Skip to main content
Erschienen in: Engineering with Computers 2/2024

08.05.2023 | Original Article

A novel optimization-based physics-informed neural network scheme for solving fractional differential equations

verfasst von: Sivalingam S M, Pushpendra Kumar, V. Govindaraj

Erschienen in: Engineering with Computers | Ausgabe 2/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nowadays, the study of neural networks is one of the most interesting research topics. In this article, we introduce a novel scheme based on Physics Informed Neural Network (PINN) for solving Fractional Differential Equations (FDEs) in terms of Caputo derivative. We use a trial solution based on the Theory of Functional Connection called the constrained expression to obtain the approximate solution. The training is proposed using the recently introduced average and subtraction-based optimizer algorithm. We implement the proposed algorithm to obtain the approximate solutions of single as well as a system of FDEs. The proposed scheme eliminates the primary drawbacks of the standard PINN. With our scheme, we overcome the choice of additional parameters that affect the convergence.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5(4):115–133MathSciNetCrossRef McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5(4):115–133MathSciNetCrossRef
2.
Zurück zum Zitat Lagaris IE, Likas A, Fotiadis DI (1998) Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans Neural Networks 9(5):987–1000CrossRef Lagaris IE, Likas A, Fotiadis DI (1998) Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans Neural Networks 9(5):987–1000CrossRef
3.
Zurück zum Zitat Kilbas A, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier Science Kilbas A, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier Science
4.
Zurück zum Zitat Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Elsevier Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Elsevier
5.
Zurück zum Zitat Losada J, Nieto JJ (2015) Properties of a new fractional derivative without singular kernel. Progress Fract Differ Appl 1(2):87–92 Losada J, Nieto JJ (2015) Properties of a new fractional derivative without singular kernel. Progress Fract Differ Appl 1(2):87–92
6.
Zurück zum Zitat Kumar P, Govindaraj V, Erturk VS, Abdellattif MH (2022) A study on the dynamics of alkali-silica chemical reaction by using Caputo fractional derivative. Pramana 96(3):1–19CrossRef Kumar P, Govindaraj V, Erturk VS, Abdellattif MH (2022) A study on the dynamics of alkali-silica chemical reaction by using Caputo fractional derivative. Pramana 96(3):1–19CrossRef
7.
Zurück zum Zitat Erturk VS, Ahmadkhanlu A, Kumar P, Govindaraj V (2022) Some novel mathematical analysis on a corneal shape model by using Caputo fractional derivative. Optik 261:169086CrossRef Erturk VS, Ahmadkhanlu A, Kumar P, Govindaraj V (2022) Some novel mathematical analysis on a corneal shape model by using Caputo fractional derivative. Optik 261:169086CrossRef
8.
Zurück zum Zitat Erturk V S, Alomari A K, Kumar P, Murillo-Arcila M (2022) Analytic solution for the strongly nonlinear multi-order fractional version of a BVP occurring in chemical reactor theory. Discrete Dyn Nat Soc 2022 Erturk V S, Alomari A K, Kumar P, Murillo-Arcila M (2022) Analytic solution for the strongly nonlinear multi-order fractional version of a BVP occurring in chemical reactor theory. Discrete Dyn Nat Soc 2022
9.
Zurück zum Zitat Kumar P, Erturk VS, Vellappandi M, Trinh H, Govindaraj V (2022) A study on the maize streak virus epidemic model by using optimized linearization-based predictor-corrector method in Caputo sense. Chaos Solitons Fractals 158:112067MathSciNetCrossRef Kumar P, Erturk VS, Vellappandi M, Trinh H, Govindaraj V (2022) A study on the maize streak virus epidemic model by using optimized linearization-based predictor-corrector method in Caputo sense. Chaos Solitons Fractals 158:112067MathSciNetCrossRef
10.
Zurück zum Zitat Odibat Z, Erturk V S, Kumar P, Ben Makhlouf A, Govindaraj V (2022) An implementation of the generalized differential transform scheme for simulating impulsive fractional differential equations. Math Prob Eng 2022 Odibat Z, Erturk V S, Kumar P, Ben Makhlouf A, Govindaraj V (2022) An implementation of the generalized differential transform scheme for simulating impulsive fractional differential equations. Math Prob Eng 2022
11.
Zurück zum Zitat Odibat Z, Erturk VS, Kumar P, Govindaraj V (2021) Dynamics of generalized Caputo type delay fractional differential equations using a modified Predictor-Corrector scheme. Phys Scr 96(12):125213CrossRef Odibat Z, Erturk VS, Kumar P, Govindaraj V (2021) Dynamics of generalized Caputo type delay fractional differential equations using a modified Predictor-Corrector scheme. Phys Scr 96(12):125213CrossRef
12.
Zurück zum Zitat Kumar P, Erturk V S, Kumar A (2021) A new technique to solve generalized Caputo type fractional differential equations with the example of computer virus model. J Math Extension 15:1–23 Kumar P, Erturk V S, Kumar A (2021) A new technique to solve generalized Caputo type fractional differential equations with the example of computer virus model. J Math Extension 15:1–23
14.
Zurück zum Zitat Mall S, Chakraverty S (2018) Artificial neural network approach for solving fractional order initial value problems. arXiv preprint arXiv:1810.04992 Mall S, Chakraverty S (2018) Artificial neural network approach for solving fractional order initial value problems. arXiv preprint arXiv:​1810.​04992
15.
Zurück zum Zitat Rostami F, Jafarian A (2018) A new artificial neural network structure for solving high-order linear fractional differential equations. Int J Comput Math 95(3):528–539MathSciNetCrossRef Rostami F, Jafarian A (2018) A new artificial neural network structure for solving high-order linear fractional differential equations. Int J Comput Math 95(3):528–539MathSciNetCrossRef
16.
Zurück zum Zitat Pakdaman M, Ahmadian A, Effati S, Salahshour S, Baleanu D (2017) Solving differential equations of fractional order using an optimization technique based on training artificial neural network. Appl Math Comput 293:81–95MathSciNet Pakdaman M, Ahmadian A, Effati S, Salahshour S, Baleanu D (2017) Solving differential equations of fractional order using an optimization technique based on training artificial neural network. Appl Math Comput 293:81–95MathSciNet
17.
Zurück zum Zitat Effati S, Pakdaman M (2013) Optimal control problem via neural networks. Neural Comput Appl 23(7):2093–2100CrossRef Effati S, Pakdaman M (2013) Optimal control problem via neural networks. Neural Comput Appl 23(7):2093–2100CrossRef
18.
Zurück zum Zitat Sabouri J, Effati S, Pakdaman M (2017) A neural network approach for solving a class of fractional optimal control problems. Neural Process Lett 45(1):59–74CrossRef Sabouri J, Effati S, Pakdaman M (2017) A neural network approach for solving a class of fractional optimal control problems. Neural Process Lett 45(1):59–74CrossRef
19.
Zurück zum Zitat Gao F, Dong Y, Chi C (2021) Solving fractional differential equations by using triangle neural network. J Funct Spaces 2021 Gao F, Dong Y, Chi C (2021) Solving fractional differential equations by using triangle neural network. J Funct Spaces 2021
20.
Zurück zum Zitat Ibrahim RW (2013) The fractional differential polynomial neural network for approximation of functions. Entropy 15(10):4188–4198MathSciNetCrossRef Ibrahim RW (2013) The fractional differential polynomial neural network for approximation of functions. Entropy 15(10):4188–4198MathSciNetCrossRef
21.
Zurück zum Zitat Raja MAZ, Qureshi IM, Khan JA (2011) Swarm Intelligent optimized neural networks for solving fractional differential equations. Int J Innov Comput Inf Control 7(11):6301–6318 Raja MAZ, Qureshi IM, Khan JA (2011) Swarm Intelligent optimized neural networks for solving fractional differential equations. Int J Innov Comput Inf Control 7(11):6301–6318
22.
Zurück zum Zitat Almarashi A A (2012) Approximation solution of fractional partial differential equations by neural networks. Adv Num Anal 2012 Almarashi A A (2012) Approximation solution of fractional partial differential equations by neural networks. Adv Num Anal 2012
23.
Zurück zum Zitat Chaharborj SS, Chaharborj SS, Mahmoudi Y (2017) Study of fractional order integro-differential equations by using Chebyshev neural network. J Math Stat 13(1):1–13CrossRef Chaharborj SS, Chaharborj SS, Mahmoudi Y (2017) Study of fractional order integro-differential equations by using Chebyshev neural network. J Math Stat 13(1):1–13CrossRef
24.
Zurück zum Zitat McFall KS, Mahan JR (2009) Artificial neural network method for solution of boundary value problems with exact satisfaction of arbitrary boundary conditions. IEEE Trans Neural Networks 20(8):1221–1233CrossRef McFall KS, Mahan JR (2009) Artificial neural network method for solution of boundary value problems with exact satisfaction of arbitrary boundary conditions. IEEE Trans Neural Networks 20(8):1221–1233CrossRef
25.
Zurück zum Zitat Viera-Martin E, Gómez-Aguilar J F, Solís-Pérez J E, Hernández-Pérez J A, Escobar-Jiménez R F (2022) Artificial neural networks: a practical review of applications involving fractional calculus. Eur Phys J Special Topics 231(10):2059–2095 Viera-Martin E, Gómez-Aguilar J F, Solís-Pérez J E, Hernández-Pérez J A, Escobar-Jiménez R F (2022) Artificial neural networks: a practical review of applications involving fractional calculus. Eur Phys J Special Topics 231(10):2059–2095
26.
Zurück zum Zitat Wang S, Teng Y, Perdikaris P (2021) Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM J Sci Comput 43(5):A3055–A3081MathSciNetCrossRef Wang S, Teng Y, Perdikaris P (2021) Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM J Sci Comput 43(5):A3055–A3081MathSciNetCrossRef
27.
Zurück zum Zitat Huang GB, Zhu QY, Siew CK (2004) Extreme learning machine: a new learning scheme of feedforward neural networks. In 2004 IEEE international joint conference on neural networks (IEEE Cat. No. 04CH37541) Vol. 2, pp 985–990. Ieee Huang GB, Zhu QY, Siew CK (2004) Extreme learning machine: a new learning scheme of feedforward neural networks. In 2004 IEEE international joint conference on neural networks (IEEE Cat. No. 04CH37541) Vol. 2, pp 985–990. Ieee
28.
Zurück zum Zitat Wang J, Lu S, Wang SH, Zhang YD (2021) A review on extreme learning machine. Multimed Tools Appl 81:41611–41660 Wang J, Lu S, Wang SH, Zhang YD (2021) A review on extreme learning machine. Multimed Tools Appl 81:41611–41660
29.
Zurück zum Zitat Yang Y, Hou M, Luo J (2018) A novel improved extreme learning machine algorithm in solving ordinary differential equations by Legendre neural network methods. Adv Differ Equ 2018(1):1–24MathSciNetCrossRef Yang Y, Hou M, Luo J (2018) A novel improved extreme learning machine algorithm in solving ordinary differential equations by Legendre neural network methods. Adv Differ Equ 2018(1):1–24MathSciNetCrossRef
30.
Zurück zum Zitat Li S, Liu G, Xiao S (2022) Extreme learning machine with kernels for solving elliptic partial differential equations. Cognitive Comput 15:413–428 Li S, Liu G, Xiao S (2022) Extreme learning machine with kernels for solving elliptic partial differential equations. Cognitive Comput 15:413–428
31.
Zurück zum Zitat Rathod N, Wankhade SB (2020) Improving extreme learning machine algorithm through optimization technique. In Advanced computing technologies and applications (pp 157–163). Springer, Singapore Rathod N, Wankhade SB (2020) Improving extreme learning machine algorithm through optimization technique. In Advanced computing technologies and applications (pp 157–163). Springer, Singapore
32.
Zurück zum Zitat Raissi M, Perdikaris P, Karniadakis GE (2019) Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys 378:686–707MathSciNetCrossRef Raissi M, Perdikaris P, Karniadakis GE (2019) Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys 378:686–707MathSciNetCrossRef
33.
Zurück zum Zitat Schiassi E, Furfaro R, Leake C, De Florio M, Johnston H, Mortari D (2021) Extreme theory of functional connections: a fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457:334–356CrossRef Schiassi E, Furfaro R, Leake C, De Florio M, Johnston H, Mortari D (2021) Extreme theory of functional connections: a fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457:334–356CrossRef
34.
Zurück zum Zitat Kharazmi E, Zhang Z, Karniadakis GE (2019) VPINNs: variational physics-informed neural networks for solving partial differential equations. arXiv preprint arXiv:1912.00873 Kharazmi E, Zhang Z, Karniadakis GE (2019) VPINNs: variational physics-informed neural networks for solving partial differential equations. arXiv preprint arXiv:​1912.​00873
35.
Zurück zum Zitat Mertikopoulos P, Papadimitriou C, Piliouras G (2018) Cycles in adversarial regularized learning. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms (pp 2703–2717). Society for Industrial and Applied Mathematics Mertikopoulos P, Papadimitriou C, Piliouras G (2018) Cycles in adversarial regularized learning. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms (pp 2703–2717). Society for Industrial and Applied Mathematics
37.
Zurück zum Zitat De Florio M, Schiassi E, Furfaro R (2022) Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos 32(6):063107MathSciNetCrossRef De Florio M, Schiassi E, Furfaro R (2022) Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos 32(6):063107MathSciNetCrossRef
38.
Zurück zum Zitat Mortari D (2022) Using the theory of functional connections to solve boundary value Geodesic problems. Math Comput Appl 27(4):64 Mortari D (2022) Using the theory of functional connections to solve boundary value Geodesic problems. Math Comput Appl 27(4):64
39.
Zurück zum Zitat Coskun UH, Sel B, Plaster B (2022) Magnetic field mapping of inaccessible regions using physics-informed neural networks. Scientific Reports 12(1):12858 Coskun UH, Sel B, Plaster B (2022) Magnetic field mapping of inaccessible regions using physics-informed neural networks. Scientific Reports 12(1):12858
40.
Zurück zum Zitat De Florio M, Schiassi E, Furfaro R, Ganapol BD, Mostacci D (2021) Solutions of Chandrasekhar’s basic problem in radiative transfer via theory of functional connections. J Quant Spectrosc Radiat Transfer 259:107384CrossRef De Florio M, Schiassi E, Furfaro R, Ganapol BD, Mostacci D (2021) Solutions of Chandrasekhar’s basic problem in radiative transfer via theory of functional connections. J Quant Spectrosc Radiat Transfer 259:107384CrossRef
41.
Zurück zum Zitat Schiassi E, D’Ambrosio A, Drozd K, Curti F, Furfaro R (2022) Physics-informed neural networks for optimal planar orbit transfers. J Spacecr Rocket 59(3):834–849CrossRef Schiassi E, D’Ambrosio A, Drozd K, Curti F, Furfaro R (2022) Physics-informed neural networks for optimal planar orbit transfers. J Spacecr Rocket 59(3):834–849CrossRef
42.
Zurück zum Zitat Schiassi E, D’Ambrosio A, Scorsoglio A, Furfaro R, Curti F (2021) Class of optimal space guidance problems solved via indirect methods and physics-informed neural networks Schiassi E, D’Ambrosio A, Scorsoglio A, Furfaro R, Curti F (2021) Class of optimal space guidance problems solved via indirect methods and physics-informed neural networks
43.
Zurück zum Zitat Dehghani M, Hubálovský Š, Trojovský P (2022) A new optimization algorithm based on average and subtraction of the best and worst members of the population for solving various optimization problems. PeerJ Comput Sci 8:e910CrossRef Dehghani M, Hubálovský Š, Trojovský P (2022) A new optimization algorithm based on average and subtraction of the best and worst members of the population for solving various optimization problems. PeerJ Comput Sci 8:e910CrossRef
44.
Zurück zum Zitat Odibat Z, Shawagfeh N (2020) An optimized linearization-based predictor-corrector algorithm for the numerical simulation of nonlinear FDEs. Phys Scr 95(6):065202CrossRef Odibat Z, Shawagfeh N (2020) An optimized linearization-based predictor-corrector algorithm for the numerical simulation of nonlinear FDEs. Phys Scr 95(6):065202CrossRef
Metadaten
Titel
A novel optimization-based physics-informed neural network scheme for solving fractional differential equations
verfasst von
Sivalingam S M
Pushpendra Kumar
V. Govindaraj
Publikationsdatum
08.05.2023
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 2/2024
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-023-01830-x

Weitere Artikel der Ausgabe 2/2024

Engineering with Computers 2/2024 Zur Ausgabe

Neuer Inhalt