Influence of fused Filament Fabrication Processing Parameters on the Mechanical Properties of ABS Parts, J. Manuf. Process., 2021, 71, p 711–723.CrossRef A. Alafaghani, M.A. Ablat, H. Abedi, and A. Qattawi, Modeling the Influence of fused Filament Fabrication Processing Parameters on the Mechanical Properties of ABS Parts, J. Manuf. Process., 2021, 71, p 711–723.CrossRef
38.
Zurück zum Zitat J.H. Kim, F. Inaba, T. Fukuda, and T. Kakeshita, Effect of Magnetic Field on Martensitic Transformation Temperature in Ni-Mn-Ga Ferromagnetic Shape Memory Alloys, Acta Mater., 2006, 54(2), p 493–499.CrossRef J.H. Kim, F. Inaba, T. Fukuda, and T. Kakeshita, Effect of Magnetic Field on Martensitic Transformation Temperature in Ni-Mn-Ga Ferromagnetic Shape Memory Alloys, Acta Mater., 2006, 54(2), p 493–499.CrossRef
39.
Zurück zum Zitat E. Bonnot, R. Romero, L. Mañosa, E. Vives, and A. Planes, Elastocaloric Effect Associated with the Martensitic Transition in Shape-memory Alloys, Phys. Rev. Lett., 2008, 100(12), p 1–4.CrossRef E. Bonnot, R. Romero, L. Mañosa, E. Vives, and A. Planes, Elastocaloric Effect Associated with the Martensitic Transition in Shape-memory Alloys, Phys. Rev. Lett., 2008, 100(12), p 1–4.CrossRef
40.
Zurück zum Zitat K. Safaei, H. Abedi, M. Nematollahi, F. Kordizadeh, H. Dabbaghi, P. Bayati, R. Javanbakht, A. Jahadakbar, M. Elahinia, and B. Poorganji, Additive Manufacturing of NiTi Shape Memory Alloy for Biomedical Applications: Review of the LPBF Process Ecosystem, JOM, 2021, 73, p 3771–3786.CrossRef K. Safaei, H. Abedi, M. Nematollahi, F. Kordizadeh, H. Dabbaghi, P. Bayati, R. Javanbakht, A. Jahadakbar, M. Elahinia, and B. Poorganji, Additive Manufacturing of NiTi Shape Memory Alloy for Biomedical Applications: Review of the LPBF Process Ecosystem, JOM, 2021, 73, p 3771–3786.CrossRef
41.
Zurück zum Zitat T. Duerig, A. Pelton, and D. Sto, An Overview of Nitinol Medical Applications, Mater. Sci. Eng. A, 1999, 275, p 149–160.CrossRef T. Duerig, A. Pelton, and D. Sto, An Overview of Nitinol Medical Applications, Mater. Sci. Eng. A, 1999, 275, p 149–160.CrossRef
42.
Zurück zum Zitat K. Otsuka and X. Ren, Physical Metallurgy of Ti-Ni-Based Shape Memory Alloys, Prog. Mater. Sci., 2005, 50(5), p 511–678.CrossRef K. Otsuka and X. Ren, Physical Metallurgy of Ti-Ni-Based Shape Memory Alloys, Prog. Mater. Sci., 2005, 50(5), p 511–678.CrossRef
43.
Zurück zum Zitat J.A. Shaw and S. Kyriakides, Thermomechanical Aspects of NiTi, J. Mech. Phys. Solids, 1995, 43(8), p 1243–1281.CrossRef J.A. Shaw and S. Kyriakides, Thermomechanical Aspects of NiTi, J. Mech. Phys. Solids, 1995, 43(8), p 1243–1281.CrossRef
44.
Zurück zum Zitat M. Elahinia, N. Shayesteh Moghaddam, M. Taheri Andani, A. Amerinatanzi, B.A. Bimber, and R.F. Hamilton, Fabrication of NiTi Through Additive Manufacturing: A Review”, Prog. Mater. Sci., 2016, 83, p 630–663.CrossRef M. Elahinia, N. Shayesteh Moghaddam, M. Taheri Andani, A. Amerinatanzi, B.A. Bimber, and R.F. Hamilton, Fabrication of NiTi Through Additive Manufacturing: A Review”, Prog. Mater. Sci., 2016, 83, p 630–663.CrossRef
45.
Zurück zum Zitat P. Haghdoust, ALo. Conte, S. Cinquemani, and N. Lecis, Investigation of Shape Memory Alloy Embedded Wind Turbine Blades for the Passive Control of Vibrations, Smart Mater. Struct., 2018, 27(10), p 105012.CrossRef P. Haghdoust, ALo. Conte, S. Cinquemani, and N. Lecis, Investigation of Shape Memory Alloy Embedded Wind Turbine Blades for the Passive Control of Vibrations, Smart Mater. Struct., 2018, 27(10), p 105012.CrossRef
46.
Zurück zum Zitat J. Ma, I. Karaman, R.D. Noebe, J. Ma, I. Karaman, and R.D. Noebe, High Temperature Shape Memory Alloys, Int. Mater. Rev., 2010, 55(5), p 257–315.CrossRef J. Ma, I. Karaman, R.D. Noebe, J. Ma, I. Karaman, and R.D. Noebe, High Temperature Shape Memory Alloys, Int. Mater. Rev., 2010, 55(5), p 257–315.CrossRef
47.
Zurück zum Zitat M. Es-Souni, M. Es-Souni, and H. Fischer-Brandies, Assessing the Biocompatibility of NiTi Shape Memory Alloys used for Medical Applications, Anal. Bioanal. Chem., 2005, 381(3), p 557–567.CrossRef M. Es-Souni, M. Es-Souni, and H. Fischer-Brandies, Assessing the Biocompatibility of NiTi Shape Memory Alloys used for Medical Applications, Anal. Bioanal. Chem., 2005, 381(3), p 557–567.CrossRef
48.
Zurück zum Zitat D.J. Hartl, D.C. Lagoudas, F.T. Calkins, and J.H. Mabe, Use of a Ni60Ti shape memory alloy for active jet engine chevron application: I. Thermomechanical characterization, Smart Mater. Struct., 2010, 19(1), p 015020.CrossRef D.J. Hartl, D.C. Lagoudas, F.T. Calkins, and J.H. Mabe, Use of a Ni60Ti shape memory alloy for active jet engine chevron application: I. Thermomechanical characterization, Smart Mater. Struct., 2010, 19(1), p 015020.CrossRef
49.
Zurück zum Zitat H.E. Karaca, I. Kaya, H. Tobe, B. Basaran, M. Nagasako, R. Kainuma, and Y. Chumlyakov, Shape Memory Behavior of High Strength Ni54Ti46 Alloys, Mater. Sci. Eng. A, 2013, 580, p 66–70.CrossRef H.E. Karaca, I. Kaya, H. Tobe, B. Basaran, M. Nagasako, R. Kainuma, and Y. Chumlyakov, Shape Memory Behavior of High Strength Ni54Ti46 Alloys, Mater. Sci. Eng. A, 2013, 580, p 66–70.CrossRef
50.
Zurück zum Zitat H.E. Karaca, E. Acar, H. Tobe, and S.M. Saghaian, NiTiHf-Based Shape Memory Alloys, Mater. Sci. Technol., 2014, 30(13), p 1530–1544.CrossRef H.E. Karaca, E. Acar, H. Tobe, and S.M. Saghaian, NiTiHf-Based Shape Memory Alloys, Mater. Sci. Technol., 2014, 30(13), p 1530–1544.CrossRef
51.
Zurück zum Zitat L. Janke, C. Czaderski, M. Motavalli, and J. Ruth, Applications of Shape Memory Alloys in Civil Engineering Structures - Overview, Limits and New Ideas, Mater. Struct. Constr., 2005, 38(279), p 578–592.CrossRef L. Janke, C. Czaderski, M. Motavalli, and J. Ruth, Applications of Shape Memory Alloys in Civil Engineering Structures - Overview, Limits and New Ideas, Mater. Struct. Constr., 2005, 38(279), p 578–592.CrossRef
52.
Zurück zum Zitat S.M. Kornegay, M. Kapoor, B.C. Hornbuckle, D. Tweddle, M.L. Weaver, O. Benafan, G.S. Bigelow, R.D. Noebe, and G.B. Thompson, Influence of H-phase Precipitation on the Microstructure and Functional and Mechanical Properties in a Ni-rich NiTiZr Shape Memory Alloy, Mater. Sci. Eng. A, 2020, 801, p 140401.CrossRef S.M. Kornegay, M. Kapoor, B.C. Hornbuckle, D. Tweddle, M.L. Weaver, O. Benafan, G.S. Bigelow, R.D. Noebe, and G.B. Thompson, Influence of H-phase Precipitation on the Microstructure and Functional and Mechanical Properties in a Ni-rich NiTiZr Shape Memory Alloy, Mater. Sci. Eng. A, 2020, 801, p 140401.CrossRef
53.
Zurück zum Zitat L. Casalena, D.R. Coughlin, F. Yang, X. Chen, H. Paranjape, Y. Gao, R.D. Noebe, G.S. Bigelow, D.J. Gaydosh, S.A. Padula, and Y. Wang, Transformation and Deformation Characterization of NiTiHf and NiTiAu High Temperature Shape Memory Alloys. ASM International - International Conference on Shape Memory and Superelastic Technologies, SMST 2015, pp. 157–158 L. Casalena, D.R. Coughlin, F. Yang, X. Chen, H. Paranjape, Y. Gao, R.D. Noebe, G.S. Bigelow, D.J. Gaydosh, S.A. Padula, and Y. Wang, Transformation and Deformation Characterization of NiTiHf and NiTiAu High Temperature Shape Memory Alloys. ASM International - International Conference on Shape Memory and Superelastic Technologies, SMST 2015, pp. 157–158
54.
Zurück zum Zitat G.S. Bigelow, S.A. Padula, A. Garg, D. Gaydosh, and R.D. Noebe, Characterization of Ternary NiTiPd High-Temperature Shape-Memory Alloys Under Load-Biased Thermal Cycling, Metall. Mater. Trans. Phys. Metall. Mater. Sci., 2010, 41(12), p 3065–3079.CrossRef G.S. Bigelow, S.A. Padula, A. Garg, D. Gaydosh, and R.D. Noebe, Characterization of Ternary NiTiPd High-Temperature Shape-Memory Alloys Under Load-Biased Thermal Cycling, Metall. Mater. Trans. Phys. Metall. Mater. Sci., 2010, 41(12), p 3065–3079.CrossRef
55.
Zurück zum Zitat B. Lin, K. Gall, H.J. Maier, and R. Waldron, Structure and Thermomechanical Behavior of NiTiPt Shape Memory Alloy Wires, Acta Biomater., 2009, 5(1), p 257–267.CrossRef B. Lin, K. Gall, H.J. Maier, and R. Waldron, Structure and Thermomechanical Behavior of NiTiPt Shape Memory Alloy Wires, Acta Biomater., 2009, 5(1), p 257–267.CrossRef
56.
Zurück zum Zitat M.K. Ibrahim, E. Hamzah, S.N. Saud, E.M. Nazim, and A. Bahador, Influence of Ce Addition on Biomedical Porous Ti-51 Atomic Percentage (at.%) Ni shape Memory Alloy Fabricated by Microwave Sintering, AIP Conf. Proc, 2017, 1901, p 196–203. M.K. Ibrahim, E. Hamzah, S.N. Saud, E.M. Nazim, and A. Bahador, Influence of Ce Addition on Biomedical Porous Ti-51 Atomic Percentage (at.%) Ni shape Memory Alloy Fabricated by Microwave Sintering, AIP Conf. Proc, 2017, 1901, p 196–203.
57.
Zurück zum Zitat A. Tuissi et al., Radiopaque Shape Memory Alloys: NiTi–Er with Stable Superelasticity, Shape Mem. Superelasticity, 2016, 2(2), p 196–203.CrossRef A. Tuissi et al., Radiopaque Shape Memory Alloys: NiTi–Er with Stable Superelasticity, Shape Mem. Superelasticity, 2016, 2(2), p 196–203.CrossRef
58.
Zurück zum Zitat D.R. Angst, P.E. Thoma, and M.Y. Kao, The Effect of Hafnium Content on the Transformation Temperatures of Ni 49 Ti 51–x Hf x. Shape Memory Alloys, J. Phys. IV, 1995, 05(C8), p C8-747-C8-752. D.R. Angst, P.E. Thoma, and M.Y. Kao, The Effect of Hafnium Content on the Transformation Temperatures of Ni 49 Ti 51–x Hf x. Shape Memory Alloys, J. Phys. IV, 1995, 05(C8), p C8-747-C8-752.
59.
Zurück zum Zitat G.S. Firstov, J. Van Humbeeck, and Y.N. Koval, Comparison of High Temperature Shape Memory Behaviour for ZrCu-Based, Ti-Ni-Zr and Ti-Ni-Hf Alloys, Scr. Mater., 2004, 50(2), p 243–248.CrossRef G.S. Firstov, J. Van Humbeeck, and Y.N. Koval, Comparison of High Temperature Shape Memory Behaviour for ZrCu-Based, Ti-Ni-Zr and Ti-Ni-Hf Alloys, Scr. Mater., 2004, 50(2), p 243–248.CrossRef
60.
Zurück zum Zitat G.S. Firstov, J. Van Humbeeck, and Y.N. Koval, High Temperature Shape Memory Alloys Problems and Prospects, J. Intell. Mater. Syst. Struct., 2006, 17(12), p 1041–1047.CrossRef G.S. Firstov, J. Van Humbeeck, and Y.N. Koval, High Temperature Shape Memory Alloys Problems and Prospects, J. Intell. Mater. Syst. Struct., 2006, 17(12), p 1041–1047.CrossRef
61.
Zurück zum Zitat Y. Zhou et al., Strain Glass in Doped Ti50(Ni50-xD x) (D = Co, Cr, Mn) Alloys: Implication for the Generality of Strain Glass in Defect-containing Ferroelastic Systems, Acta Mater., 2010, 58(16), p 5433–5442.CrossRef Y. Zhou et al., Strain Glass in Doped Ti50(Ni50-xD x) (D = Co, Cr, Mn) Alloys: Implication for the Generality of Strain Glass in Defect-containing Ferroelastic Systems, Acta Mater., 2010, 58(16), p 5433–5442.CrossRef
62.
Zurück zum Zitat O. Benafan, G.S. Bigelow, A. Garg, and R.D. Noebe, Viable Low Temperature Shape Memory Alloys Based on Ni-Ti-Hf Formulations, Scr. Mater., 2019, 164, p 115–120.CrossRef O. Benafan, G.S. Bigelow, A. Garg, and R.D. Noebe, Viable Low Temperature Shape Memory Alloys Based on Ni-Ti-Hf Formulations, Scr. Mater., 2019, 164, p 115–120.CrossRef
63.
Zurück zum Zitat S. Liu, B. B. Kappes, B. Amin-ahmadi, O. Benafan, X. Zhang, and A. P. Stebner, Physics-informed machine learning for composition–process–property design: Shape memory alloy demonstration, Appl. Mater. Today, 2021, 22, p 100898. S. Liu, B. B. Kappes, B. Amin-ahmadi, O. Benafan, X. Zhang, and A. P. Stebner, Physics-informed machine learning for composition–process–property design: Shape memory alloy demonstration, Appl. Mater. Today, 2021, 22, p 100898.
64.
Zurück zum Zitat S. Besseghini, E. Villa, and A. Tuissi, Ni-Ti-Hf Shape Memory Alloy: Effect of Aging and Thermal Cycling, Mater. Sci. Eng. A, 1999, 273–275, p 390–394.CrossRef S. Besseghini, E. Villa, and A. Tuissi, Ni-Ti-Hf Shape Memory Alloy: Effect of Aging and Thermal Cycling, Mater. Sci. Eng. A, 1999, 273–275, p 390–394.CrossRef
65.
Zurück zum Zitat P.E. Thoma and J.J. Boehm, Effect of Composition on the Amount of Second Phase and Transformation Temperatures of NixTi90-xHf10 Shape Memory Alloys, Mater. Sci. Eng. A, 1999, 273–275, p 385–389.CrossRef P.E. Thoma and J.J. Boehm, Effect of Composition on the Amount of Second Phase and Transformation Temperatures of NixTi90-xHf10 Shape Memory Alloys, Mater. Sci. Eng. A, 1999, 273–275, p 385–389.CrossRef
66.
Zurück zum Zitat A. Panchal and T.K. Nandy, Effect of Composition, Heat Treatment and Deformation on Mechanical Properties of Tungsten Heavy Alloys, Mater. Sci. Eng. A, 2018, 733, p 374–384.CrossRef A. Panchal and T.K. Nandy, Effect of Composition, Heat Treatment and Deformation on Mechanical Properties of Tungsten Heavy Alloys, Mater. Sci. Eng. A, 2018, 733, p 374–384.CrossRef
67.
Zurück zum Zitat I. Cvijović-Alagić, Z. Cvijović, J. Bajat, and M. Rakin, Composition and Processing Effects on the Electrochemical Characteristics of Biomedical Titanium Alloys, Corros. Sci., 2014, 83, p 245–254.CrossRef I. Cvijović-Alagić, Z. Cvijović, J. Bajat, and M. Rakin, Composition and Processing Effects on the Electrochemical Characteristics of Biomedical Titanium Alloys, Corros. Sci., 2014, 83, p 245–254.CrossRef
68.
Zurück zum Zitat W. Zhao, A. Pizzi, V. Fierro, G. Du, and A. Celzard, Effect of Composition and Processing Parameters on the Characteristics of Tannin-Based Rigid Foams. Part I: Cell Structure, Mater. Chem. Phys., 2010, 122(1), p 175–182.CrossRef W. Zhao, A. Pizzi, V. Fierro, G. Du, and A. Celzard, Effect of Composition and Processing Parameters on the Characteristics of Tannin-Based Rigid Foams. Part I: Cell Structure, Mater. Chem. Phys., 2010, 122(1), p 175–182.CrossRef
69.
Zurück zum Zitat W. Zhao, V. Fierro, A. Pizzi, G. Du, and A. Celzard, Effect of Composition and Processing Parameters on the Characteristics of Tannin-based Rigid Foams. Part II: Physical Properties, Mater. Chem. Phys., 2010, 123(1), p 210–217.CrossRef W. Zhao, V. Fierro, A. Pizzi, G. Du, and A. Celzard, Effect of Composition and Processing Parameters on the Characteristics of Tannin-based Rigid Foams. Part II: Physical Properties, Mater. Chem. Phys., 2010, 123(1), p 210–217.CrossRef
70.
Zurück zum Zitat L. Lasa and J.M. Rodriguez-Ibabe, Effect of Composition and Processing Route on the Wear Behaviour of Al-Si Alloys, Scr. Mater., 2002, 46(6), p 477–481.CrossRef L. Lasa and J.M. Rodriguez-Ibabe, Effect of Composition and Processing Route on the Wear Behaviour of Al-Si Alloys, Scr. Mater., 2002, 46(6), p 477–481.CrossRef
71.
Zurück zum Zitat F.J. Navarro, P. Partal, F. Martínez-Boza, and C. Gallegos, Effect of Composition and Processing on the Linear Viscoelasticity of Synthetic Binders, Eur. Polym. J., 2005, 41(6), p 1429–1438.CrossRef F.J. Navarro, P. Partal, F. Martínez-Boza, and C. Gallegos, Effect of Composition and Processing on the Linear Viscoelasticity of Synthetic Binders, Eur. Polym. J., 2005, 41(6), p 1429–1438.CrossRef
72.
Zurück zum Zitat J. Frenzel, A. Wieczorek, I. Opahle, B. Maaß, R. Drautz, and G. Eggeler, On the effect of Alloy Composition on Martensite Start Temperatures and Latent Heats in Ni-Ti-based Shape Memory Alloys, Acta Mater., 2015, 90, p 213–231.CrossRef J. Frenzel, A. Wieczorek, I. Opahle, B. Maaß, R. Drautz, and G. Eggeler, On the effect of Alloy Composition on Martensite Start Temperatures and Latent Heats in Ni-Ti-based Shape Memory Alloys, Acta Mater., 2015, 90, p 213–231.CrossRef
73.
Zurück zum Zitat A.W. Young, R.W. Wheeler, N.A. Ley, O. Benafan, and M.L. Young, Microstructural and Thermomechanical Comparison of Ni-Rich and Ni-Lean NiTi-20 at.% Hf High Temperature Shape Memory Alloy Wires, Shape Mem. Superelasticity, 2019, 5(4), p 397–406.CrossRef A.W. Young, R.W. Wheeler, N.A. Ley, O. Benafan, and M.L. Young, Microstructural and Thermomechanical Comparison of Ni-Rich and Ni-Lean NiTi-20 at.% Hf High Temperature Shape Memory Alloy Wires, Shape Mem. Superelasticity, 2019, 5(4), p 397–406.CrossRef
74.
Zurück zum Zitat H.E. Karaca et al., Effects of Nanoprecipitation on the Shape Memory and Material Properties of an Ni-rich NiTiHf High Temperature Shape Memory Alloy, Acta Mater., 2013, 61(19), p 7422–7431.CrossRef H.E. Karaca et al., Effects of Nanoprecipitation on the Shape Memory and Material Properties of an Ni-rich NiTiHf High Temperature Shape Memory Alloy, Acta Mater., 2013, 61(19), p 7422–7431.CrossRef
75.
Zurück zum Zitat A. Evirgen, F. Basner, I. Karaman, R.D. Noebe, J. Pons, and R. Santamarta, Effect of Aging on the Martensitic Transformation Characteristics of a Ni-Rich NiTiHf High Temperature Shape Memory Alloy, Funct. Mater. Lett., 2012, 5(4), p 1–5.CrossRef A. Evirgen, F. Basner, I. Karaman, R.D. Noebe, J. Pons, and R. Santamarta, Effect of Aging on the Martensitic Transformation Characteristics of a Ni-Rich NiTiHf High Temperature Shape Memory Alloy, Funct. Mater. Lett., 2012, 5(4), p 1–5.CrossRef
76.
Zurück zum Zitat O. Benafan, G.S. Bigelow, and D.A. Scheiman, Transformation Behavior in NiTi-20Hf Shape Memory Alloys—Transformation temperatures and hardness, Scr. Mater., 2018, 146, p 251–254.CrossRef O. Benafan, G.S. Bigelow, and D.A. Scheiman, Transformation Behavior in NiTi-20Hf Shape Memory Alloys—Transformation temperatures and hardness, Scr. Mater., 2018, 146, p 251–254.CrossRef
77.
Zurück zum Zitat M. Nematollahi et al., Additive Manufacturing of Ni-Rich NiTiHf20: Manufacturability, Composition, Density, and Transformation Behavior, Shape Mem. Superelasticity, 2019, 5(1), p 113–124.CrossRef M. Nematollahi et al., Additive Manufacturing of Ni-Rich NiTiHf20: Manufacturability, Composition, Density, and Transformation Behavior, Shape Mem. Superelasticity, 2019, 5(1), p 113–124.CrossRef
78.
Zurück zum Zitat M. Nematollahi et al., Laser Powder Bed Fusion of nitihf High-temperature Shape Memory Alloy: Effect of Process Parameters on the Thermomechanical Behavior, Metals (Basel), 2020, 10(11), p 1–21.CrossRef M. Nematollahi et al., Laser Powder Bed Fusion of nitihf High-temperature Shape Memory Alloy: Effect of Process Parameters on the Thermomechanical Behavior, Metals (Basel), 2020, 10(11), p 1–21.CrossRef
79.
Zurück zum Zitat K. Kirkpatrick and J. Valasek, Active Length Control of Shape Memory Alloy Wires using Reinforcement Learning, J. Intell. Mater. Syst. Struct., 2011, 22(14), p 1595–1604.CrossRef K. Kirkpatrick and J. Valasek, Active Length Control of Shape Memory Alloy Wires using Reinforcement Learning, J. Intell. Mater. Syst. Struct., 2011, 22(14), p 1595–1604.CrossRef
80.
Zurück zum Zitat M. Mehrpouya, A. Gisario, M. Nematollahi, A. Rahimzadeh, K.S. Baghbaderani, and M. Elahinia, The Prediction Model for Additively Manufacturing of NiTiHf High-temperature Shape Memory Alloy, Mater. Today Commun., 2021, 26, 102022.CrossRef M. Mehrpouya, A. Gisario, M. Nematollahi, A. Rahimzadeh, K.S. Baghbaderani, and M. Elahinia, The Prediction Model for Additively Manufacturing of NiTiHf High-temperature Shape Memory Alloy, Mater. Today Commun., 2021, 26, 102022.CrossRef
81.
Zurück zum Zitat S. Liu, B.B. Kappes, B. Amin-ahmadi, O. Benafan, X. Zhang, and A.P. Stebner, Physics-Informed Machine Learning for Composition–Process–Property Design: Shape Memory Alloy Demonstration, Appl. Mater. Today, 2021, 22, p 100898.CrossRef S. Liu, B.B. Kappes, B. Amin-ahmadi, O. Benafan, X. Zhang, and A.P. Stebner, Physics-Informed Machine Learning for Composition–Process–Property Design: Shape Memory Alloy Demonstration, Appl. Mater. Today, 2021, 22, p 100898.CrossRef
82.
Zurück zum Zitat X.-P. Zhao, H.-Y. Huang, C. Wen, Y.-J. Su, and P. Qian, Accelerating the Development of Multi-Component Cu-Al-Based Shape Memory Alloys with High Elastocaloric Property by Machine Learning, Comput. Mater. Sci., 2020, 176, p 109521.CrossRef X.-P. Zhao, H.-Y. Huang, C. Wen, Y.-J. Su, and P. Qian, Accelerating the Development of Multi-Component Cu-Al-Based Shape Memory Alloys with High Elastocaloric Property by Machine Learning, Comput. Mater. Sci., 2020, 176, p 109521.CrossRef
84.
Zurück zum Zitat M. Mehrpouya, A. Gisario, A. Rahimzadeh, M. Nematollahi, K.S. Baghbaderani, and M. Elahinia, A Prediction Model for Finding the Optimal Laser Parameters in Additive Manufacturing of NiTi Shape Memory Alloy, Int. J. Adv. Manuf. Technol., 2019, 105(11), p 4691–4699.CrossRef M. Mehrpouya, A. Gisario, A. Rahimzadeh, M. Nematollahi, K.S. Baghbaderani, and M. Elahinia, A Prediction Model for Finding the Optimal Laser Parameters in Additive Manufacturing of NiTi Shape Memory Alloy, Int. J. Adv. Manuf. Technol., 2019, 105(11), p 4691–4699.CrossRef
85.
Zurück zum Zitat M. Moshref-Javadi, S.H. Seyedein, M.T. Salehi, and M.R. Aboutalebi, Age-induced Multi-Stage Transformation in a Ni-Rich NiTiHf Alloy, Acta Mater., 2013, 61(7), p 2583–2594.CrossRef M. Moshref-Javadi, S.H. Seyedein, M.T. Salehi, and M.R. Aboutalebi, Age-induced Multi-Stage Transformation in a Ni-Rich NiTiHf Alloy, Acta Mater., 2013, 61(7), p 2583–2594.CrossRef
86.
Zurück zum Zitat S. Li, N.J.E. Adkins, S. McCain, and M.M. Attallah, Suspended Droplet Alloying: A New Method for Combinatorial Alloy Synthesis; Nitinol-based Alloys as an example, J. Alloys Compd., 2018, 768, p 392–398.CrossRef S. Li, N.J.E. Adkins, S. McCain, and M.M. Attallah, Suspended Droplet Alloying: A New Method for Combinatorial Alloy Synthesis; Nitinol-based Alloys as an example, J. Alloys Compd., 2018, 768, p 392–398.CrossRef
87.
Zurück zum Zitat S. Li, Development and processing of Ti-Ni-based shape memory alloys using laser melting techniques (Doctoral dissertation, University of Birmingham), 2017. S. Li, Development and processing of Ti-Ni-based shape memory alloys using laser melting techniques (Doctoral dissertation, University of Birmingham), 2017.
88.
Zurück zum Zitat P.L. Potapov, A.V. Shelyakov, A.A. Gulyaev, E.L. Svistunova, N.M. Matveeva, and D. Hodgson, Effect of Hf on the Structure of Ni-Ti Martensitic Alloys, Mater. Lett., 1997, 32(4), p 247–250.CrossRef P.L. Potapov, A.V. Shelyakov, A.A. Gulyaev, E.L. Svistunova, N.M. Matveeva, and D. Hodgson, Effect of Hf on the Structure of Ni-Ti Martensitic Alloys, Mater. Lett., 1997, 32(4), p 247–250.CrossRef
89.
Zurück zum Zitat V.G. Pushin, N.N. Kuranova, A.V. Pushin, A.N. Uksusnikov, and N.I. Kourov, Structure and Thermoelastic Martensitic Transformations in Ternary Ni–Ti–Hf Alloys with a High-temperature Shape Memory Effect, Tech. Phys., 2016, 61(7), p 1009–1014.CrossRef V.G. Pushin, N.N. Kuranova, A.V. Pushin, A.N. Uksusnikov, and N.I. Kourov, Structure and Thermoelastic Martensitic Transformations in Ternary Ni–Ti–Hf Alloys with a High-temperature Shape Memory Effect, Tech. Phys., 2016, 61(7), p 1009–1014.CrossRef
90.
Zurück zum Zitat C.C. Wojcik, Properties and Heat Treatment of High Transition Temperature Ni-Ti-Hf Alloys, J. Mater. Eng. Perform., 2009, 18(5–6), p 511–516.CrossRef C.C. Wojcik, Properties and Heat Treatment of High Transition Temperature Ni-Ti-Hf Alloys, J. Mater. Eng. Perform., 2009, 18(5–6), p 511–516.CrossRef
91.
Zurück zum Zitat F. Chollet, in Deep Learning mit Python und Keras: Das Praxis-Handbuch vom Entwickler der Keras-Bibliothek (MITP-Verlags GmbH & Co. KG., 2018) F. Chollet, in Deep Learning mit Python und Keras: Das Praxis-Handbuch vom Entwickler der Keras-Bibliothek (MITP-Verlags GmbH & Co. KG., 2018)
92.
Zurück zum Zitat S. Roweis, in Levenberg-Marquardt Optimization, Notes, University Of Toronto, 1996. S. Roweis, in Levenberg-Marquardt Optimization, Notes, University Of Toronto, 1996.
93.
Zurück zum Zitat K. Gurney, in An Introduction to Neural Networks, CRC press, 2018. K. Gurney, in An Introduction to Neural Networks, CRC press, 2018.
94.
Zurück zum Zitat G. Martínez Arellano and S. Ratchev, Towards an Active Learning Approach to Tool Condition Monitoring with Bayesian Deep Learning, Proc. Eur. Counc. Model. Simulation ECMS, 2019, 33(1), p 223–229.CrossRef G. Martínez Arellano and S. Ratchev, Towards an Active Learning Approach to Tool Condition Monitoring with Bayesian Deep Learning, Proc. Eur. Counc. Model. Simulation ECMS, 2019, 33(1), p 223–229.CrossRef
95.
Zurück zum Zitat O. Karakoc et al., Role of Microstructure on the Actuation Fatigue Performance of Ni-Rich NiTiHf High Temperature Shape Memory Alloys, Acta Mater., 2019, 175, p 107–120.CrossRef O. Karakoc et al., Role of Microstructure on the Actuation Fatigue Performance of Ni-Rich NiTiHf High Temperature Shape Memory Alloys, Acta Mater., 2019, 175, p 107–120.CrossRef
96.
Zurück zum Zitat Y. Tong, F. Chen, B. Tian, L. Li, and Y. Zheng, Microstructure and Martensitic Transformation of Ti49Ni51 - xHfx High Temperature Shape Memory Alloys, Mater. Lett., 2009, 63(21), p 1869–1871.CrossRef Y. Tong, F. Chen, B. Tian, L. Li, and Y. Zheng, Microstructure and Martensitic Transformation of Ti49Ni51 - xHfx High Temperature Shape Memory Alloys, Mater. Lett., 2009, 63(21), p 1869–1871.CrossRef
97.
Zurück zum Zitat S. Buytoz, F. Dagdelen, I.N. Qader, M. Kok, and B. Tanyildizi, Microstructure Analysis and Thermal Characteristics of NiTiHf Shape Memory Alloy with Different Composition, Met. Mater. Int., 2021, 27, p 767–778.CrossRef S. Buytoz, F. Dagdelen, I.N. Qader, M. Kok, and B. Tanyildizi, Microstructure Analysis and Thermal Characteristics of NiTiHf Shape Memory Alloy with Different Composition, Met. Mater. Int., 2021, 27, p 767–778.CrossRef
98.
Zurück zum Zitat P. Olier, J.C. Brachet, J.L. Bechade, C. Foucher, and G. Guénin, Investigation of Transformation Temperatures, Microstructure and Shape Memory Properties of NiTi, NiTiZr and NiTiHf Alloys, J. Phys. IV, 1995, 05(C8), p C8-741-C8-746. P. Olier, J.C. Brachet, J.L. Bechade, C. Foucher, and G. Guénin, Investigation of Transformation Temperatures, Microstructure and Shape Memory Properties of NiTi, NiTiZr and NiTiHf Alloys, J. Phys. IV, 1995, 05(C8), p C8-741-C8-746.
Metadaten
Titel
Neural Network Modeling of NiTiHf Shape Memory Alloy Transformation Temperatures
verfasst von
H. Abedi
K. S. Baghbaderani
A. Alafaghani
M. Nematollahi
F. Kordizadeh
M. M. Attallah
A. Qattawi
M. Elahinia
Publikationsdatum
24.05.2022
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 12/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-06995-y

Weitere Artikel der Ausgabe 12/2022

Journal of Materials Engineering and Performance 12/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.