Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

15.06.2019 | Focus | Ausgabe 8/2020

Soft Computing 8/2020

A novel metaheuristic inspired by Hitchcock birds’ behavior for efficient optimization of large search spaces of high dimensionality

Zeitschrift:
Soft Computing > Ausgabe 8/2020
Autoren:
Reinaldo G. Morais, Nadia Nedjah, Luiza M. Mourelle
Wichtige Hinweise
Communicated by B. B. Gupta.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

In this paper, a new optimization algorithm called the Hitchcock bird-inspired algorithm (HBIA) is proposed. It is inspired by the aggressive bird behavior portrayed by Alfred Hitchcock in the 1963 thriller “The Birds.” It is noteworthy to emphasize that the bird’s behavior as shown in the movie is itself inspired by a considered natural birds behavior when faced with extreme conditions. HBIA is a stochastic swarm intelligence algorithm that captures the essence of the fictional behavior of the phenomenon of birds throughout the Hitchcock’s film and model an optimization mechanism. The algorithm is based on the attack pattern of birds in the film, which has the stages of lurking, attack and reorganization, defined by the initialization, movement strategies in the search space and strategy of local minimum escape, respectively. The technique has as differential the use of adaptive parameters, a discretized random initialization and the use of the beta distribution. In contrast to the existing ones, the proposed technique provides an efficient optimization in high-dimensionality cost functions, using adaptive parameters, a discretized random initialization and the use of the beta distribution. Its performance is analyzed and compared to classic techniques, such as PSO, ABC and CS, as well as to the existing adaptive techniques, such as sine cosine algorithm, whale optimization algorithm, teaching–learning-based optimization and vortex search. HBIA’s performance is investigated by several experiments implemented through eight cost functions. The results show that the HBIA can find more satisfactory solutions in large search spaces and high dimensionality of the evaluated cost functions when compared to the existing optimization methods.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 8/2020

Soft Computing 8/2020 Zur Ausgabe

Premium Partner

    Bildnachweise