Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 19/2023

17.04.2023 | Technical Article

A Novel Brazing Technology for SiCp/ZL102 Composites Used for Lightweight Transmit/Receive Module in New Generation Phased Array Radar

verfasst von: Dechao Qiu, Zeng Gao, Jitai Niu, Xianli Ba, Josip Brnic

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 19/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, Al-17.0Cu-8.0 Mg-1.5Ni an active brazing alloy is designed for brazing third-generation electronic packaging material 55 vol. % SiCp/ZL102 composites. SEM investigation showed that the foil filler prepared by melt spinning technology has smaller grains. The average measured grain size near the roller surface was about 98 ± 3 nm, and the average grain size on the free surface was about 115 ± 2 nm. The chemical potential of foil filler metal was much higher than that of as-cast filler metal and had a higher surface free energy and lower melting point. The interface of the brazed joint was continuous, uniform and dense, and the black oxide layer disappeared at a brazing temperature of 580 °C for 30 min. The maximum shear strength value of the brazed joint was 92 ± 2 MPa, and the air tightness was 2.0 × 10–10 Pa·m3/s, in line with phased array radar T/R module box packaging requirements. The SEM and EDS of the fracture shown that there were a large number of shear lips, as well as massive particles and extended cracks. The fracture type of brazed joint was brittle fracture.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K.H. Lai, I.D. Longstaff, and G.D. Callaghan, Super-Fast Scanning Technique for Phased Array Weather Radar Aplications, IEE Proc. Sonar. Nav., 2004, 151(5), p 271–279.CrossRef K.H. Lai, I.D. Longstaff, and G.D. Callaghan, Super-Fast Scanning Technique for Phased Array Weather Radar Aplications, IEE Proc. Sonar. Nav., 2004, 151(5), p 271–279.CrossRef
2.
Zurück zum Zitat S.H. Talisa, K.W. O’Haver, T.M. Comberiate et al., Benefits of Digital Phased Array Radars, P. IEEE, 2016, 104(3), p 530–543.CrossRef S.H. Talisa, K.W. O’Haver, T.M. Comberiate et al., Benefits of Digital Phased Array Radars, P. IEEE, 2016, 104(3), p 530–543.CrossRef
3.
Zurück zum Zitat E. Brookner, Phased Arrays and Radars - Past, Present and Future, Microw. J., 2006, 49(1), p 24. E. Brookner, Phased Arrays and Radars - Past, Present and Future, Microw. J., 2006, 49(1), p 24.
4.
Zurück zum Zitat C. Wang, Y. Wang, P. Lian et al., Space Phased Array Antenna Developments: A Perspective on Structural Design, IEEE Aero. El. Syst. Mag., 2020, 35(7), p 44–63.CrossRef C. Wang, Y. Wang, P. Lian et al., Space Phased Array Antenna Developments: A Perspective on Structural Design, IEEE Aero. El. Syst. Mag., 2020, 35(7), p 44–63.CrossRef
5.
Zurück zum Zitat A. Basit, W. Khan, S. Khan et al., Development of Frequency Diverse Array Radar Technology—A Review, IET Radar Sonar. Nav., 2018, 12(2), p 165–175.CrossRef A. Basit, W. Khan, S. Khan et al., Development of Frequency Diverse Array Radar Technology—A Review, IET Radar Sonar. Nav., 2018, 12(2), p 165–175.CrossRef
6.
Zurück zum Zitat Y. Konishi, Phased Array Antennas, . IEICE T. Commun., 2003, E86B(3), p 954–967. Y. Konishi, Phased Array Antennas, . IEICE T. Commun., 2003, E86B(3), p 954–967.
7.
Zurück zum Zitat X. Qu, L. Zhang, M. Wu et al., Review of Metal Matrix Composites with High Thermal Conductivity for Thermal Management Applications, Prog. Nat. Sci., 2011, 21(3), p 189–197.CrossRef X. Qu, L. Zhang, M. Wu et al., Review of Metal Matrix Composites with High Thermal Conductivity for Thermal Management Applications, Prog. Nat. Sci., 2011, 21(3), p 189–197.CrossRef
8.
Zurück zum Zitat T.H. Nam, G. Requena, and P. Degischer, Thermal Expansion Behaviour of Aluminum Matrix Composites with Densely Packed SiC Particles, Compos. Part A-Appl. S., 2008, 39(5), p 856–865.CrossRef T.H. Nam, G. Requena, and P. Degischer, Thermal Expansion Behaviour of Aluminum Matrix Composites with Densely Packed SiC Particles, Compos. Part A-Appl. S., 2008, 39(5), p 856–865.CrossRef
9.
Zurück zum Zitat B. Hekner, J. Myalski, N. Valle et al., Friction and Wear Behavior of Al-SiC(n) Hybrid Composites with Carbon Addition, Compos. Part B-Eng., 2017, 108, p 291–300.CrossRef B. Hekner, J. Myalski, N. Valle et al., Friction and Wear Behavior of Al-SiC(n) Hybrid Composites with Carbon Addition, Compos. Part B-Eng., 2017, 108, p 291–300.CrossRef
10.
Zurück zum Zitat C. Wu, L. Liu, X. Liu et al., Advances in Chinese Dual-Polarization and Phased-Array Weather Radars: Observational Analysis of a Supercell in Southern China, J. Atmos. Ocean. Tech., 2018, 35(9), p 1785–1806.CrossRef C. Wu, L. Liu, X. Liu et al., Advances in Chinese Dual-Polarization and Phased-Array Weather Radars: Observational Analysis of a Supercell in Southern China, J. Atmos. Ocean. Tech., 2018, 35(9), p 1785–1806.CrossRef
11.
Zurück zum Zitat X. Wang, G. Sun, L. Wang et al., A New Approach for Preparing SiC Particle-reinforced Aluminum Matrix Composites by Applying Electromagnetic Field, J. Wuhan. Univ. Technol., 2016, 31(4), p 717–721.CrossRef X. Wang, G. Sun, L. Wang et al., A New Approach for Preparing SiC Particle-reinforced Aluminum Matrix Composites by Applying Electromagnetic Field, J. Wuhan. Univ. Technol., 2016, 31(4), p 717–721.CrossRef
12.
Zurück zum Zitat S. Tang, R. Ummethala, C. Suryanarayana et al., Additive Manufacturing of Aluminum-Based Metal Matrix Composites-A Review[J], Adv. Eng. Mater., 2021, 23, p 21000537.CrossRef S. Tang, R. Ummethala, C. Suryanarayana et al., Additive Manufacturing of Aluminum-Based Metal Matrix Composites-A Review[J], Adv. Eng. Mater., 2021, 23, p 21000537.CrossRef
13.
Zurück zum Zitat Y. Su, Q. Ouyang, W. Zhang et al., Composite Structure Modeling and Mechanical Behavior of Particle Reinforced Metal Matrix Composites, Mat. Sci. Eng. A-Struct., 2014, 597, p 359–369.CrossRef Y. Su, Q. Ouyang, W. Zhang et al., Composite Structure Modeling and Mechanical Behavior of Particle Reinforced Metal Matrix Composites, Mat. Sci. Eng. A-Struct., 2014, 597, p 359–369.CrossRef
14.
Zurück zum Zitat Z. Gao, H. Yang, J. Feng et al., Flux-Free Diffusion Joining of SiCp/6063 Al Matrix Composites Using Liquid Gallium with Nano-Copper Particles in Atmosphere Environment, Nanomater. S-Basel., 2020, 10, p 4373. Z. Gao, H. Yang, J. Feng et al., Flux-Free Diffusion Joining of SiCp/6063 Al Matrix Composites Using Liquid Gallium with Nano-Copper Particles in Atmosphere Environment, Nanomater. S-Basel., 2020, 10, p 4373.
15.
Zurück zum Zitat Z. Cai, Y. Guo, J. Liu et al., Progress in Light-weight High Entropy Alloys, J. Wuhan. Univ., 2021, 36(5), p 737–753.CrossRef Z. Cai, Y. Guo, J. Liu et al., Progress in Light-weight High Entropy Alloys, J. Wuhan. Univ., 2021, 36(5), p 737–753.CrossRef
16.
Zurück zum Zitat Z. Wang, Z. Gao, J. Chu et al., Low Temperature Sealing Process and Properties of Kovar Alloy to DM305 Electronic Glass, Metals, 2020, 10, p 9417. Z. Wang, Z. Gao, J. Chu et al., Low Temperature Sealing Process and Properties of Kovar Alloy to DM305 Electronic Glass, Metals, 2020, 10, p 9417.
17.
Zurück zum Zitat G. Zhao, M. Hu, L. Li et al., Enhanced Machinability of SiCp/Al Composites with Laser-Induced Oxidation Assisted Milling, Ceram. Int., 2020, 46(11B), p 18592–18600.CrossRef G. Zhao, M. Hu, L. Li et al., Enhanced Machinability of SiCp/Al Composites with Laser-Induced Oxidation Assisted Milling, Ceram. Int., 2020, 46(11B), p 18592–18600.CrossRef
18.
Zurück zum Zitat K.M. Shorowordi, T. Laoui, A. Haseeb et al., Microstructure and Interface Characteristics of B4C, SiC and Al2O3 Reinforced Al Matrix Composites: A Comparative Study, J. Mater. Process. Tech., 2003, 142(3), p 738–743.CrossRef K.M. Shorowordi, T. Laoui, A. Haseeb et al., Microstructure and Interface Characteristics of B4C, SiC and Al2O3 Reinforced Al Matrix Composites: A Comparative Study, J. Mater. Process. Tech., 2003, 142(3), p 738–743.CrossRef
19.
Zurück zum Zitat H. Wang, X. Yang, J. Xu et al., Effect of Na3AlF6 Addition and Surface Modification of SiCp on the Microstructure and Mechanical Properties of SiCp/Al Composites, J. Wuhan. Univ. Technol., 2019, 34(3), p 534–540.CrossRef H. Wang, X. Yang, J. Xu et al., Effect of Na3AlF6 Addition and Surface Modification of SiCp on the Microstructure and Mechanical Properties of SiCp/Al Composites, J. Wuhan. Univ. Technol., 2019, 34(3), p 534–540.CrossRef
20.
Zurück zum Zitat L. Shen, Z. Li, G. Feng et al., Self-Propagating Synthesis Joining of C-f/Al Composites and TC4 Alloy Using AgCu Filler with Ni-Al-Zr Interlayer, Rare Met., 2021, 40(7), p 1817–1824.CrossRef L. Shen, Z. Li, G. Feng et al., Self-Propagating Synthesis Joining of C-f/Al Composites and TC4 Alloy Using AgCu Filler with Ni-Al-Zr Interlayer, Rare Met., 2021, 40(7), p 1817–1824.CrossRef
21.
Zurück zum Zitat M. Fang, L. Hu, L. Yang et al., Electroless Plating and Growth Kinetics of Ni-P Alloy Film on SiCp/Al Composite with High SiC Volume Fraction, T. Nonferr. Metal. Soc., 2016, 26(3), p 799–805.CrossRef M. Fang, L. Hu, L. Yang et al., Electroless Plating and Growth Kinetics of Ni-P Alloy Film on SiCp/Al Composite with High SiC Volume Fraction, T. Nonferr. Metal. Soc., 2016, 26(3), p 799–805.CrossRef
22.
Zurück zum Zitat S. Huang, L. Guo, H. Yang et al., Study on Characteristics in High-Speed Milling SiCp/Al Composites with Small Particles and High Volume Fraction by Adopting PCD Cutters with Different Grain Sizes, Int. J. Adv. Manuf. Technol., 2019, 102(9–12), p 3563–3571.CrossRef S. Huang, L. Guo, H. Yang et al., Study on Characteristics in High-Speed Milling SiCp/Al Composites with Small Particles and High Volume Fraction by Adopting PCD Cutters with Different Grain Sizes, Int. J. Adv. Manuf. Technol., 2019, 102(9–12), p 3563–3571.CrossRef
23.
Zurück zum Zitat Q. Qiao, Y. Su, Z. Li et al., Effect of Overlapping Region on Double-Sided Friction Stir Welded Joint of 120 mm Ultra-Thick SiCp/Al Composite Plates, Mat. Sci. Eng. A-Struct., 2020, 782, p 139238.CrossRef Q. Qiao, Y. Su, Z. Li et al., Effect of Overlapping Region on Double-Sided Friction Stir Welded Joint of 120 mm Ultra-Thick SiCp/Al Composite Plates, Mat. Sci. Eng. A-Struct., 2020, 782, p 139238.CrossRef
24.
Zurück zum Zitat D. Qiu, Z. Gao, X. Ba et al., Vacuum Brazing of 55 vol.% SiCp/ZL102 Composites Using Micro-Nano Brazing Filler Metal Fabricated by Melt-Spinning, Met., 2020, 10, p 147011. D. Qiu, Z. Gao, X. Ba et al., Vacuum Brazing of 55 vol.% SiCp/ZL102 Composites Using Micro-Nano Brazing Filler Metal Fabricated by Melt-Spinning, Met., 2020, 10, p 147011.
25.
Zurück zum Zitat W. Shi, J. Huang, Y. Xie et al., Laser Micro-Welding Technology for Cu-Al Dissimilar Metals and Mechanisms of Weld Defect Formation, Int. J. Adv. Manuf. Technol., 2017, 93(9–12), p 4197–4201.CrossRef W. Shi, J. Huang, Y. Xie et al., Laser Micro-Welding Technology for Cu-Al Dissimilar Metals and Mechanisms of Weld Defect Formation, Int. J. Adv. Manuf. Technol., 2017, 93(9–12), p 4197–4201.CrossRef
26.
Zurück zum Zitat L. Zuo, X. Zhao, Z. Li et al., A Review of Friction Stir Joining of SiCp/Al Composites, Chin. J. Aeronaut., 2020, 33(3), p 792–804.CrossRef L. Zuo, X. Zhao, Z. Li et al., A Review of Friction Stir Joining of SiCp/Al Composites, Chin. J. Aeronaut., 2020, 33(3), p 792–804.CrossRef
27.
Zurück zum Zitat C. Wang, B. Wang, D. Wang et al., High-Speed Friction Stir Welding of SiCp/Al-Mg-Si-Cu Composite, Acta. Metall. Sin-Engl., 2019, 32(6), p 677–683.CrossRef C. Wang, B. Wang, D. Wang et al., High-Speed Friction Stir Welding of SiCp/Al-Mg-Si-Cu Composite, Acta. Metall. Sin-Engl., 2019, 32(6), p 677–683.CrossRef
28.
Zurück zum Zitat M. Muratoglu, O. Yilmaz, and A. Aksoy, Investigation on Diffusion Bonding Characteristics of Aluminum Metal Matrix Composites (Al/SiCp) with Pure Aluminum for Different Heat Treatments, J. Mater. Process. Technol., 2006, 178(1–3), p 211–217.CrossRef M. Muratoglu, O. Yilmaz, and A. Aksoy, Investigation on Diffusion Bonding Characteristics of Aluminum Metal Matrix Composites (Al/SiCp) with Pure Aluminum for Different Heat Treatments, J. Mater. Process. Technol., 2006, 178(1–3), p 211–217.CrossRef
29.
Zurück zum Zitat M. Abbasi, A. Abdollahzadeh, B. Bagheri et al., Study on the Effect of the Welding Environment on the Dynamic Recrystallization Phenomenon and Residual Stresses during the Friction Stir Welding Process of Aluminum Alloy, P. I. Mech. Eng. L-J. Mat., 2021, 235, p 1809–1826. M. Abbasi, A. Abdollahzadeh, B. Bagheri et al., Study on the Effect of the Welding Environment on the Dynamic Recrystallization Phenomenon and Residual Stresses during the Friction Stir Welding Process of Aluminum Alloy, P. I. Mech. Eng. L-J. Mat., 2021, 235, p 1809–1826.
30.
Zurück zum Zitat E.A. Kolubaev, Investigation of the Microstructure of Joints of Aluminum Alloys Produced by Friction Stir Welding, Russ. Phys. J., 2015, 57(10), p 1321–1327.CrossRef E.A. Kolubaev, Investigation of the Microstructure of Joints of Aluminum Alloys Produced by Friction Stir Welding, Russ. Phys. J., 2015, 57(10), p 1321–1327.CrossRef
31.
Zurück zum Zitat Chand S, Gaur A, Rakha K, et al. Synthesis and characterization of (Al-20Cu-8Si-3Sn) low temperature brazing alloy via powder metallurgy route[J]. Mater. Today: Proc., 2022. Chand S, Gaur A, Rakha K, et al. Synthesis and characterization of (Al-20Cu-8Si-3Sn) low temperature brazing alloy via powder metallurgy route[J]. Mater. Today: Proc., 2022.
32.
Zurück zum Zitat S. Weis, M. Elssner, B. Wielage et al., Wetting Behavior of AlAgCu Brazing Filler on Aluminum Matrix Composites and Stainless Steel, Weld. World., 2017, 61(2), p 383–389.CrossRef S. Weis, M. Elssner, B. Wielage et al., Wetting Behavior of AlAgCu Brazing Filler on Aluminum Matrix Composites and Stainless Steel, Weld. World., 2017, 61(2), p 383–389.CrossRef
33.
Zurück zum Zitat J. Xiao, S. Li, S. Bai et al., Compression Brazing of SiCp/Al Composite Using a Semisolid Zn-Al-Cu Filler Metal Based on the Strain-Induced Melt Activation Process, JOM, 2019, 71(12), p 4931–4939.CrossRef J. Xiao, S. Li, S. Bai et al., Compression Brazing of SiCp/Al Composite Using a Semisolid Zn-Al-Cu Filler Metal Based on the Strain-Induced Melt Activation Process, JOM, 2019, 71(12), p 4931–4939.CrossRef
34.
Zurück zum Zitat G. Zhang, B. Chen, M. Jin et al., Active-Transient Liquid Phase (A-TLP) Bonding of High Volume Fraction SiC Particle Reinforced A356 Matrix Composite, Mater. Trans., 2015, 56(2), p 212–217.CrossRef G. Zhang, B. Chen, M. Jin et al., Active-Transient Liquid Phase (A-TLP) Bonding of High Volume Fraction SiC Particle Reinforced A356 Matrix Composite, Mater. Trans., 2015, 56(2), p 212–217.CrossRef
35.
Zurück zum Zitat Z. Hua, C. Wang, G. Mi et al., Effects of Ti on the Forming, Microstructure and Mechanical Properties of Laser Welded Joints of SiCp/2A14 Composites, J. Mater. Res. Technol., 2021, 15, p 6272–6286.CrossRef Z. Hua, C. Wang, G. Mi et al., Effects of Ti on the Forming, Microstructure and Mechanical Properties of Laser Welded Joints of SiCp/2A14 Composites, J. Mater. Res. Technol., 2021, 15, p 6272–6286.CrossRef
36.
Zurück zum Zitat J. Niu, X. Luo, H. Tian et al., Vacuum Brazing of Aluminium Metal Matrix Composite (55 vol.% SiCp/A356) Using Aluminium-Based Filler Alloy, Mat. Sci. Eng. B-Adv., 2012, 177(19), p 1707–1711.CrossRef J. Niu, X. Luo, H. Tian et al., Vacuum Brazing of Aluminium Metal Matrix Composite (55 vol.% SiCp/A356) Using Aluminium-Based Filler Alloy, Mat. Sci. Eng. B-Adv., 2012, 177(19), p 1707–1711.CrossRef
37.
Zurück zum Zitat P. Vesely, D. Busek, O. Krammer et al., Analysis of No-Clean Flux Spatter during the Soldering Process, J. Mater. Process. Technol., 2020, 275, p 116289.CrossRef P. Vesely, D. Busek, O. Krammer et al., Analysis of No-Clean Flux Spatter during the Soldering Process, J. Mater. Process. Technol., 2020, 275, p 116289.CrossRef
38.
Zurück zum Zitat P. Wang, Z. Gao, J. Li et al., Research on Reaction Brazing of Ti Layer-Coated SiCp/Al Composites Using Al-Based Filler Metal Foil, Compos. Interfaces, 2019, 26(12), p 1057–1068.CrossRef P. Wang, Z. Gao, J. Li et al., Research on Reaction Brazing of Ti Layer-Coated SiCp/Al Composites Using Al-Based Filler Metal Foil, Compos. Interfaces, 2019, 26(12), p 1057–1068.CrossRef
39.
Zurück zum Zitat B. Hallstedt, Z.K. Liu, and J. Ågren, Fibre-Matrix Interactions during Fabrication of Al2O3 Mg Metal Matrix Composites, Mater. Sci. Eng. A, 1990, 129(1), p 135–145.CrossRef B. Hallstedt, Z.K. Liu, and J. Ågren, Fibre-Matrix Interactions during Fabrication of Al2O3 Mg Metal Matrix Composites, Mater. Sci. Eng. A, 1990, 129(1), p 135–145.CrossRef
40.
Zurück zum Zitat Z. Zhang, X. Bian, Y. Wang et al., Solidification Microstructure Formation of an Al-Ce-Sr Alloy under Conventional and Rapid Solidification Conditions, J. Alloy. Compd., 2002, 346(1), p 134–141.CrossRef Z. Zhang, X. Bian, Y. Wang et al., Solidification Microstructure Formation of an Al-Ce-Sr Alloy under Conventional and Rapid Solidification Conditions, J. Alloy. Compd., 2002, 346(1), p 134–141.CrossRef
41.
Zurück zum Zitat P.K. Jayashree, M.C. Gowrishankar, S. Sharma et al., The Effect of SiC Content in Aluminum-Based Metal Matrix Composites on the Microstructure and Mechanical Properties of Welded Joints, J. Mater. Res. Technol., 2021, 12, p 2325–2339.CrossRef P.K. Jayashree, M.C. Gowrishankar, S. Sharma et al., The Effect of SiC Content in Aluminum-Based Metal Matrix Composites on the Microstructure and Mechanical Properties of Welded Joints, J. Mater. Res. Technol., 2021, 12, p 2325–2339.CrossRef
42.
Zurück zum Zitat C. Moller and J. Grann, Understanding Key Process Parameters of Vacuum Aluminum Brazing, Adv. Mater. Process, 2014, 172(7), p 15–19. C. Moller and J. Grann, Understanding Key Process Parameters of Vacuum Aluminum Brazing, Adv. Mater. Process, 2014, 172(7), p 15–19.
43.
Zurück zum Zitat H. Peng, Y. Zhang, X. Chen et al., Microstructure and Mechanical Properties of C/C Composite Joint Brazed with Ni-Based Filler, T. Nonferr. Metal. Soc., 2022, 32(3), p 927–934.CrossRef H. Peng, Y. Zhang, X. Chen et al., Microstructure and Mechanical Properties of C/C Composite Joint Brazed with Ni-Based Filler, T. Nonferr. Metal. Soc., 2022, 32(3), p 927–934.CrossRef
Metadaten
Titel
A Novel Brazing Technology for SiCp/ZL102 Composites Used for Lightweight Transmit/Receive Module in New Generation Phased Array Radar
verfasst von
Dechao Qiu
Zeng Gao
Jitai Niu
Xianli Ba
Josip Brnic
Publikationsdatum
17.04.2023
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 19/2023
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-023-08188-7

Weitere Artikel der Ausgabe 19/2023

Journal of Materials Engineering and Performance 19/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.