Skip to main content
Erschienen in: Journal of Computational Electronics 1/2017

09.01.2017

A simulation study of voltage-assisted low-energy switching of a perpendicular anisotropy ferromagnet on a topological insulator

verfasst von: Bahniman Ghosh, Rik Dey, Leonard F. Register, Sanjay K. Banerjee

Erschienen in: Journal of Computational Electronics | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present a novel memory device that consists of a thin ferromagnetic layer of Fe deposited on topological insulator thin film, \(\hbox {Bi}_{2}\hbox {Se}_{3}\). The ferromagnetic layer has perpendicular anisotropy, due to MgO deposited on its top surface. When current is passed on the surface of \(\hbox {Bi}_{2}\hbox {Se}_{3}\), the surface of the \(\hbox {Bi}_{2} \hbox {Se}_{3}\) becomes spin polarized and strong exchange interaction occurs between the d electrons in the ferromagnet and the electrons conducting the current on the surface of the \(\hbox {Bi}_{2}\hbox {Se}_{3}\). Part of the current is also shunted through the ferromagnet, which generates spin transfer torque in the ferromagnet. The exchange interaction torque along with voltage-controlled magnetic anisotropy allows ultralow-energy switching of the ferromagnet. We perform micromagnetic simulations and predict switching time of the order of 2.5 ns and switching energy of the order of 0.88fJ for a ferromagnetic bit with thermal stability of \(43\,k_\mathrm{{B}}T\). Such ultralow-energy and high-speed switching of a perpendicular anisotropy ferromagnet on a topological insulator could be utilized for energy-efficient memory design.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Fert, A.: The present and the future of spintronics. Thin Solid Films 517(1), 2–5 (2008)CrossRef Fert, A.: The present and the future of spintronics. Thin Solid Films 517(1), 2–5 (2008)CrossRef
2.
Zurück zum Zitat Datta, S., Das, B.: Electronic analog of the electrooptic modulator. Appl. Phys. Lett. 56, 665–667 (1990)CrossRef Datta, S., Das, B.: Electronic analog of the electrooptic modulator. Appl. Phys. Lett. 56, 665–667 (1990)CrossRef
3.
Zurück zum Zitat Kane, C.L., Mele, E.J.: Z topological order and the quantum spin hall effect. Phys. Rev. Lett. 95, 146802 (2005) Kane, C.L., Mele, E.J.: Z topological order and the quantum spin hall effect. Phys. Rev. Lett. 95, 146802 (2005)
4.
Zurück zum Zitat Bernevig, B.A., Hughes, T.L., Zhang, S.C.: Quantum spin hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006)CrossRef Bernevig, B.A., Hughes, T.L., Zhang, S.C.: Quantum spin hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006)CrossRef
5.
Zurück zum Zitat Melnik, A.R., Lee, J.S., Richardella, A., Grab, J.L., Mintun, P.J., Fischer, M.H., Vaezi, A., Manchon, A., Kim, E.-A., Samarth, N., Ralph, D.C.: Spin-transfer torque generated by a topological insulator. Nature 511, 449–451 (2014)CrossRef Melnik, A.R., Lee, J.S., Richardella, A., Grab, J.L., Mintun, P.J., Fischer, M.H., Vaezi, A., Manchon, A., Kim, E.-A., Samarth, N., Ralph, D.C.: Spin-transfer torque generated by a topological insulator. Nature 511, 449–451 (2014)CrossRef
6.
Zurück zum Zitat Fan, Y., Upadhyaya, P., Kou, X., Lang, M., Takei, S., Wang, Z., Tang, J., He, L., Chang, L.T., Montazeri, M., Yu, G., Jiang, W., Nie, T., Schwarz, R.N., Tserkovnyak, Y., Wang, K.L.: Magnetization switching through giant spin orbit torque in an magnetically doped topological insulator heterostructure. Nat. Mater. 13, 699–704 (2014)CrossRef Fan, Y., Upadhyaya, P., Kou, X., Lang, M., Takei, S., Wang, Z., Tang, J., He, L., Chang, L.T., Montazeri, M., Yu, G., Jiang, W., Nie, T., Schwarz, R.N., Tserkovnyak, Y., Wang, K.L.: Magnetization switching through giant spin orbit torque in an magnetically doped topological insulator heterostructure. Nat. Mater. 13, 699–704 (2014)CrossRef
7.
Zurück zum Zitat Qi, X.L., Zhang, S.C.: The quantum spin Hall effect and topological insulators. Phys. Today 63, 33 (2010)CrossRef Qi, X.L., Zhang, S.C.: The quantum spin Hall effect and topological insulators. Phys. Today 63, 33 (2010)CrossRef
8.
Zurück zum Zitat Lu, Y., Guo, J.: Quantum simulation of topological insulator based spin transfer torque device. Appl. Phys. Lett. 102, 073106 (2013)CrossRef Lu, Y., Guo, J.: Quantum simulation of topological insulator based spin transfer torque device. Appl. Phys. Lett. 102, 073106 (2013)CrossRef
9.
Zurück zum Zitat Li, Y., Jalil, M.B.A., Tan, S.G., Zhou, G., Qian, Z.: Magnetoresistive effect of a topological-insulator waveguide in the presence of a magnetic field. Appl. Phys. Lett. 101, 262403 (2012)CrossRef Li, Y., Jalil, M.B.A., Tan, S.G., Zhou, G., Qian, Z.: Magnetoresistive effect of a topological-insulator waveguide in the presence of a magnetic field. Appl. Phys. Lett. 101, 262403 (2012)CrossRef
10.
Zurück zum Zitat Duan, X., Semenov, Y.G., Kim, K.W.: Spin logic via controlled correlation in a topological insulator-nanomagnet hybrid structure. In: IEEE Device Research Conference, pp. 133–134, Notre Dame, IN, U.S.A., 23–26 June (2013) Duan, X., Semenov, Y.G., Kim, K.W.: Spin logic via controlled correlation in a topological insulator-nanomagnet hybrid structure. In: IEEE Device Research Conference, pp. 133–134, Notre Dame, IN, U.S.A., 23–26 June (2013)
11.
Zurück zum Zitat Behin-Aein, B., Datta, D., Salahuddin, S., Datta, S.: Proposal for an all-spin logic device with built-in memory. Nat. Nanotechnol. 5(4), 266–270 (2010)CrossRef Behin-Aein, B., Datta, D., Salahuddin, S., Datta, S.: Proposal for an all-spin logic device with built-in memory. Nat. Nanotechnol. 5(4), 266–270 (2010)CrossRef
12.
Zurück zum Zitat Liu, L., Pai, C.F., Li, Y., Tseng, H.W., Ralph, D.C., Buhrman, R.A.: Spin torque switching with the giant spin Hall effect of tantalum. Science 336, 555 (2012)CrossRef Liu, L., Pai, C.F., Li, Y., Tseng, H.W., Ralph, D.C., Buhrman, R.A.: Spin torque switching with the giant spin Hall effect of tantalum. Science 336, 555 (2012)CrossRef
13.
Zurück zum Zitat Carpentieri, M., Finocchio, G., Azzerboni, B., Torres, L.: Spin- transfer-torque resonant switching and injection locking in the presence of a weak external microwave field for spin valves with perpendicular materials. Phys. Rev. B 82, 094434 (2010)CrossRef Carpentieri, M., Finocchio, G., Azzerboni, B., Torres, L.: Spin- transfer-torque resonant switching and injection locking in the presence of a weak external microwave field for spin valves with perpendicular materials. Phys. Rev. B 82, 094434 (2010)CrossRef
14.
Zurück zum Zitat Kieselev, S.I., Sankey, J.C., Krivorotov, I.N., Emley, N.C., Schoelkopf, R.J., Buhrmanand, R.A., Ralph, D.C.: Microwave oscillations of a nanomagnet driven by a spin polarized current. Nature (London) 425, 380 (2003)CrossRef Kieselev, S.I., Sankey, J.C., Krivorotov, I.N., Emley, N.C., Schoelkopf, R.J., Buhrmanand, R.A., Ralph, D.C.: Microwave oscillations of a nanomagnet driven by a spin polarized current. Nature (London) 425, 380 (2003)CrossRef
15.
Zurück zum Zitat Cui, Y.T., Sankey, J.C., Wang, C., Thadani, K.V., Li, Z.P., Buhrman, R.A., Ralph, D.C.: Resonant spin-transfer-driven switching of magnetic devices assisted by microwave current pulses. Phys. Rev. B 77, 214440 (2008)CrossRef Cui, Y.T., Sankey, J.C., Wang, C., Thadani, K.V., Li, Z.P., Buhrman, R.A., Ralph, D.C.: Resonant spin-transfer-driven switching of magnetic devices assisted by microwave current pulses. Phys. Rev. B 77, 214440 (2008)CrossRef
16.
Zurück zum Zitat Moriyama, T.T., Finocchio, G., Carpentieri, M., Azzerboni, B., Ralph, D.C.: Phase locking and frequency doubling in spin-transfer-torque oscillators with two coupled free layers. Phys. Rev. B 86, 060411(R) (2012)CrossRef Moriyama, T.T., Finocchio, G., Carpentieri, M., Azzerboni, B., Ralph, D.C.: Phase locking and frequency doubling in spin-transfer-torque oscillators with two coupled free layers. Phys. Rev. B 86, 060411(R) (2012)CrossRef
17.
Zurück zum Zitat Berkov, D.V.: Synchronization of spin-torque-driven nano-oscillators for point contacts on a quasi-one-dimensional nanowire: Micromagnetic simulations. Phys. Rev. B 87, 014406 (2013)CrossRef Berkov, D.V.: Synchronization of spin-torque-driven nano-oscillators for point contacts on a quasi-one-dimensional nanowire: Micromagnetic simulations. Phys. Rev. B 87, 014406 (2013)CrossRef
18.
Zurück zum Zitat Ulrichs, H., Demidov, V.E., Demokritov, S.O.: Micromagnetic study of auto-oscillation modes in spin-Hall nano-oscillators. Appl. Phys. Lett. 104, 042407 (2014)CrossRef Ulrichs, H., Demidov, V.E., Demokritov, S.O.: Micromagnetic study of auto-oscillation modes in spin-Hall nano-oscillators. Appl. Phys. Lett. 104, 042407 (2014)CrossRef
19.
Zurück zum Zitat Slonczewski, J.: Currents, torques, and polarization factors in magnetic tunnel junctions. Phys. Rev. B 71, 024411 (2005)CrossRef Slonczewski, J.: Currents, torques, and polarization factors in magnetic tunnel junctions. Phys. Rev. B 71, 024411 (2005)CrossRef
20.
Zurück zum Zitat Slonczewski, J.: Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996)CrossRef Slonczewski, J.: Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996)CrossRef
21.
Zurück zum Zitat Berger, L.: Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996)CrossRef Berger, L.: Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996)CrossRef
22.
Zurück zum Zitat Katine, J.A., Albert, F.J., Buhrman, R.A.: Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Phys. Rev. Lett. 84, 3149 (2000)CrossRef Katine, J.A., Albert, F.J., Buhrman, R.A.: Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Phys. Rev. Lett. 84, 3149 (2000)CrossRef
23.
Zurück zum Zitat Darwish, M.A.H., Kurt, H., Urazhdin, S., Fert, A., Loloee, R., Pratt, W.P., Bass, J.: Controlled normal and inverse current induced magnetization switching and magnetoresistance in magnetic nanopillars. Phys. Rev. Lett. 93, 157203 (2004)CrossRef Darwish, M.A.H., Kurt, H., Urazhdin, S., Fert, A., Loloee, R., Pratt, W.P., Bass, J.: Controlled normal and inverse current induced magnetization switching and magnetoresistance in magnetic nanopillars. Phys. Rev. Lett. 93, 157203 (2004)CrossRef
24.
Zurück zum Zitat Fert, A., Nguyen, V.D., Petroff, F., Etienne, P., Creuzet, G., Friederich, A., Chazelas, J.: Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61(21), 2472–2475 (1988)CrossRef Fert, A., Nguyen, V.D., Petroff, F., Etienne, P., Creuzet, G., Friederich, A., Chazelas, J.: Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61(21), 2472–2475 (1988)CrossRef
25.
Zurück zum Zitat Binasch, G., Grünberg, P., Saurenbach, F., Zinn, W.: Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39(7), 4828 (1989)CrossRef Binasch, G., Grünberg, P., Saurenbach, F., Zinn, W.: Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39(7), 4828 (1989)CrossRef
26.
Zurück zum Zitat Moodera, J.S.: Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74(16), 3273–3276 (1995)CrossRef Moodera, J.S.: Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74(16), 3273–3276 (1995)CrossRef
27.
Zurück zum Zitat Miyazaki, T., Tezuka, N.: Giant magnetic tunneling effect in \(\text{ Fe/Al }_{2}\text{ O }_{3}\)/Fe junction. J. Magn. Magn. Mater. 139, L231–L234 (1995)CrossRef Miyazaki, T., Tezuka, N.: Giant magnetic tunneling effect in \(\text{ Fe/Al }_{2}\text{ O }_{3}\)/Fe junction. J. Magn. Magn. Mater. 139, L231–L234 (1995)CrossRef
28.
Zurück zum Zitat Julliere, M.: Tunneling between ferromagnetic films. Phys. Lett. A. 54, 225–226 (1975) Julliere, M.: Tunneling between ferromagnetic films. Phys. Lett. A. 54, 225–226 (1975)
29.
Zurück zum Zitat Fert, A.: Nobel lecture, origin, development, and future of spintronics. Rev. Mod. Phys. 80, 30–1517 (2008)CrossRef Fert, A.: Nobel lecture, origin, development, and future of spintronics. Rev. Mod. Phys. 80, 30–1517 (2008)CrossRef
30.
Zurück zum Zitat Grünberg, P.A.: Nobel Lecture, From spin waves to giant magnetoresistance and beyond. Rev. Mod. Phys. 80, 1531–1540 (2008)CrossRef Grünberg, P.A.: Nobel Lecture, From spin waves to giant magnetoresistance and beyond. Rev. Mod. Phys. 80, 1531–1540 (2008)CrossRef
31.
Zurück zum Zitat Salimath, A., Ghosh, B.: Spin transport in bilayer graphene armchair nanoribbon: a monte carlo simulation study. IEEE Trans. Electron Devices 60(11), 3734 (2013)CrossRef Salimath, A., Ghosh, B.: Spin transport in bilayer graphene armchair nanoribbon: a monte carlo simulation study. IEEE Trans. Electron Devices 60(11), 3734 (2013)CrossRef
32.
Zurück zum Zitat Mangin, S., Henry, Y., Ravelosona, D., Katine, J.A., Fullerton, E.E.: Reducing the critical current for spin-transfer switching of perpendicularly magnetized nanomagnets. Appl. Phys. Lett. 94, 012502 (2009)CrossRef Mangin, S., Henry, Y., Ravelosona, D., Katine, J.A., Fullerton, E.E.: Reducing the critical current for spin-transfer switching of perpendicularly magnetized nanomagnets. Appl. Phys. Lett. 94, 012502 (2009)CrossRef
33.
Zurück zum Zitat Banerjee, A., Ghosh, B.: Circularly polarized spin current assisted fast resonant switching in magnetic tunnel junctions with perpendicular anisotropy. J. Comput. Electron. 12, 476–480 (2013)CrossRef Banerjee, A., Ghosh, B.: Circularly polarized spin current assisted fast resonant switching in magnetic tunnel junctions with perpendicular anisotropy. J. Comput. Electron. 12, 476–480 (2013)CrossRef
34.
Zurück zum Zitat Yokoyama, Takehito, Tserkovnyak, Yaroslav: Spin diffusion and magnetoresistance in ferromagnet/topological-insulator junctions. Phys. Rev. B 89, 035408-1 - 6 (2014) Yokoyama, Takehito, Tserkovnyak, Yaroslav: Spin diffusion and magnetoresistance in ferromagnet/topological-insulator junctions. Phys. Rev. B 89, 035408-1 - 6 (2014)
35.
Zurück zum Zitat Roy, U., Dey, R., Pramanik, T., Ghosh, B., Register, L.F., Banerjee, S.K.: Magnetization switching of a metallic nanomagnet via current-induced surface spin-polarization of an underlying topological insulator. J. Appl. Phys. 117, 163906 (2015) Roy, U., Dey, R., Pramanik, T., Ghosh, B., Register, L.F., Banerjee, S.K.: Magnetization switching of a metallic nanomagnet via current-induced surface spin-polarization of an underlying topological insulator. J. Appl. Phys. 117, 163906 (2015)
36.
Zurück zum Zitat Donahue, M.J., Porter, D.G.: OOMMF user’s guide. National Institute of Science and Technology Report No. NISTIR 6376 (1999) Donahue, M.J., Porter, D.G.: OOMMF user’s guide. National Institute of Science and Technology Report No. NISTIR 6376 (1999)
37.
Zurück zum Zitat Gilbert, T.L.: A phenomenological theory of damping in ferromagnetic materials. IEEE Trans. Magn. 40, 3443 (2004)CrossRef Gilbert, T.L.: A phenomenological theory of damping in ferromagnetic materials. IEEE Trans. Magn. 40, 3443 (2004)CrossRef
38.
Zurück zum Zitat Fischer, M.H., Vaezi, A., Manchon, A., Kim, E.A.: Large spin torque in topological insulator/ferromagnetic metal bilayers. Phys. Rev. B 93, 125303 (2016)CrossRef Fischer, M.H., Vaezi, A., Manchon, A., Kim, E.A.: Large spin torque in topological insulator/ferromagnetic metal bilayers. Phys. Rev. B 93, 125303 (2016)CrossRef
39.
Zurück zum Zitat Litvinov, V.I.: Magnetic exchange interaction in topological insulators. Phys. Rev. B 89, 235316 (2014)CrossRef Litvinov, V.I.: Magnetic exchange interaction in topological insulators. Phys. Rev. B 89, 235316 (2014)CrossRef
40.
Zurück zum Zitat Zhu, J.J., Yao, D.X., Zhang, S.C., Chang, K.: Electrically controllable surface magnetism on the surface of topological insulators. Phys. Rev. Lett. 106, 097201 (2011)CrossRef Zhu, J.J., Yao, D.X., Zhang, S.C., Chang, K.: Electrically controllable surface magnetism on the surface of topological insulators. Phys. Rev. Lett. 106, 097201 (2011)CrossRef
41.
Zurück zum Zitat Dimitrov, D.V., Gao, Z., Wang, X., Jung, W., Lou, X., Heinonen, O.G.: Dielectric breakdown of MgO magnetic tunnel junctions. Appl. Phys. Lett. 94, 123110 (2009)CrossRef Dimitrov, D.V., Gao, Z., Wang, X., Jung, W., Lou, X., Heinonen, O.G.: Dielectric breakdown of MgO magnetic tunnel junctions. Appl. Phys. Lett. 94, 123110 (2009)CrossRef
42.
Zurück zum Zitat Niranjan, M.K., Duan, C.G., Jaswaland, S.S., Tsymbal, E.Y.: Electric field effect on magnetization at the Fe/MgO,001.. interface. Appl. Phys. Lett. 96, 222504 (2010)CrossRef Niranjan, M.K., Duan, C.G., Jaswaland, S.S., Tsymbal, E.Y.: Electric field effect on magnetization at the Fe/MgO,001.. interface. Appl. Phys. Lett. 96, 222504 (2010)CrossRef
43.
Zurück zum Zitat Luo, C., Feng, Z., Fu, Y., Zhang, W., Wong, P.K.J., Kou, Z.X., Zhai, Y., Ding, H.F., Farle, M., Du, J., Zhai, H.R.: Enhancement of magnetization damping coefficient of permalloy thin films with dilute Nd dopants. Phys. Rev. B 89, 184412-1 -7 (2014) Luo, C., Feng, Z., Fu, Y., Zhang, W., Wong, P.K.J., Kou, Z.X., Zhai, Y., Ding, H.F., Farle, M., Du, J., Zhai, H.R.: Enhancement of magnetization damping coefficient of permalloy thin films with dilute Nd dopants. Phys. Rev. B 89, 184412-1 -7 (2014)
44.
Zurück zum Zitat Charilaou, M., Lenz, K., Kuch, W.: Spin-pumping-enhanced magnetic damping in ultrathin Cu(0 0 1)/Co/Cu and Cu(0 0 1)/Ni/Cu films. J. Magn. Magn. Mater. 322, 2065–2070 (2010)CrossRef Charilaou, M., Lenz, K., Kuch, W.: Spin-pumping-enhanced magnetic damping in ultrathin Cu(0 0 1)/Co/Cu and Cu(0 0 1)/Ni/Cu films. J. Magn. Magn. Mater. 322, 2065–2070 (2010)CrossRef
45.
Zurück zum Zitat Jungfleisch, M.B., An, T., Ando, K., Kajiwara, Y., Uchida, K., Vasyuchka, V.I., Chumak, A.V., Serga, A.A., Saitoh, E., Hillebrands, B.: Heat-induced damping modification in YIG/Pt hetero-structures. Appl. Phys. Lett. 102, 062417–062420 (2013)CrossRef Jungfleisch, M.B., An, T., Ando, K., Kajiwara, Y., Uchida, K., Vasyuchka, V.I., Chumak, A.V., Serga, A.A., Saitoh, E., Hillebrands, B.: Heat-induced damping modification in YIG/Pt hetero-structures. Appl. Phys. Lett. 102, 062417–062420 (2013)CrossRef
46.
Zurück zum Zitat Lee, H.H.S., Tyson, G.S.: Region-based caching: an energy-delay efficient memory architecture for embedded processors. In: CASES ’00, Proceedings of the 2000 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems, pp. 120–127, ACM, New York, USA, (2000) Lee, H.H.S., Tyson, G.S.: Region-based caching: an energy-delay efficient memory architecture for embedded processors. In: CASES ’00, Proceedings of the 2000 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems, pp. 120–127, ACM, New York, USA, (2000)
47.
Zurück zum Zitat Bennett, C.H., Landauer, R.: The fundamental physical limits of computation. Sci. Am. 253(1), 38–46 (1985)CrossRef Bennett, C.H., Landauer, R.: The fundamental physical limits of computation. Sci. Am. 253(1), 38–46 (1985)CrossRef
Metadaten
Titel
A simulation study of voltage-assisted low-energy switching of a perpendicular anisotropy ferromagnet on a topological insulator
verfasst von
Bahniman Ghosh
Rik Dey
Leonard F. Register
Sanjay K. Banerjee
Publikationsdatum
09.01.2017
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 1/2017
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-016-0951-x

Weitere Artikel der Ausgabe 1/2017

Journal of Computational Electronics 1/2017 Zur Ausgabe

Neuer Inhalt