Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 12/2022

16.05.2022 | Technical Article

Reciprocating Wear of Ti-TiB In Situ Composites Synthesized via Vacuum Arc Melting

verfasst von: Ashwani Ranjan, Rajnesh Tyagi, Vikas Jindal

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 12/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

TiB-reinforced titanium matrix composites were synthesized using vacuum arc melting to enhance the hardness and wear resistance of pure (Ti). The microstructure showed a macroscopically uniform distribution of TiB whiskers in the Ti matrix. The hardness of the composite increased from 799 (with TiB content 50 vol.%) to 895 HV (with TiB content 85 vol.%) compared to the 236 HV hardness of pure Ti. Dry sliding reciprocating wear tests under four different loads of 10, 15, 20, and 25 N were carried out against a steel ball as a counterface at a constant frequency of 4 Hz. The coefficient of friction and wear rate decreased with increasing TiB content. The observed behavior has been explained based on the hardness of the composites, the presence of loose wear particles over the worn surface, formation of a transfer layer of wear debris over the surface and its degree of compaction, extent of coverage, and presence of lubricious oxides (TiO2, B2O3 and H3BO3). The operative mechanism of wear is a mix of ploughing, adhesion and oxidation for pure Ti, whereas the same for composites is adhesion, oxidation, delamination, and abrasion. The composite having 80 vol.% TiB has shown the lowest coefficient of friction among all the composites.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M.D. Hayat, H. Singh, Z. He and P. Cao, Titanium Metal Matrix Composites: An Overview, Compos. Part A Appl. Sci. Manuf., 2019, 121, p 418–438.CrossRef M.D. Hayat, H. Singh, Z. He and P. Cao, Titanium Metal Matrix Composites: An Overview, Compos. Part A Appl. Sci. Manuf., 2019, 121, p 418–438.CrossRef
2.
Zurück zum Zitat B.S. Li, J.L. Shang, J.J. Guo and H.Z. Fu, Formation of TiBw Reinforcement in In-Situ Titanium Matrix Composites, J. Mater. Sci., 2004, 39, p 1131–1133.CrossRef B.S. Li, J.L. Shang, J.J. Guo and H.Z. Fu, Formation of TiBw Reinforcement in In-Situ Titanium Matrix Composites, J. Mater. Sci., 2004, 39, p 1131–1133.CrossRef
3.
Zurück zum Zitat M. Niu, X. Zhang and J. Yang, Tribological Behaviour of Fe3Al-Ba0.25Sr0.75SO4 Self-Lubricating Composites in Vacuum and Air, Vacuum, 2018, 154, p 315–321.CrossRef M. Niu, X. Zhang and J. Yang, Tribological Behaviour of Fe3Al-Ba0.25Sr0.75SO4 Self-Lubricating Composites in Vacuum and Air, Vacuum, 2018, 154, p 315–321.CrossRef
5.
Zurück zum Zitat X. Zhang, M. Niu, C. Wu and J. Chen, The Effect of Titanium Addition on the Microstructure, Mechanical and Tribological Properties of Ni3Si Alloys Prepared by Powder Metallurgy Method, Materwiss. Werksttech., 2019, 50, p 1537–1544.CrossRef X. Zhang, M. Niu, C. Wu and J. Chen, The Effect of Titanium Addition on the Microstructure, Mechanical and Tribological Properties of Ni3Si Alloys Prepared by Powder Metallurgy Method, Materwiss. Werksttech., 2019, 50, p 1537–1544.CrossRef
6.
Zurück zum Zitat X. Zhang, M. Zhang, M. Shao, X. Geng, Y. Sun, M. Niu, Y. Miao and X. Wang, Comparative Study on Tribological Behavior of Fe3Al Alloy Against Different Counterparts in Seawater, J. Mater. Eng. Perform., 2021, 30, p 8030–8039.CrossRef X. Zhang, M. Zhang, M. Shao, X. Geng, Y. Sun, M. Niu, Y. Miao and X. Wang, Comparative Study on Tribological Behavior of Fe3Al Alloy Against Different Counterparts in Seawater, J. Mater. Eng. Perform., 2021, 30, p 8030–8039.CrossRef
7.
Zurück zum Zitat V. Jindal, A. Sarda, A. Degnah and K.S. Ravi, Chandran, Effect of iron & boron content on the Spark Plasma Sintering of Ti-B-Fe alloys, Adv. Powder Technol., 2019, 30, p 423–427.CrossRef V. Jindal, A. Sarda, A. Degnah and K.S. Ravi, Chandran, Effect of iron & boron content on the Spark Plasma Sintering of Ti-B-Fe alloys, Adv. Powder Technol., 2019, 30, p 423–427.CrossRef
8.
Zurück zum Zitat K. Morsi and V.V. Patel, Processing and Properties of Titanium-Titanium Boride (TiBw) Matrix Composites: A Review, J. Mater. Sci., 2007, 42, p 2037–2047.CrossRef K. Morsi and V.V. Patel, Processing and Properties of Titanium-Titanium Boride (TiBw) Matrix Composites: A Review, J. Mater. Sci., 2007, 42, p 2037–2047.CrossRef
9.
Zurück zum Zitat D.A. Angel, T. Mikó, F. Kristály, M. Benke and Z. Gácsi, Development of TiB and Nanocrystalline Ti-Reinforced Novel Hybrid Ti Nanocomposite Produced by Powder Metallurgy, J. Mater. Sci., 2022, 57, p 4130–4144.CrossRef D.A. Angel, T. Mikó, F. Kristály, M. Benke and Z. Gácsi, Development of TiB and Nanocrystalline Ti-Reinforced Novel Hybrid Ti Nanocomposite Produced by Powder Metallurgy, J. Mater. Sci., 2022, 57, p 4130–4144.CrossRef
10.
Zurück zum Zitat S. Li, Y. Han, X. Wang, G. Huang, M. Fang, H. Shi, J. Le and W. Lu, Novel Strategy of Planting Nano-TiB Fibers with Ultra-Fine Network Distribution Into Ti-Composite Powder and its Thermal Transition Mechanism, Compos. Commun., 2022, 29, 101002.CrossRef S. Li, Y. Han, X. Wang, G. Huang, M. Fang, H. Shi, J. Le and W. Lu, Novel Strategy of Planting Nano-TiB Fibers with Ultra-Fine Network Distribution Into Ti-Composite Powder and its Thermal Transition Mechanism, Compos. Commun., 2022, 29, 101002.CrossRef
11.
Zurück zum Zitat X. Yi, G. Shen, X. Meng, H. Wang, Z. Gao, W. Cai and L. Zhao, The Higher Compressive Strength (TiB+La2O3)/Ti–Ni Shape Memory Alloy Composite with the Larger Recoverable Strain, Compos. Commun., 2021, 23, 100583.CrossRef X. Yi, G. Shen, X. Meng, H. Wang, Z. Gao, W. Cai and L. Zhao, The Higher Compressive Strength (TiB+La2O3)/Ti–Ni Shape Memory Alloy Composite with the Larger Recoverable Strain, Compos. Commun., 2021, 23, 100583.CrossRef
12.
Zurück zum Zitat D.L. Ouyang, S.W. Hu, C. Tao, X. Cui, Z.S. Zhu and S.Q. Lu, Experiment and Modeling of TiB2/TiB Boride Layer of Ti-6Al-2Zr-1Mo-1V Alloy, Trans. Nonferrous Met. Soc. China, 2021, 31, p 3752–3761.CrossRef D.L. Ouyang, S.W. Hu, C. Tao, X. Cui, Z.S. Zhu and S.Q. Lu, Experiment and Modeling of TiB2/TiB Boride Layer of Ti-6Al-2Zr-1Mo-1V Alloy, Trans. Nonferrous Met. Soc. China, 2021, 31, p 3752–3761.CrossRef
13.
Zurück zum Zitat C. Zhang, F. Kong, S. Xiao, H. Niu, L. Xu and Y. Chen, Evolution of Microstructural Characteristic and Tensile Properties During Preparation of TiB/Ti Composite Sheet, Mater. Des., 2012, 36, p 505–510.CrossRef C. Zhang, F. Kong, S. Xiao, H. Niu, L. Xu and Y. Chen, Evolution of Microstructural Characteristic and Tensile Properties During Preparation of TiB/Ti Composite Sheet, Mater. Des., 2012, 36, p 505–510.CrossRef
14.
Zurück zum Zitat M. Ozerov, N. Stepanov and S. Zherebtsov, Wear Resistance of Ti/TiB Composites Produced by Spark Plasma Sintering, AIP Conf. Proc., 2017, 1909, p 020164.CrossRef M. Ozerov, N. Stepanov and S. Zherebtsov, Wear Resistance of Ti/TiB Composites Produced by Spark Plasma Sintering, AIP Conf. Proc., 2017, 1909, p 020164.CrossRef
15.
Zurück zum Zitat M. Selvakumar, T. Ramkumar, M. Mohanraj and P. Chandramohan, Experimental Investigations of Reciprocating Wear Behavior of Metal Matrix (Ti/TiB) Composites, Arch. Civ. Mech. Eng., 2020, 20, p 1–9.CrossRef M. Selvakumar, T. Ramkumar, M. Mohanraj and P. Chandramohan, Experimental Investigations of Reciprocating Wear Behavior of Metal Matrix (Ti/TiB) Composites, Arch. Civ. Mech. Eng., 2020, 20, p 1–9.CrossRef
16.
Zurück zum Zitat Q. An, L. Huang, S. Jiang, Y. Bao, M. Ji, R. Zhang and L. Geng, Two-Scale TiB/Ti64 Composite Coating Fabricated by Two-Step Process, J. Alloy. Compd., 2018, 755, p 29–40.CrossRef Q. An, L. Huang, S. Jiang, Y. Bao, M. Ji, R. Zhang and L. Geng, Two-Scale TiB/Ti64 Composite Coating Fabricated by Two-Step Process, J. Alloy. Compd., 2018, 755, p 29–40.CrossRef
17.
Zurück zum Zitat M. Xia, A. Liu, Z. Hou, N. Li, Z. Chen and H. Ding, Microstructure Growth Behavior and its Evolution Mechanism During Laser Additive Manufacture of in-Situ Reinforced (TiB+TiC)/Ti Composite, J. Alloy. Compd., 2017, 728, p 436–444.CrossRef M. Xia, A. Liu, Z. Hou, N. Li, Z. Chen and H. Ding, Microstructure Growth Behavior and its Evolution Mechanism During Laser Additive Manufacture of in-Situ Reinforced (TiB+TiC)/Ti Composite, J. Alloy. Compd., 2017, 728, p 436–444.CrossRef
18.
Zurück zum Zitat P.K. Farayibi, T.E. Abioye, A. Kennedy and A.T. Clare, Development of Metal Matrix Composites by Direct Energy Deposition of ‘Satellited’ Powders, J. Manuf. Process., 2019, 45, p 429–437.CrossRef P.K. Farayibi, T.E. Abioye, A. Kennedy and A.T. Clare, Development of Metal Matrix Composites by Direct Energy Deposition of ‘Satellited’ Powders, J. Manuf. Process., 2019, 45, p 429–437.CrossRef
19.
Zurück zum Zitat Y. Hu, W. Cong, X. Wang, Y. Li, F. Ning and H. Wang, Laser Deposition-Additive Manufacturing of TiB-Ti Composites with Novel Three-Dimensional Quasi-Continuous Network Microstructure: Effects on Strengthening and Toughening, Compos. Part B Eng., 2018, 133, p 91–100.CrossRef Y. Hu, W. Cong, X. Wang, Y. Li, F. Ning and H. Wang, Laser Deposition-Additive Manufacturing of TiB-Ti Composites with Novel Three-Dimensional Quasi-Continuous Network Microstructure: Effects on Strengthening and Toughening, Compos. Part B Eng., 2018, 133, p 91–100.CrossRef
20.
Zurück zum Zitat S. Pouzet, P. Peyre, C. Gorny, O. Castelnau, T. Baudin, F. Brisset, C. Colin and P. Gadaud, Additive Layer Manufacturing of Titanium Matrix Composites Using the Direct Metal Deposition Laser Process, Mater. Sci. Eng. A., 2016, 677, p 171–181.CrossRef S. Pouzet, P. Peyre, C. Gorny, O. Castelnau, T. Baudin, F. Brisset, C. Colin and P. Gadaud, Additive Layer Manufacturing of Titanium Matrix Composites Using the Direct Metal Deposition Laser Process, Mater. Sci. Eng. A., 2016, 677, p 171–181.CrossRef
21.
Zurück zum Zitat R. Banerjee, A. Genç, P.C. Collins and H.L. Fraser, Comparison of Microstructural Evolution in Laser-Deposited and Arc-Melted In-Situ Ti-TiB, Composites, 2004, 35, p 2143–2152. R. Banerjee, A. Genç, P.C. Collins and H.L. Fraser, Comparison of Microstructural Evolution in Laser-Deposited and Arc-Melted In-Situ Ti-TiB, Composites, 2004, 35, p 2143–2152.
22.
Zurück zum Zitat H.T. Tsang, C.G. Chao and C.Y. Ma, Effects of Volume Fraction of Reinforcement on Tensile and Creep Properties of In-Situ MMC, Scr. Mater., 1997, 37, p 1359–1365.CrossRef H.T. Tsang, C.G. Chao and C.Y. Ma, Effects of Volume Fraction of Reinforcement on Tensile and Creep Properties of In-Situ MMC, Scr. Mater., 1997, 37, p 1359–1365.CrossRef
23.
Zurück zum Zitat W. Lu, D. Zhang, X. Zhang, R. Wu, T. Sakata and H. Mori, Microstructural Characterization of TiB in In Situ Synthesized Titanium Matrix Composites Prepared by Common Casting Technique, J. Alloy. Compd., 2001, 327, p 240–247.CrossRef W. Lu, D. Zhang, X. Zhang, R. Wu, T. Sakata and H. Mori, Microstructural Characterization of TiB in In Situ Synthesized Titanium Matrix Composites Prepared by Common Casting Technique, J. Alloy. Compd., 2001, 327, p 240–247.CrossRef
24.
Zurück zum Zitat R. Kumar, L. Liu, M. Antonov, R. Ivanov and I. Hussainova, Hot Sliding Wear of 88 wt.% TiB-Ti Composite from SHS Produced Powders, Materials (Basel), 2021, 14, p 1242.CrossRef R. Kumar, L. Liu, M. Antonov, R. Ivanov and I. Hussainova, Hot Sliding Wear of 88 wt.% TiB-Ti Composite from SHS Produced Powders, Materials (Basel), 2021, 14, p 1242.CrossRef
25.
Zurück zum Zitat H. Attar, S. Ehtemam-Haghighi, D. Kent, I.V. Okulov, H. Wendrock, M. Bonisch, A.S. Volegov, M. Calin, J. Eckert and M.S. Dargusch, Nanoindentation and Wear Properties of Ti and Ti-TiB Composite Materials Produced by Selective Laser Melting, Mater. Sci. Eng. A., 2017, 688, p 20–26.CrossRef H. Attar, S. Ehtemam-Haghighi, D. Kent, I.V. Okulov, H. Wendrock, M. Bonisch, A.S. Volegov, M. Calin, J. Eckert and M.S. Dargusch, Nanoindentation and Wear Properties of Ti and Ti-TiB Composite Materials Produced by Selective Laser Melting, Mater. Sci. Eng. A., 2017, 688, p 20–26.CrossRef
26.
Zurück zum Zitat Y. Bao, L. Huang, Q. An, S. Jiang, L. Geng and X. Ma, Wire-Feed Deposition TiB Reinforced Ti Composite Coating: Formation Mechanism and Tribological Properties, Mater. Lett., 2018, 229, p 221–224.CrossRef Y. Bao, L. Huang, Q. An, S. Jiang, L. Geng and X. Ma, Wire-Feed Deposition TiB Reinforced Ti Composite Coating: Formation Mechanism and Tribological Properties, Mater. Lett., 2018, 229, p 221–224.CrossRef
27.
Zurück zum Zitat A.S. Patil, V.D. Hiwarkar, P.K. Verma and R.K. Khatirkar, Effect of TiB 2 Addition on the microstructure and Wear Resistance of Ti-6Al-4V Alloy Fabricated through Direct Metal Laser Sintering (DMLS), J. Alloy. Compd., 2019, 777, p 165–173.CrossRef A.S. Patil, V.D. Hiwarkar, P.K. Verma and R.K. Khatirkar, Effect of TiB 2 Addition on the microstructure and Wear Resistance of Ti-6Al-4V Alloy Fabricated through Direct Metal Laser Sintering (DMLS), J. Alloy. Compd., 2019, 777, p 165–173.CrossRef
28.
Zurück zum Zitat R. Kumar, M. Antonov, L. Liu and I. Hussainova, Sliding Wear Performance of In-Situ Spark Plasma Sintered Ti-TiBw Composite at Temperatures up to 900 °C, Wear, 2021, 476, p 203663.CrossRef R. Kumar, M. Antonov, L. Liu and I. Hussainova, Sliding Wear Performance of In-Situ Spark Plasma Sintered Ti-TiBw Composite at Temperatures up to 900 °C, Wear, 2021, 476, p 203663.CrossRef
29.
Zurück zum Zitat I.Y. Kim, B.J. Choi, Y.J. Kim and Y.Z. Lee, Friction and Wear Behavior of Titanium Matrix (TiB+TiC) Composites, Wear, 2011, 271, p 1962–1965.CrossRef I.Y. Kim, B.J. Choi, Y.J. Kim and Y.Z. Lee, Friction and Wear Behavior of Titanium Matrix (TiB+TiC) Composites, Wear, 2011, 271, p 1962–1965.CrossRef
30.
Zurück zum Zitat J.F. Archard, Contact and Rubbing of Flat Surfaces, J. Appl. Phys., 1953, 24, p 981–988.CrossRef J.F. Archard, Contact and Rubbing of Flat Surfaces, J. Appl. Phys., 1953, 24, p 981–988.CrossRef
31.
Zurück zum Zitat B.J. Kooi, Y.T. Pei and J.T.M. De Hosson, The Evolution of Microstructure in a Laser Clad TiB-Ti Composite Coating, Acta Mater., 2003, 51, p 831–845.CrossRef B.J. Kooi, Y.T. Pei and J.T.M. De Hosson, The Evolution of Microstructure in a Laser Clad TiB-Ti Composite Coating, Acta Mater., 2003, 51, p 831–845.CrossRef
32.
Zurück zum Zitat D. Gu, Y.C. Hagedorn, W. Meiners, G. Meng, R.J.S. Batista, K. Wissenbach and R. Poprawe, Densification Behavior, Microstructure Evolution, and Wear Performance of selective Laser Melting Processed Commercially Pure Titanium, Acta Mater., 2012, 60, p 3849–3860.CrossRef D. Gu, Y.C. Hagedorn, W. Meiners, G. Meng, R.J.S. Batista, K. Wissenbach and R. Poprawe, Densification Behavior, Microstructure Evolution, and Wear Performance of selective Laser Melting Processed Commercially Pure Titanium, Acta Mater., 2012, 60, p 3849–3860.CrossRef
33.
Zurück zum Zitat P. Helmer, J. Halim, J. Zhou, R. Mohan, B. Wickman, J. Björk and J. Rosen, Investigation of 2D Boridene from First Principles and Experiments, Adv. Funct. Mater., 2022, 32, p 2109060.CrossRef P. Helmer, J. Halim, J. Zhou, R. Mohan, B. Wickman, J. Björk and J. Rosen, Investigation of 2D Boridene from First Principles and Experiments, Adv. Funct. Mater., 2022, 32, p 2109060.CrossRef
34.
Zurück zum Zitat E. Benko, T.L. Barr, S. Hardcastle, E. Hoppe, A. Bernasik and J. Morgiel, XPS Study of the cBN-TiC System, Ceram. Int., 2001, 27, p 637–643.CrossRef E. Benko, T.L. Barr, S. Hardcastle, E. Hoppe, A. Bernasik and J. Morgiel, XPS Study of the cBN-TiC System, Ceram. Int., 2001, 27, p 637–643.CrossRef
35.
Zurück zum Zitat N. Hellgren, A. Sredenschek, A. Petruins, J. Palisaitis, F.F. Klimashin, M.A. Sortica, L. Hultman, P.O.Å. Persson and J. Rosen, Synthesis and Characterization of TiBx (1.2 ≤ x ≤ 2.8) Thin Films Grown by DC Magnetron Co-Sputtering from TiB2 and Ti Targets, Surf. Coatings Technol., 2022, 433, p 128110.CrossRef N. Hellgren, A. Sredenschek, A. Petruins, J. Palisaitis, F.F. Klimashin, M.A. Sortica, L. Hultman, P.O.Å. Persson and J. Rosen, Synthesis and Characterization of TiBx (1.2 ≤ x ≤ 2.8) Thin Films Grown by DC Magnetron Co-Sputtering from TiB2 and Ti Targets, Surf. Coatings Technol., 2022, 433, p 128110.CrossRef
36.
Zurück zum Zitat C.T. Wang, H.S. Lin and W.P. Wang, Hydrothermal Synthesis of Fe [sbnd] and Nb-Doped Titania Nanobelts and their Tunable Electronic Structure toward Photovoltaic Application, Mater. Sci. Semicond. Process., 2019, 99, p 85–91.CrossRef C.T. Wang, H.S. Lin and W.P. Wang, Hydrothermal Synthesis of Fe [sbnd] and Nb-Doped Titania Nanobelts and their Tunable Electronic Structure toward Photovoltaic Application, Mater. Sci. Semicond. Process., 2019, 99, p 85–91.CrossRef
37.
Zurück zum Zitat R. Huang, R. Liang, H. Fan, S. Ying, L. Wu, X. Wang and G. Yan, Enhanced Photocatalytic Fuel Denitrification over TiO2/α-Fe2O3 Nanocomposites under Visible Light Irradiation, Sci. Rep., 2017, 7, p 1–10. R. Huang, R. Liang, H. Fan, S. Ying, L. Wu, X. Wang and G. Yan, Enhanced Photocatalytic Fuel Denitrification over TiO2/α-Fe2O3 Nanocomposites under Visible Light Irradiation, Sci. Rep., 2017, 7, p 1–10.
38.
Zurück zum Zitat F. Liu, L. Feng, J. Ren, X. Zhang and J. Jia, Tribological Properties of In Situ Fabricated Fe-Al Matrix Composites Containing SrAl2O4, FeAl2O4, and FeO at Elevated Temperatures, Tribol. Trans., 2021, 64, p 593–605.CrossRef F. Liu, L. Feng, J. Ren, X. Zhang and J. Jia, Tribological Properties of In Situ Fabricated Fe-Al Matrix Composites Containing SrAl2O4, FeAl2O4, and FeO at Elevated Temperatures, Tribol. Trans., 2021, 64, p 593–605.CrossRef
39.
Zurück zum Zitat S.S. Sahay, K.S. Ravichandran, R. Atri, B. Chen and J. Rubin, Evolution of Microstructure and Phases in In Situ Processed Ti-TiB Composites Containing High Volume Fractions of TiB Whiskers, J. Mater. Res., 1999, 14, p 4214–4223.CrossRef S.S. Sahay, K.S. Ravichandran, R. Atri, B. Chen and J. Rubin, Evolution of Microstructure and Phases in In Situ Processed Ti-TiB Composites Containing High Volume Fractions of TiB Whiskers, J. Mater. Res., 1999, 14, p 4214–4223.CrossRef
40.
Zurück zum Zitat S.C. Tjong and Y.-W. Mai, Processing-Structure-Property Aspects of Particulate-and Whisker-Reinforced Titanium Matrix Composites, Compos. Sci. Technol., 2008, 68, p 583–601.CrossRef S.C. Tjong and Y.-W. Mai, Processing-Structure-Property Aspects of Particulate-and Whisker-Reinforced Titanium Matrix Composites, Compos. Sci. Technol., 2008, 68, p 583–601.CrossRef
41.
Zurück zum Zitat K.S. Ravi Chandran, K.B. Panda and S.S. Sahay, TiBw-Reinforced Ti composites: processing, properties, application prospects, and Research Needs, Jom, 2004, 56, p 42–48.CrossRef K.S. Ravi Chandran, K.B. Panda and S.S. Sahay, TiBw-Reinforced Ti composites: processing, properties, application prospects, and Research Needs, Jom, 2004, 56, p 42–48.CrossRef
42.
Zurück zum Zitat L. Huang, T. Duan, Q. An, Y. Chen, J. Bai, L. Geng and S. Lin, Gas Tungsten Arc Welding of Network Structured Titanium Matrix Composite, Sci. Technol. Weld. Join., 2018, 23, p 357–364.CrossRef L. Huang, T. Duan, Q. An, Y. Chen, J. Bai, L. Geng and S. Lin, Gas Tungsten Arc Welding of Network Structured Titanium Matrix Composite, Sci. Technol. Weld. Join., 2018, 23, p 357–364.CrossRef
43.
Zurück zum Zitat Z. Xinghong, X. Qiang, H. Jiecai and V.L. Kvanin, Self-Propagating High Temperature Combustion Synthesis of TiB/Ti Composites, Mater. Sci. Eng., 2003, 348, p 41–46.CrossRef Z. Xinghong, X. Qiang, H. Jiecai and V.L. Kvanin, Self-Propagating High Temperature Combustion Synthesis of TiB/Ti Composites, Mater. Sci. Eng., 2003, 348, p 41–46.CrossRef
44.
Zurück zum Zitat R. Tyagi, S.K. Nath and S. Ray, Effect of Martensite Content on Friction and Oxidative Wear Behavior of 0.42 Pct Carbon Dual-Phase Steel, Metall Mater. Trans. A Phys. Metall. Mater. Sci., 2002, 33, p 3479–3488.CrossRef R. Tyagi, S.K. Nath and S. Ray, Effect of Martensite Content on Friction and Oxidative Wear Behavior of 0.42 Pct Carbon Dual-Phase Steel, Metall Mater. Trans. A Phys. Metall. Mater. Sci., 2002, 33, p 3479–3488.CrossRef
45.
Zurück zum Zitat Y. Qin, L. Geng and D. Ni, Dry Sliding Wear Behavior of Extruded Titanium Matrix Composite Reinforced by In Situ TiB Whisker and TiC Particle, J. Mater. Sci., 2011, 46, p 4980–4985.CrossRef Y. Qin, L. Geng and D. Ni, Dry Sliding Wear Behavior of Extruded Titanium Matrix Composite Reinforced by In Situ TiB Whisker and TiC Particle, J. Mater. Sci., 2011, 46, p 4980–4985.CrossRef
46.
Zurück zum Zitat J. Li, M. Sun, X. Ma and G. Tang, Structure and Tribological Performance of Modified Layer on Ti6Al4V alloy by Plasma-Based ion Implantation with Oxygen, Wear, 2006, 261, p 1247–1252.CrossRef J. Li, M. Sun, X. Ma and G. Tang, Structure and Tribological Performance of Modified Layer on Ti6Al4V alloy by Plasma-Based ion Implantation with Oxygen, Wear, 2006, 261, p 1247–1252.CrossRef
47.
Zurück zum Zitat H.J. Song and Z.Z. Zhang, Study on the Tribological Behaviors of the Phenolic Composite Coating Filled with Modified Nano-TiO2, Tribol. Int., 2008, 41, p 396–403.CrossRef H.J. Song and Z.Z. Zhang, Study on the Tribological Behaviors of the Phenolic Composite Coating Filled with Modified Nano-TiO2, Tribol. Int., 2008, 41, p 396–403.CrossRef
48.
Zurück zum Zitat Z. Min, Friction and Wear Properties of TiB 2P/Al Composite, Compos. Part A Appl. Sci. Manuf., 2006, 37, p 1916–1921.CrossRef Z. Min, Friction and Wear Properties of TiB 2P/Al Composite, Compos. Part A Appl. Sci. Manuf., 2006, 37, p 1916–1921.CrossRef
Metadaten
Titel
Reciprocating Wear of Ti-TiB In Situ Composites Synthesized via Vacuum Arc Melting
verfasst von
Ashwani Ranjan
Rajnesh Tyagi
Vikas Jindal
Publikationsdatum
16.05.2022
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 12/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-07002-0

Weitere Artikel der Ausgabe 12/2022

Journal of Materials Engineering and Performance 12/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.