Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 12/2022

18.05.2022 | Technical Article

Two-Step Sintering Improved Compaction of Electrophoretic-Deposited YSZ Coatings

verfasst von: Resetiana Dwi Desiati, Anawati Anawati, Eni Sugiarti

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 12/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Two-step sintering is proposed to enhance the compactness and phase stability of yttria-stabilized zirconia (YSZ) coating on Inconel 625. The sintering treatment is denoted as low step (LS), low-first step (LFS), high-first step (HFS), and high step (HS). Low and high refer to 750 and 1200 °C, respectively. The YSZ layer was investigated using a scanning electron microscope, x-ray diffractometer, and electron backscattered diffractometer. The results revealed that three relatively compact and uniform layers consisting of Y-ZrO2 (~20 μm) and Fe2O3 (~2 μm) and Cr2O3 (~10 μm) were developed as a result of LFS treatment. The LFS treatment triggered optimum ZrO2 grain growth and the formation of the thermally grown oxides. The LS treatment was not sufficient to induce grain recrystallization and coating compaction. HFS and HS treatment resulted in a higher coating porosity and induced microcracks in the coatings. A nearly balanced fraction of 58:42 for the monoclinic and tetragonal ZrO2 phase was obtained in the LFS coating. The coating exhibited the highest hardness of 1027.10 HV, the best adhesion strength, and the lowest thermal conductivity of 4.73 W/mK. The LFS treatment is beneficial in obtaining a compact YSZ layer with high phase stability and low thermal conductivity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Sampath, U. Schulz, M.O. Jarligo, and S. Kuroda, Processing Science of Advanced Thermal-Barrier Systems, MRS. Bull., 2012, 37, p 903–910.CrossRef S. Sampath, U. Schulz, M.O. Jarligo, and S. Kuroda, Processing Science of Advanced Thermal-Barrier Systems, MRS. Bull., 2012, 37, p 903–910.CrossRef
2.
Zurück zum Zitat B. Alavi, H. Aghajani, and A. Rasooli, Electrophoretic Deposition Of Electroless Nickel Coated YSZ Core-Shell Nanoparticles on a Nickel Based Superalloy, J. Eur. Ceram. Soc., 2019, 39, p 2526–2534.CrossRef B. Alavi, H. Aghajani, and A. Rasooli, Electrophoretic Deposition Of Electroless Nickel Coated YSZ Core-Shell Nanoparticles on a Nickel Based Superalloy, J. Eur. Ceram. Soc., 2019, 39, p 2526–2534.CrossRef
3.
Zurück zum Zitat O. Khanali, S. Baghshahi, and M. Rajabi, Fabrication and Characterization of YSZ/Al2O3 Nano-Composite Coatings on Inconel by Electrophoretic Deposition, J. Mater. Res., 2017, 32, p 3402–3408.CrossRef O. Khanali, S. Baghshahi, and M. Rajabi, Fabrication and Characterization of YSZ/Al2O3 Nano-Composite Coatings on Inconel by Electrophoretic Deposition, J. Mater. Res., 2017, 32, p 3402–3408.CrossRef
4.
Zurück zum Zitat M. Bai, F. Guo, and P. Xiao, Fabrication of Thick YSZ Thermal Barrier Coatings Using Electrophoretic Deposition, Ceram. Int., 2014, 40, p 16611–16616.CrossRef M. Bai, F. Guo, and P. Xiao, Fabrication of Thick YSZ Thermal Barrier Coatings Using Electrophoretic Deposition, Ceram. Int., 2014, 40, p 16611–16616.CrossRef
5.
Zurück zum Zitat B. Lv, H. Xie, R. Xu, X. Fan, W. Zhang, and T.J. Wang, Effects of Sintering and Mixed Oxide Growth on the Interface Cracking of Air-Plasma-Sprayed Thermal Barrier Coating System at High Temperature, Appl. Surf. Sci., 2016, 360, p 461–469.CrossRef B. Lv, H. Xie, R. Xu, X. Fan, W. Zhang, and T.J. Wang, Effects of Sintering and Mixed Oxide Growth on the Interface Cracking of Air-Plasma-Sprayed Thermal Barrier Coating System at High Temperature, Appl. Surf. Sci., 2016, 360, p 461–469.CrossRef
6.
Zurück zum Zitat U. Schulz, Phase Transformation in EB-PVD Yttria Partially Stabilized Zirconia Thermal Barrier Coatings during Annealing, J Am. Ceram. Soc., 2000, 83, p 904–910.CrossRef U. Schulz, Phase Transformation in EB-PVD Yttria Partially Stabilized Zirconia Thermal Barrier Coatings during Annealing, J Am. Ceram. Soc., 2000, 83, p 904–910.CrossRef
8.
Zurück zum Zitat F. Al Afghani and A. Anawati, Plasma Electrolytic Oxidation of Zircaloy-4 in a Mixed Alkaline Electrolyte, Surf. Coat. Technol., 2021, 426, p 127786.CrossRef F. Al Afghani and A. Anawati, Plasma Electrolytic Oxidation of Zircaloy-4 in a Mixed Alkaline Electrolyte, Surf. Coat. Technol., 2021, 426, p 127786.CrossRef
9.
Zurück zum Zitat L. Besra and M. Liu, A Review on Fundamentals and Applications of Electrophoretic Deposition (EPD), Prog. Mater. Sci., 2007, 52, p 1–61.CrossRef L. Besra and M. Liu, A Review on Fundamentals and Applications of Electrophoretic Deposition (EPD), Prog. Mater. Sci., 2007, 52, p 1–61.CrossRef
10.
Zurück zum Zitat B. Baufeld, O. van der Biest, and H.J. Rätzer-Scheibe, Lowering the Sintering Temperature for EPD Coatings by Applying Reaction Bonding, J. Eur. Ceram. Soc., 2008, 28, p 1793–1799.CrossRef B. Baufeld, O. van der Biest, and H.J. Rätzer-Scheibe, Lowering the Sintering Temperature for EPD Coatings by Applying Reaction Bonding, J. Eur. Ceram. Soc., 2008, 28, p 1793–1799.CrossRef
11.
Zurück zum Zitat I. Zhitomirsky and L. Gal-Or, Electrophoretic Deposition of Hydroxyapatite, J. Mater. Sci. Mater. Med., 1997, 8, p 213–219.CrossRef I. Zhitomirsky and L. Gal-Or, Electrophoretic Deposition of Hydroxyapatite, J. Mater. Sci. Mater. Med., 1997, 8, p 213–219.CrossRef
12.
Zurück zum Zitat M. Bai, F. Guo, and P. Xiao, Fabrication of Thick YSZ Thermal Bather Coatings Using Electrophoretic Deposition, Ceram. Int., 2014, 40, p 16611–16616.CrossRef M. Bai, F. Guo, and P. Xiao, Fabrication of Thick YSZ Thermal Bather Coatings Using Electrophoretic Deposition, Ceram. Int., 2014, 40, p 16611–16616.CrossRef
13.
Zurück zum Zitat O.O. Van Der Biest and L.J. Vandeperre, Electrophoretic Deposition of Materials, Annu. Rev. Mater. Sci., 1999, 29, p 327–352.CrossRef O.O. Van Der Biest and L.J. Vandeperre, Electrophoretic Deposition of Materials, Annu. Rev. Mater. Sci., 1999, 29, p 327–352.CrossRef
14.
Zurück zum Zitat X. Meng, T.Y. Kwon, and K.H. Kim, Hydroxyapatite Coating by Electrophoretic Deposition at Dynamic Voltage, Dent. Mater. J., 2008, 27, p 666–671.CrossRef X. Meng, T.Y. Kwon, and K.H. Kim, Hydroxyapatite Coating by Electrophoretic Deposition at Dynamic Voltage, Dent. Mater. J., 2008, 27, p 666–671.CrossRef
15.
Zurück zum Zitat H.K. Bowen and T.J. Garinoa, Deposition and Sintering of Particle Films on a Rigid Substrate, J. Am. Ceram. Soc., 1987, 317, p 315–317. H.K. Bowen and T.J. Garinoa, Deposition and Sintering of Particle Films on a Rigid Substrate, J. Am. Ceram. Soc., 1987, 317, p 315–317.
16.
Zurück zum Zitat D.L. Johnson, Fundamentals of the Sintering of Ceramics, Mater. Sci. Res., 1978, 11, p 137–149. D.L. Johnson, Fundamentals of the Sintering of Ceramics, Mater. Sci. Res., 1978, 11, p 137–149.
17.
Zurück zum Zitat K.C. Radford and R.J. Bratton, Zirconia Electrolyte Cells - Part 1 Sintering Studies, J. Mater. Sci., 1979, 14, p 59–65.CrossRef K.C. Radford and R.J. Bratton, Zirconia Electrolyte Cells - Part 1 Sintering Studies, J. Mater. Sci., 1979, 14, p 59–65.CrossRef
18.
Zurück zum Zitat C. Ji, I.P. Shapiro, and P. Xiao, Fabrication of Yttria-Stabilized-Zirconia Coatings Using Electrophoretic Deposition: Effects of Agglomerate Size Distribution on Particle Packing, J. Eur. Ceram. Soc., 2009, 29, p 3167–3175.CrossRef C. Ji, I.P. Shapiro, and P. Xiao, Fabrication of Yttria-Stabilized-Zirconia Coatings Using Electrophoretic Deposition: Effects of Agglomerate Size Distribution on Particle Packing, J. Eur. Ceram. Soc., 2009, 29, p 3167–3175.CrossRef
19.
Zurück zum Zitat E.G. Kalinina, A.A. Efimov, and A.P. Safronov, Preparation of YSZ/Al2O3 Composite Coatings via Electrophoretic Deposition of Nanopowders, Inorg. Mater., 2016, 52, p 1301–1306.CrossRef E.G. Kalinina, A.A. Efimov, and A.P. Safronov, Preparation of YSZ/Al2O3 Composite Coatings via Electrophoretic Deposition of Nanopowders, Inorg. Mater., 2016, 52, p 1301–1306.CrossRef
20.
Zurück zum Zitat M.M.R. Boutz, A.J.A. Winnubst, F. Hartgers, and A.J. Burggraaf, Effect of Additives on Densification and Deformation of Tetragonal Zirconia, J. Mater. Sci., 1994, 29, p 5374–5382.CrossRef M.M.R. Boutz, A.J.A. Winnubst, F. Hartgers, and A.J. Burggraaf, Effect of Additives on Densification and Deformation of Tetragonal Zirconia, J. Mater. Sci., 1994, 29, p 5374–5382.CrossRef
21.
Zurück zum Zitat Q.D. Wang, J. Peng, M.P. Liu, Y. Chen, W.J. Ding, M. Suéry, and J.J. Blandin, Microstructure and Mechanical Extruded Properties of Extruded AM50+xCa Magnesium Alloys, Mater. Sci. Forum., 2009, 488–489, p 119–122. Q.D. Wang, J. Peng, M.P. Liu, Y. Chen, W.J. Ding, M. Suéry, and J.J. Blandin, Microstructure and Mechanical Extruded Properties of Extruded AM50+xCa Magnesium Alloys, Mater. Sci. Forum., 2009, 488–489, p 119–122.
22.
Zurück zum Zitat G. Štefanić, S. Musić, and R. Trojko, The Influence of Thermal Treatment on the Phase Development in HfO 2-Al 2O 3 and ZrO 2-Al 2O 3 Systems, J. Alloys. Compd., 2005, 388, p 126–137.CrossRef G. Štefanić, S. Musić, and R. Trojko, The Influence of Thermal Treatment on the Phase Development in HfO 2-Al 2O 3 and ZrO 2-Al 2O 3 Systems, J. Alloys. Compd., 2005, 388, p 126–137.CrossRef
23.
Zurück zum Zitat I.C. Cosentino, E.N.S. Muccillo, and R. Muccillo, The Influence of Fe2O3 in the Humidity Sensor Performance of ZrO2:TiO2-Based Porous Ceramics, Mater. Chem. Phys., 2007, 103, p 407–414.CrossRef I.C. Cosentino, E.N.S. Muccillo, and R. Muccillo, The Influence of Fe2O3 in the Humidity Sensor Performance of ZrO2:TiO2-Based Porous Ceramics, Mater. Chem. Phys., 2007, 103, p 407–414.CrossRef
24.
Zurück zum Zitat O. Khanali, S. Ariaee, M. Rajabi, and S. Baghshahi, An Investigation on the Properties of YSZ/Al2O3 Nanocomposite Coatings on Inconel by Electrophoretic Deposition, J. Compos. Mater., 2018, 52, p 81–89.CrossRef O. Khanali, S. Ariaee, M. Rajabi, and S. Baghshahi, An Investigation on the Properties of YSZ/Al2O3 Nanocomposite Coatings on Inconel by Electrophoretic Deposition, J. Compos. Mater., 2018, 52, p 81–89.CrossRef
27.
Zurück zum Zitat Q.R. Hou, J. Gao, and S.J. Li, Adhesion and its Influence on Micro-Hardness of DLC and SiC Films, Eur. Phys. J. B., 1999, 8, p 493–496.CrossRef Q.R. Hou, J. Gao, and S.J. Li, Adhesion and its Influence on Micro-Hardness of DLC and SiC Films, Eur. Phys. J. B., 1999, 8, p 493–496.CrossRef
28.
Zurück zum Zitat P.J. Whalen, F. Reidinger, and R.F. Antrim, Prevention of Low-Temperature Surface Transformation by Surface Recrystallization in Yttria-Doped Tetragonal Zirconia, J. Am. Ceram. Soc, 1989, 72, p 319–321.CrossRef P.J. Whalen, F. Reidinger, and R.F. Antrim, Prevention of Low-Temperature Surface Transformation by Surface Recrystallization in Yttria-Doped Tetragonal Zirconia, J. Am. Ceram. Soc, 1989, 72, p 319–321.CrossRef
29.
Zurück zum Zitat H.W. Sheng, K. Lu, and E. Ma, Melting and Freezing Behavior Of Embedded Nanoparticles in Ball-Milled Al-10 wt.% M (M = In, Sn, Bi, Cd, Pb) Mixtures, Acta. Mater., 1998, 46, p 5195–5205.CrossRef H.W. Sheng, K. Lu, and E. Ma, Melting and Freezing Behavior Of Embedded Nanoparticles in Ball-Milled Al-10 wt.% M (M = In, Sn, Bi, Cd, Pb) Mixtures, Acta. Mater., 1998, 46, p 5195–5205.CrossRef
30.
Zurück zum Zitat D.R. Clarke, C.G. Levi, and A.G. Evans, Enhanced Zirconia Thermal Barrier Coating Systems, Proc. Inst. Mech. Eng. Part. A. J. Power. Energy., 2006, 220, p 85–92.CrossRef D.R. Clarke, C.G. Levi, and A.G. Evans, Enhanced Zirconia Thermal Barrier Coating Systems, Proc. Inst. Mech. Eng. Part. A. J. Power. Energy., 2006, 220, p 85–92.CrossRef
31.
Zurück zum Zitat S.E. Redfern, R.W. Grimes, and R.D. Rawlings, The Hydroxylation of T-ZrO2 Surfaces, J. Mater. Chem., 2001, 11, p 449–455.CrossRef S.E. Redfern, R.W. Grimes, and R.D. Rawlings, The Hydroxylation of T-ZrO2 Surfaces, J. Mater. Chem., 2001, 11, p 449–455.CrossRef
32.
Zurück zum Zitat P. Bindu and S. Thomas, Estimation of Lattice Strain in ZnO Nanoparticles: x-ray Peak Profile Analysis, J. Theor. Appl. Phys., 2014, 8, p 123–134.CrossRef P. Bindu and S. Thomas, Estimation of Lattice Strain in ZnO Nanoparticles: x-ray Peak Profile Analysis, J. Theor. Appl. Phys., 2014, 8, p 123–134.CrossRef
34.
Zurück zum Zitat F. Guo and P. Xiao, Effect of Fe 2O 3 Doping on Sintering of Yttria-Stabilized Zirconia, J. Eur. Ceram. Soc., 2012, 32, p 4157–4164.CrossRef F. Guo and P. Xiao, Effect of Fe 2O 3 Doping on Sintering of Yttria-Stabilized Zirconia, J. Eur. Ceram. Soc., 2012, 32, p 4157–4164.CrossRef
35.
Zurück zum Zitat P. Li, I.-W. Chen, and J.E. Penner-Hahn, Effect of Dopants on Zirconia Stabilization—An x-ray Absorption Study: III, Charge-Compensating Dopants, J. Am. Ceram. Soc., 1994, 77, p 1289–1295.CrossRef P. Li, I.-W. Chen, and J.E. Penner-Hahn, Effect of Dopants on Zirconia Stabilization—An x-ray Absorption Study: III, Charge-Compensating Dopants, J. Am. Ceram. Soc., 1994, 77, p 1289–1295.CrossRef
36.
Zurück zum Zitat J.Z. Jiang, F.W. Poulsen, and S. Mørup, Structure and Thermal Stability of Nanostructured Iron-Doped Zirconia Prepared by High-Energy Ball Milling, J. Mater. Res., 1999, 14, p 1343–1352.CrossRef J.Z. Jiang, F.W. Poulsen, and S. Mørup, Structure and Thermal Stability of Nanostructured Iron-Doped Zirconia Prepared by High-Energy Ball Milling, J. Mater. Res., 1999, 14, p 1343–1352.CrossRef
37.
Zurück zum Zitat S. Figueroa, J. Desimoni, P.C. Rivas, M.C. Caracoche, and O. De Sanctis, Local Structures in the ZrO2-15 mol.% Fe2O3 System Obtained by Ball Milling, J. Am. Ceram. Soc., 2006, 89, p 3759–3764.CrossRef S. Figueroa, J. Desimoni, P.C. Rivas, M.C. Caracoche, and O. De Sanctis, Local Structures in the ZrO2-15 mol.% Fe2O3 System Obtained by Ball Milling, J. Am. Ceram. Soc., 2006, 89, p 3759–3764.CrossRef
38.
Zurück zum Zitat F.J. Berry, M.H. Loretto, and M.R. Smith, Iron-Zirconium Oxides: An Investigation of Structural Transformations by x-ray Diffraction, Electron Diffraction, and Iron-57 Mössbauer Spectroscopy, J. Solid. State. Chem., 1989, 83, p 91–99.CrossRef F.J. Berry, M.H. Loretto, and M.R. Smith, Iron-Zirconium Oxides: An Investigation of Structural Transformations by x-ray Diffraction, Electron Diffraction, and Iron-57 Mössbauer Spectroscopy, J. Solid. State. Chem., 1989, 83, p 91–99.CrossRef
40.
Zurück zum Zitat D. Zhang, Z. Zhao, B. Wang, S. Li, and J. Zhang, Investigation of a New Type of Composite Ceramics for Thermal Barrier Coatings, Mater. Des., 2016, 112, p 27–33.CrossRef D. Zhang, Z. Zhao, B. Wang, S. Li, and J. Zhang, Investigation of a New Type of Composite Ceramics for Thermal Barrier Coatings, Mater. Des., 2016, 112, p 27–33.CrossRef
41.
Zurück zum Zitat M. Yashima and S. Tsunekawa, Structures and the Oxygen Deficiency of Tetragonal and Monoclinic Zirconium Oxide Nanoparticles, Acta. Crystallogr. Sect. B. Struct. Sci., 2006, 62, p 161–164.CrossRef M. Yashima and S. Tsunekawa, Structures and the Oxygen Deficiency of Tetragonal and Monoclinic Zirconium Oxide Nanoparticles, Acta. Crystallogr. Sect. B. Struct. Sci., 2006, 62, p 161–164.CrossRef
Metadaten
Titel
Two-Step Sintering Improved Compaction of Electrophoretic-Deposited YSZ Coatings
verfasst von
Resetiana Dwi Desiati
Anawati Anawati
Eni Sugiarti
Publikationsdatum
18.05.2022
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 12/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-07004-y

Weitere Artikel der Ausgabe 12/2022

Journal of Materials Engineering and Performance 12/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.