Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 12/2022

14.06.2022 | Technical Article

Rheology, Crystallinity, and Mechanical Investigation of Interlayer Adhesion Strength by Thermal Annealing of Polyetherimide (PEI/ULTEM 1010) Parts Produced by 3D Printing

verfasst von: Musa Yilmaz, Necip Fazil Yilmaz, Mahmut Furkan Kalkan

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 12/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fused deposition modeling (FDM) is a 3D printing technology in which the melt extrusion method is used for the production of thermoplastic parts. 3D printed thermoplastic materials produced by this method suffer from a particularly significant problem, however, namely poor interfacial bond formation that results in weak mechanical performance. This work proposes a thermal process to enhance the strength of the interlayer adhesion of 3D printed PEI thermoplastic materials. The annealing process was determined as a suitable post-processing procedure and was the focus of this work. Annealing was carried out in an oven at temperatures of 220, 225, 230, and 235 °C; it was determined that annealing performed at 225 °C in particular was highly desirable in terms of enhancing interlayer adhesion strength. In this work, characterization (FTIR, XRD, and SEM) and mechanical (tensile, bending, and hardness) analyses of 3D printed PEI were performed to better understand the strength of interlayer adhesion and overcome a mechanical performance limitation of this material. According to the tensile, bending, and hardness test results, the greatest improvements were found as increase of 10, 5, and 12%, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. Singh and J.P. Davim, Additive Manufacturing: Applications and Innovations. (CRC Press, 2018.) R. Singh and J.P. Davim, Additive Manufacturing: Applications and Innovations. (CRC Press, 2018.)
2.
Zurück zum Zitat T. Pereira, J.V. Kennedy and J. Potgieter, A Comparison of Traditional Manufacturing vs Additive Manufacturing, the Best Method for the Job, Procedia Manuf., 2019, 30, p 11–18.CrossRef T. Pereira, J.V. Kennedy and J. Potgieter, A Comparison of Traditional Manufacturing vs Additive Manufacturing, the Best Method for the Job, Procedia Manuf., 2019, 30, p 11–18.CrossRef
3.
Zurück zum Zitat J.P. Davim, “Additive and Subtractive Manufacturing: Emergent Technologies. (Walter de Gruyter GmbH, Co KG, 2020) J.P. Davim, “Additive and Subtractive Manufacturing: Emergent Technologies. (Walter de Gruyter GmbH, Co KG, 2020)
4.
Zurück zum Zitat K.S. Prakash, T. Nancharaih and V.V.S. Rao, Additive Manufacturing Techniques in Manufacturing-an Overview, Mater. Today Proc., 2018, 5(2), p 3873–3882.CrossRef K.S. Prakash, T. Nancharaih and V.V.S. Rao, Additive Manufacturing Techniques in Manufacturing-an Overview, Mater. Today Proc., 2018, 5(2), p 3873–3882.CrossRef
5.
Zurück zum Zitat J. Pou, A. Riveiro, and P. Davim, “Additive Manufacturing,” Elsevier, 2021 J. Pou, A. Riveiro, and P. Davim, “Additive Manufacturing,” Elsevier, 2021
6.
Zurück zum Zitat O. Abdulhameed, A. Al-Ahmari, W. Ameen and S.H. Mian, Additive Manufacturing: Challenges, Trends, and Applications, Adv. Mech. Eng., 2019, 11(2), p 1687814018822880.CrossRef O. Abdulhameed, A. Al-Ahmari, W. Ameen and S.H. Mian, Additive Manufacturing: Challenges, Trends, and Applications, Adv. Mech. Eng., 2019, 11(2), p 1687814018822880.CrossRef
7.
Zurück zum Zitat J. Jiang, A Novel Fabrication Strategy for Additive Manufacturing Processes, J. Clean. Prod., 2020, 272, p 122916.CrossRef J. Jiang, A Novel Fabrication Strategy for Additive Manufacturing Processes, J. Clean. Prod., 2020, 272, p 122916.CrossRef
8.
Zurück zum Zitat K. Das, P. Tandon and A. Singh, 3D Printing–Imaging the Future Layer by Layer, J. Contemp. Orthod., 2020, 4(3), p 44–48. K. Das, P. Tandon and A. Singh, 3D Printing–Imaging the Future Layer by Layer, J. Contemp. Orthod., 2020, 4(3), p 44–48.
9.
Zurück zum Zitat J.Y. Wong and A.C. Pfahnl, 3D Printing of Surgical Instruments for Long-Duration Space Missions, Aviat. Space. Environ. Med., 2014, 85(7), p 758–763.CrossRef J.Y. Wong and A.C. Pfahnl, 3D Printing of Surgical Instruments for Long-Duration Space Missions, Aviat. Space. Environ. Med., 2014, 85(7), p 758–763.CrossRef
10.
Zurück zum Zitat P. Bere, C. Neamtu and R. Udroiu, Novel Method for the Manufacture of Complex CFRP Parts Using FDM-Based Molds, Polymers (Basel)., 2020, 12(10), p 2220.CrossRef P. Bere, C. Neamtu and R. Udroiu, Novel Method for the Manufacture of Complex CFRP Parts Using FDM-Based Molds, Polymers (Basel)., 2020, 12(10), p 2220.CrossRef
11.
Zurück zum Zitat L. Novakova-Marcincinova, J. Novak-Marcincin, J. Barna, and J. Torok, “Special Materials Used in FDM Rapid Prototyping Technology Application,” 2012 IEEE 16th International Conference on Intelligent Engineering Systems (INES), IEEE, 2012, p 73–76. L. Novakova-Marcincinova, J. Novak-Marcincin, J. Barna, and J. Torok, “Special Materials Used in FDM Rapid Prototyping Technology Application,” 2012 IEEE 16th International Conference on Intelligent Engineering Systems (INES), IEEE, 2012, p 73–76.
12.
Zurück zum Zitat X. Han, D. Yang, C. Yang, S. Spintzyk, L. Scheideler, P. Li, D. Li, J. Geis-Gerstorfer and F. Rupp, Carbon Fiber Reinforced PEEK Composites Based on 3D-Printing Technology for Orthopedic and Dental Applications, J. Clin. Med., 2019, 8(2), p 240.CrossRef X. Han, D. Yang, C. Yang, S. Spintzyk, L. Scheideler, P. Li, D. Li, J. Geis-Gerstorfer and F. Rupp, Carbon Fiber Reinforced PEEK Composites Based on 3D-Printing Technology for Orthopedic and Dental Applications, J. Clin. Med., 2019, 8(2), p 240.CrossRef
13.
Zurück zum Zitat R. Sharma, R. Singh, R. Penna and F. Fraternali, Investigations for Mechanical Properties of Hap, PVC and PP Based 3D Porous Structures Obtained through Biocompatible FDM Filaments, Compos. Part B Eng., 2018, 132, p 237–243.CrossRef R. Sharma, R. Singh, R. Penna and F. Fraternali, Investigations for Mechanical Properties of Hap, PVC and PP Based 3D Porous Structures Obtained through Biocompatible FDM Filaments, Compos. Part B Eng., 2018, 132, p 237–243.CrossRef
14.
Zurück zum Zitat Y. Zhao, K. Zhao, Y. Li and F. Chen, Mechanical Characterization of Biocompatible PEEK by FDM, J. Manuf. Process., 2020, 56, p 28–42.CrossRef Y. Zhao, K. Zhao, Y. Li and F. Chen, Mechanical Characterization of Biocompatible PEEK by FDM, J. Manuf. Process., 2020, 56, p 28–42.CrossRef
16.
Zurück zum Zitat K.G. Mostafa, C. Montemagno and A.J. Qureshi, Strength to Cost Ratio Analysis of FDM Nylon 12 3D Printed Parts, Procedia Manuf., 2018, 26, p 753–762.CrossRef K.G. Mostafa, C. Montemagno and A.J. Qureshi, Strength to Cost Ratio Analysis of FDM Nylon 12 3D Printed Parts, Procedia Manuf., 2018, 26, p 753–762.CrossRef
17.
Zurück zum Zitat H. Wu, M. Sulkis, J. Driver, A. Saade-Castillo, A. Thompson and J.H. Koo, Multi-Functional ULTEMTM 1010 Composite Filaments for Additive Manufacturing Using Fused Filament Fabrication (FFF), Addit. Manuf., 2018, 24, p 298–306. H. Wu, M. Sulkis, J. Driver, A. Saade-Castillo, A. Thompson and J.H. Koo, Multi-Functional ULTEMTM 1010 Composite Filaments for Additive Manufacturing Using Fused Filament Fabrication (FFF), Addit. Manuf., 2018, 24, p 298–306.
18.
Zurück zum Zitat A. Slonov, I. Musov, A. Zhansitov, E. Rzhevskaya, D. Khakulova and S. Khashirova, The Effect of Modification on the Properties of Polyetherimide and Its Carbon-Filled Composite, Polymers (Basel)., 2020, 12(5), p 1056.CrossRef A. Slonov, I. Musov, A. Zhansitov, E. Rzhevskaya, D. Khakulova and S. Khashirova, The Effect of Modification on the Properties of Polyetherimide and Its Carbon-Filled Composite, Polymers (Basel)., 2020, 12(5), p 1056.CrossRef
19.
Zurück zum Zitat G. Taylor, X. Wang, L. Mason, M.C. Leu, K. Chandrashekhara, T. Schniepp, and R. Jones, (2018). Flexural Behavior of Additively Manufactured Ultem 1010: Experiment and Simulation. Rapid Prototyp. J. G. Taylor, X. Wang, L. Mason, M.C. Leu, K. Chandrashekhara, T. Schniepp, and R. Jones, (2018). Flexural Behavior of Additively Manufactured Ultem 1010: Experiment and Simulation. Rapid Prototyp. J.
20.
Zurück zum Zitat M. Fischer and V. Schöppner, Fatigue Behavior of FDM Parts Manufactured with Ultem 9085, Jom, 2017, 69(3), p 563–568.CrossRef M. Fischer and V. Schöppner, Fatigue Behavior of FDM Parts Manufactured with Ultem 9085, Jom, 2017, 69(3), p 563–568.CrossRef
21.
Zurück zum Zitat G. Taylor, S. Anandan, D. Murphy, M. Leu and K. Chandrashekhara, Fracture Toughness of Additively Manufactured ULTEM 1010, Virtual Phys. Prototyp., 2019, 14(3), p 277–283.CrossRef G. Taylor, S. Anandan, D. Murphy, M. Leu and K. Chandrashekhara, Fracture Toughness of Additively Manufactured ULTEM 1010, Virtual Phys. Prototyp., 2019, 14(3), p 277–283.CrossRef
22.
Zurück zum Zitat U.K. Komal, B.K. Kasaudhan and I. Singh, Comparative Performance Analysis of Polylactic Acid Parts Fabricated by 3D Printing and Injection Molding, J. Mater. Eng. Perform., 2021, 30(9), p 6522–6528.CrossRef U.K. Komal, B.K. Kasaudhan and I. Singh, Comparative Performance Analysis of Polylactic Acid Parts Fabricated by 3D Printing and Injection Molding, J. Mater. Eng. Perform., 2021, 30(9), p 6522–6528.CrossRef
23.
Zurück zum Zitat O.A. Mohamed, S.H. Masood and J.L. Bhowmik, Experimental Investigation of Time-Dependent Mechanical Properties of PC-ABS Prototypes Processed by FDM Additive Manufacturing Process, Mater. Lett., 2017, 193, p 58–62.CrossRef O.A. Mohamed, S.H. Masood and J.L. Bhowmik, Experimental Investigation of Time-Dependent Mechanical Properties of PC-ABS Prototypes Processed by FDM Additive Manufacturing Process, Mater. Lett., 2017, 193, p 58–62.CrossRef
24.
Zurück zum Zitat M. Manjaiah, K. Raghavendra, N. Balashanmugam, and J.P. Davim, “Additive Manufacturing: A Tool for Industrial Revolution 4.0,” Elsevier, 2021 M. Manjaiah, K. Raghavendra, N. Balashanmugam, and J.P. Davim, “Additive Manufacturing: A Tool for Industrial Revolution 4.0,” Elsevier, 2021
25.
Zurück zum Zitat S.R. Rajpurohit and H.K. Dave, (2018) Effect of Process Parameters on Tensile Strength of FDM Printed PLA Part. Rapid Prototyp. J. Emerald Publishing Limited. S.R. Rajpurohit and H.K. Dave, (2018) Effect of Process Parameters on Tensile Strength of FDM Printed PLA Part. Rapid Prototyp. J. Emerald Publishing Limited.
26.
Zurück zum Zitat R. Kotsilkova, I. Petrova-Doycheva, D. Menseidov, E. Ivanov, A. Paddubskaya and P. Kuzhir, Exploring Thermal Annealing and Graphene-Carbon Nanotube Additives to Enhance Crystallinity, Thermal, Electrical and Tensile Properties of Aged Poly (Lactic) Acid-Based Filament for 3D Printing, Compos. Sci. Technol., 2019, 181, p 107712.CrossRef R. Kotsilkova, I. Petrova-Doycheva, D. Menseidov, E. Ivanov, A. Paddubskaya and P. Kuzhir, Exploring Thermal Annealing and Graphene-Carbon Nanotube Additives to Enhance Crystallinity, Thermal, Electrical and Tensile Properties of Aged Poly (Lactic) Acid-Based Filament for 3D Printing, Compos. Sci. Technol., 2019, 181, p 107712.CrossRef
27.
Zurück zum Zitat D. Jiang and D.E. Smith, Anisotropic Mechanical Properties of Oriented Carbon Fiber Filled Polymer Composites Produced with Fused Filament Fabrication, Addit. Manuf., 2017, 18, p 84–94. D. Jiang and D.E. Smith, Anisotropic Mechanical Properties of Oriented Carbon Fiber Filled Polymer Composites Produced with Fused Filament Fabrication, Addit. Manuf., 2017, 18, p 84–94.
28.
Zurück zum Zitat B. Akhoundi, M. Nabipour, F. Hajami and D. Shakoori, An Experimental Study of Nozzle Temperature and Heat Treatment (Annealing) Effects on Mechanical Properties of High-Temperature Polylactic Acid in Fused Deposition Modeling, Polym. Eng. Sci., 2020, 60(5), p 979–987.CrossRef B. Akhoundi, M. Nabipour, F. Hajami and D. Shakoori, An Experimental Study of Nozzle Temperature and Heat Treatment (Annealing) Effects on Mechanical Properties of High-Temperature Polylactic Acid in Fused Deposition Modeling, Polym. Eng. Sci., 2020, 60(5), p 979–987.CrossRef
29.
Zurück zum Zitat J. Butt and R. Bhaskar, Investigating the Effects of Annealing on the Mechanical Properties of FFF-Printed Thermoplastics, J. Manuf. Mater. Process., 2020, 4(2), p 38. J. Butt and R. Bhaskar, Investigating the Effects of Annealing on the Mechanical Properties of FFF-Printed Thermoplastics, J. Manuf. Mater. Process., 2020, 4(2), p 38.
30.
Zurück zum Zitat C. Benwood, A. Anstey, J. Andrzejewski, M. Misra and A.K. Mohanty, Improving the Impact Strength and Heat Resistance of 3D Printed Models: Structure, Property, and Processing Correlationships during Fused Deposition Modeling (FDM) of Poly (Lactic Acid), Acs Omega, 2018, 3(4), p 4400–4411.CrossRef C. Benwood, A. Anstey, J. Andrzejewski, M. Misra and A.K. Mohanty, Improving the Impact Strength and Heat Resistance of 3D Printed Models: Structure, Property, and Processing Correlationships during Fused Deposition Modeling (FDM) of Poly (Lactic Acid), Acs Omega, 2018, 3(4), p 4400–4411.CrossRef
31.
Zurück zum Zitat Y. Song, Y. Li, W. Song, K. Yee, K.-Y. Lee and V.L. Tagarielli, Measurements of the Mechanical Response of Unidirectional 3D-Printed PLA, Mater. Des., 2017, 123, p 154–164.CrossRef Y. Song, Y. Li, W. Song, K. Yee, K.-Y. Lee and V.L. Tagarielli, Measurements of the Mechanical Response of Unidirectional 3D-Printed PLA, Mater. Des., 2017, 123, p 154–164.CrossRef
32.
Zurück zum Zitat D.C. Bassett, R.H. Olley and I. Al Raheil, On Crystallization Phenomena in PEEK, Polymer (Guildf)., 1988, 29(10), p 1745–1754.CrossRef D.C. Bassett, R.H. Olley and I. Al Raheil, On Crystallization Phenomena in PEEK, Polymer (Guildf)., 1988, 29(10), p 1745–1754.CrossRef
33.
Zurück zum Zitat M. Sharma, V. Sharma, and P. Kala, “Optimization of Process Variables to Improve the Mechanical Properties of FDM Structures,” Journal of Physics: Conference Series, IOP Publishing, 2019, p 12061 M. Sharma, V. Sharma, and P. Kala, “Optimization of Process Variables to Improve the Mechanical Properties of FDM Structures,” Journal of Physics: Conference Series, IOP Publishing, 2019, p 12061
34.
Zurück zum Zitat P. Han, A. Tofangchi, A. Deshpande, S. Zhang and K. Hsu, An Approach to Improve Interface Healing in FFF-3D Printed Ultem 1010 Using Laser Pre-Deposition Heating, Procedia Manuf., 2019, 34, p 672–677.CrossRef P. Han, A. Tofangchi, A. Deshpande, S. Zhang and K. Hsu, An Approach to Improve Interface Healing in FFF-3D Printed Ultem 1010 Using Laser Pre-Deposition Heating, Procedia Manuf., 2019, 34, p 672–677.CrossRef
35.
Zurück zum Zitat S. Singh, M. Singh, C. Prakash, M.K. Gupta, M. Mia and R. Singh, Optimization and Reliability Analysis to Improve Surface Quality and Mechanical Characteristics of Heat-Treated Fused Filament Fabricated Parts, Int. J. Adv. Manuf. Technol., 2019, 102(5–8), p 1521–1536.CrossRef S. Singh, M. Singh, C. Prakash, M.K. Gupta, M. Mia and R. Singh, Optimization and Reliability Analysis to Improve Surface Quality and Mechanical Characteristics of Heat-Treated Fused Filament Fabricated Parts, Int. J. Adv. Manuf. Technol., 2019, 102(5–8), p 1521–1536.CrossRef
36.
Zurück zum Zitat S. Bhandari, R.A. Lopez-Anido and D.J. Gardner, Enhancing the Interlayer Tensile Strength of 3D Printed Short Carbon Fiber Reinforced PETG and PLA Composites via Annealing, Addit. Manuf., 2019, 30, p 100922. S. Bhandari, R.A. Lopez-Anido and D.J. Gardner, Enhancing the Interlayer Tensile Strength of 3D Printed Short Carbon Fiber Reinforced PETG and PLA Composites via Annealing, Addit. Manuf., 2019, 30, p 100922.
37.
Zurück zum Zitat I.M. Balashova, R.P. Danner, P.S. Puri and J.L. Duda, Solubility and Diffusivity of Solvents and Nonsolvents in Polysulfone and Polyetherimide, Ind. Eng. Chem. Res., 2001, 40(14), p 3058–3064.CrossRef I.M. Balashova, R.P. Danner, P.S. Puri and J.L. Duda, Solubility and Diffusivity of Solvents and Nonsolvents in Polysulfone and Polyetherimide, Ind. Eng. Chem. Res., 2001, 40(14), p 3058–3064.CrossRef
40.
Zurück zum Zitat Y.H. Kim and R.P. Wool, A Theory of Healing at a Polymer-Polymer Interface, Macromolecules, 1983, 16(7), p 1115–1120.CrossRef Y.H. Kim and R.P. Wool, A Theory of Healing at a Polymer-Polymer Interface, Macromolecules, 1983, 16(7), p 1115–1120.CrossRef
42.
Zurück zum Zitat S. Prager and M. Tirrell, The Healing Process at Polymer-Polymer Interfaces, J. Chem. Phys., 1981, 75(10), p 5194–5198.CrossRef S. Prager and M. Tirrell, The Healing Process at Polymer-Polymer Interfaces, J. Chem. Phys., 1981, 75(10), p 5194–5198.CrossRef
44.
Zurück zum Zitat A. D638-14, ASTM International, Stand. test method tensile Prop. Plast., 2014 A. D638-14, ASTM International, Stand. test method tensile Prop. Plast., 2014
45.
Zurück zum Zitat A. International, ASTM D790−17-Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, 2017 A. International, ASTM D790−17-Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, 2017
46.
Zurück zum Zitat A. Standard, D2240‐15 Standard Test Method for Rubber Property–Durometer Hardness, 2015. A. Standard, D2240‐15 Standard Test Method for Rubber Property–Durometer Hardness, 2015.
47.
Zurück zum Zitat B.-K. Chen, C.-T. Su, M.-C. Tseng and S.-Y. Tsay, Preparation of Polyetherimide Nanocomposites with Improved Thermal Mechanical and Dielectric Properties, Polym. Bull., 2006, 57(5), p 671–681.CrossRef B.-K. Chen, C.-T. Su, M.-C. Tseng and S.-Y. Tsay, Preparation of Polyetherimide Nanocomposites with Improved Thermal Mechanical and Dielectric Properties, Polym. Bull., 2006, 57(5), p 671–681.CrossRef
48.
Zurück zum Zitat A. Choudhury, Dielectric and Piezoelectric Properties of Polyetherimide/BaTiO3 Nanocomposites, Mater. Chem. Phys., 2010, 121(1–2), p 280–285.CrossRef A. Choudhury, Dielectric and Piezoelectric Properties of Polyetherimide/BaTiO3 Nanocomposites, Mater. Chem. Phys., 2010, 121(1–2), p 280–285.CrossRef
49.
Zurück zum Zitat R.N. Muthu, S. Rajashabala, and R. Kannan, Synthesis of Polyetherimide/Halloysite Nanotubes (PEI/HNTs) Based Nanocomposite Membrane towards Hydrogen Storage, AIP Conference Proceedings, (AIP Publishing LLC, 2018) p 50107. R.N. Muthu, S. Rajashabala, and R. Kannan, Synthesis of Polyetherimide/Halloysite Nanotubes (PEI/HNTs) Based Nanocomposite Membrane towards Hydrogen Storage, AIP Conference Proceedings, (AIP Publishing LLC, 2018) p 50107.
50.
Zurück zum Zitat M. Owlad, M.K. Aroua and W.M.A.W. Daud, Hexavalent Chromium Adsorption on Impregnated Palm Shell Activated Carbon with Polyethyleneimine, Bioresour. Technol., 2010, 101(14), p 5098–5103.CrossRef M. Owlad, M.K. Aroua and W.M.A.W. Daud, Hexavalent Chromium Adsorption on Impregnated Palm Shell Activated Carbon with Polyethyleneimine, Bioresour. Technol., 2010, 101(14), p 5098–5103.CrossRef
51.
Zurück zum Zitat A. D5573-99, (2012) Standard Practice for Classifying Failure Modes in Fiber-Reinforced-Plastic (FRP) Joints. Annual Book of ASTM Standards. p 2002. A. D5573-99, (2012) Standard Practice for Classifying Failure Modes in Fiber-Reinforced-Plastic (FRP) Joints. Annual Book of ASTM Standards. p 2002.
52.
Zurück zum Zitat N. Wang and S. Xia, Cohesive Fracture of Elastically Heterogeneous Materials: An Integrative Modeling and Experimental Study, J. Mech. Phys. Solids., 2017, 98, p 87–105.CrossRef N. Wang and S. Xia, Cohesive Fracture of Elastically Heterogeneous Materials: An Integrative Modeling and Experimental Study, J. Mech. Phys. Solids., 2017, 98, p 87–105.CrossRef
53.
Zurück zum Zitat A.M. Harris and E.C. Lee, Improving Mechanical Performance of Injection Molded PLA by Controlling Crystallinity, J. Appl. Polym. Sci., 2008, 107(4), p 2246–2255.CrossRef A.M. Harris and E.C. Lee, Improving Mechanical Performance of Injection Molded PLA by Controlling Crystallinity, J. Appl. Polym. Sci., 2008, 107(4), p 2246–2255.CrossRef
54.
Zurück zum Zitat M. Zhu, J. Han, F. Wang, W. Shao, R. Xiong, Q. Zhang, H. Pan, Y. Yang, S.K. Samal and F. Zhang, Electrospun Nanofibers Membranes for Effective Air Filtration, Macromol. Mater. Eng., 2017, 302(1), p 1600353.CrossRef M. Zhu, J. Han, F. Wang, W. Shao, R. Xiong, Q. Zhang, H. Pan, Y. Yang, S.K. Samal and F. Zhang, Electrospun Nanofibers Membranes for Effective Air Filtration, Macromol. Mater. Eng., 2017, 302(1), p 1600353.CrossRef
55.
Zurück zum Zitat M. Hesami and A. Jalali-Arani, Cold Crystallization Behavior of Poly (Lactic Acid) in Its Blend with Acrylic Rubber; the Effect of Acrylic Rubber Content, Polym. Int., 2017, 66(11), p 1564–1571.CrossRef M. Hesami and A. Jalali-Arani, Cold Crystallization Behavior of Poly (Lactic Acid) in Its Blend with Acrylic Rubber; the Effect of Acrylic Rubber Content, Polym. Int., 2017, 66(11), p 1564–1571.CrossRef
56.
Zurück zum Zitat C. Yang, X. Tian, D. Li, Y. Cao, F. Zhao and C. Shi, Influence of Thermal Processing Conditions in 3D Printing on the Crystallinity and Mechanical Properties of PEEK Material, J. Mater. Process. Technol., 2017, 248, p 1–7.CrossRef C. Yang, X. Tian, D. Li, Y. Cao, F. Zhao and C. Shi, Influence of Thermal Processing Conditions in 3D Printing on the Crystallinity and Mechanical Properties of PEEK Material, J. Mater. Process. Technol., 2017, 248, p 1–7.CrossRef
58.
Zurück zum Zitat J. Cao, M.A. Gharghouri, and P. Nash, Finite-Element Analysis and Experimental Validation of Thermal Residual Stress and Distortion in Electron Beam Additive Manufactured Ti-6Al-4V Build Plates, J. Mater. Process. Technol., Elsevier, 2016, 237, p 409–419. J. Cao, M.A. Gharghouri, and P. Nash, Finite-Element Analysis and Experimental Validation of Thermal Residual Stress and Distortion in Electron Beam Additive Manufactured Ti-6Al-4V Build Plates, J. Mater. Process. Technol., Elsevier, 2016, 237, p 409–419.
59.
Zurück zum Zitat A.A. D’Amico, A. Debaie, and A.M. Peterson, (2017) Effect of Layer Thickness on Irreversible Thermal Expansion and Interlayer Strength in Fused Deposition Modeling, Rapid Prototyp. J. Emerald Publishing Limited. A.A. D’Amico, A. Debaie, and A.M. Peterson, (2017) Effect of Layer Thickness on Irreversible Thermal Expansion and Interlayer Strength in Fused Deposition Modeling, Rapid Prototyp. J. Emerald Publishing Limited.
60.
Zurück zum Zitat A. Štibler, K. Herrmann, and Z. Šušteri, “Long-Term Stability of Rubber Hardness Reference Blocks,” HARDMEKO, 2004 A. Štibler, K. Herrmann, and Z. Šušteri, “Long-Term Stability of Rubber Hardness Reference Blocks,” HARDMEKO, 2004
61.
Zurück zum Zitat G. Liao, Z. Li, C. Luan, Z. Wang, X. Yao and J. Fu, Additive Manufacturing of Polyamide 66: Effect of Process Parameters on Crystallinity and Mechanical Properties, J. Mater. Eng. Perform., 2022, 31(1), p 191–200.CrossRef G. Liao, Z. Li, C. Luan, Z. Wang, X. Yao and J. Fu, Additive Manufacturing of Polyamide 66: Effect of Process Parameters on Crystallinity and Mechanical Properties, J. Mater. Eng. Perform., 2022, 31(1), p 191–200.CrossRef
62.
Zurück zum Zitat W. Wu, J. Jiang, H. Jiang, W. Liu, G. Li, B. Wang, M. Tang and J. Zhao, Improving Bending and Dynamic Mechanics Performance of 3D Printing through Ultrasonic Strengthening, Mater. Lett., 2018, 220, p 317–320.CrossRef W. Wu, J. Jiang, H. Jiang, W. Liu, G. Li, B. Wang, M. Tang and J. Zhao, Improving Bending and Dynamic Mechanics Performance of 3D Printing through Ultrasonic Strengthening, Mater. Lett., 2018, 220, p 317–320.CrossRef
63.
Zurück zum Zitat S. Rangisetty and L.D. Peel, “The Effect of Infill Patterns and Annealing on Mechanical Properties of Additively Manufactured Thermoplastic Composites,” Smart Materials, Adaptive Structures and Intelligent Systems, (American Society of Mechanical Engineers, 2017) p V001T08A017. S. Rangisetty and L.D. Peel, “The Effect of Infill Patterns and Annealing on Mechanical Properties of Additively Manufactured Thermoplastic Composites,” Smart Materials, Adaptive Structures and Intelligent Systems, (American Society of Mechanical Engineers, 2017) p V001T08A017.
64.
Zurück zum Zitat L. Chen, X. Zhang, Y. Wang and T.A. Osswald, Laser Polishing of Cu/PLA Composite Parts Fabricated by Fused Deposition Modeling: Analysis of Surface Finish and Mechanical Properties, Polym. Compos., 2020, 41(4), p 1356–1368.CrossRef L. Chen, X. Zhang, Y. Wang and T.A. Osswald, Laser Polishing of Cu/PLA Composite Parts Fabricated by Fused Deposition Modeling: Analysis of Surface Finish and Mechanical Properties, Polym. Compos., 2020, 41(4), p 1356–1368.CrossRef
65.
Zurück zum Zitat R.A. Wach, P. Wolszczak and A. Adamus-Wlodarczyk, Enhancement of Mechanical Properties of FDM-PLA Parts via Thermal Annealing, Macromol. Mater. Eng., 2018, 303(9), p 1800169.CrossRef R.A. Wach, P. Wolszczak and A. Adamus-Wlodarczyk, Enhancement of Mechanical Properties of FDM-PLA Parts via Thermal Annealing, Macromol. Mater. Eng., 2018, 303(9), p 1800169.CrossRef
66.
Zurück zum Zitat N. Sabyrov, A. Abilgaziyev and M. Ali, Enhancing Interlayer Bonding Strength of FDM 3D Printing Technology by Diode Laser-Assisted System, Int. J. Adv. Manuf. Technol., 2020, 108(1), p 603–611.CrossRef N. Sabyrov, A. Abilgaziyev and M. Ali, Enhancing Interlayer Bonding Strength of FDM 3D Printing Technology by Diode Laser-Assisted System, Int. J. Adv. Manuf. Technol., 2020, 108(1), p 603–611.CrossRef
67.
Zurück zum Zitat A.C. de Bruijn, G. Gómez-Gras and M.A. Pérez, Thermal Annealing as a Post-Process for Additively Manufactured Ultem 9085 Parts, Procedia Comput. Sci., 2022, 200, p 1308–1317.CrossRef A.C. de Bruijn, G. Gómez-Gras and M.A. Pérez, Thermal Annealing as a Post-Process for Additively Manufactured Ultem 9085 Parts, Procedia Comput. Sci., 2022, 200, p 1308–1317.CrossRef
Metadaten
Titel
Rheology, Crystallinity, and Mechanical Investigation of Interlayer Adhesion Strength by Thermal Annealing of Polyetherimide (PEI/ULTEM 1010) Parts Produced by 3D Printing
verfasst von
Musa Yilmaz
Necip Fazil Yilmaz
Mahmut Furkan Kalkan
Publikationsdatum
14.06.2022
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 12/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-07049-z

Weitere Artikel der Ausgabe 12/2022

Journal of Materials Engineering and Performance 12/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.