Skip to main content
Erschienen in: Engineering with Computers 2/2024

24.05.2023 | Original Article

A time-marching procedure based on a sub-step explicit time integration scheme for non-viscous damping systems

verfasst von: Tianhao Liu, Weibin Wen, Pan Wang, Fan Feng

Erschienen in: Engineering with Computers | Ausgabe 2/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An improved time-marching procedure based on a composite explicit method is proposed for non-viscous damping systems. In this method, an improved integral approximation scheme is developed to improve the convolution solution accuracy and is applicable to any causal kernel function. The mathematical derivation and calculation procedure based on the composite explicit method are formulated for non-viscous damping systems. The adopted composite explicit method shows more desirable stability and accuracy properties than other competitive explicit methods. Numerical simulations of some representative examples demonstrate the proposed time-marching procedure is efficient for the dynamic analysis of non-viscous damping systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Woodhouse J (1998) Linear damping models for structural vibration. J Sound Vib 215(3):547–569CrossRef Woodhouse J (1998) Linear damping models for structural vibration. J Sound Vib 215(3):547–569CrossRef
2.
Zurück zum Zitat Rayleigh L, Nachtrieb NH (1957) The theory of sound Rayleigh L, Nachtrieb NH (1957) The theory of sound
3.
Zurück zum Zitat Pan Y, Wang Y (2013) Frequency-domain analysis of exponentially damped linear systems. J Sound Vib 332(7):1754–1765CrossRef Pan Y, Wang Y (2013) Frequency-domain analysis of exponentially damped linear systems. J Sound Vib 332(7):1754–1765CrossRef
4.
Zurück zum Zitat Ding Z, Li L, Hu Y (2018) A modified precise integration method for transient dynamic analysis in structural systems with multiple damping models. Mech Syst Signal Process 98:613–633CrossRef Ding Z, Li L, Hu Y (2018) A modified precise integration method for transient dynamic analysis in structural systems with multiple damping models. Mech Syst Signal Process 98:613–633CrossRef
5.
Zurück zum Zitat Palmeri A, Muscolino G (2011) A numerical method for the time-domain dynamic analysis of buildings equipped with viscoelastic dampers. Struct Control Health Monit 18(5):519–539CrossRef Palmeri A, Muscolino G (2011) A numerical method for the time-domain dynamic analysis of buildings equipped with viscoelastic dampers. Struct Control Health Monit 18(5):519–539CrossRef
6.
Zurück zum Zitat Mastroddi F, Martarelli F, Eugeni M et al (2019) Time- and frequency-domain linear viscoelastic modeling of highly damped aerospace structures. Mech Syst Signal Process 122:42–55CrossRef Mastroddi F, Martarelli F, Eugeni M et al (2019) Time- and frequency-domain linear viscoelastic modeling of highly damped aerospace structures. Mech Syst Signal Process 122:42–55CrossRef
7.
Zurück zum Zitat Park SO, Choi WH, Park GJ (2020) Dynamic response optimization of structures with viscoelastic material using the equivalent static loads method. Proc Inst Mech Eng Part D J Automob Eng 235(2–3):589–603 Park SO, Choi WH, Park GJ (2020) Dynamic response optimization of structures with viscoelastic material using the equivalent static loads method. Proc Inst Mech Eng Part D J Automob Eng 235(2–3):589–603
8.
Zurück zum Zitat Zghal S, Bouazizi ML, Bouhaddi N et al (2015) Model reduction methods for viscoelastic sandwich structures in frequency and time domains. Finite Elem Anal Des 93:12–29CrossRef Zghal S, Bouazizi ML, Bouhaddi N et al (2015) Model reduction methods for viscoelastic sandwich structures in frequency and time domains. Finite Elem Anal Des 93:12–29CrossRef
9.
Zurück zum Zitat Mouritz AP, Gellert E, Burchill P et al (2001) Review of advanced composite structures for naval ships and submarines. Compos Struct 53(1):21–42CrossRef Mouritz AP, Gellert E, Burchill P et al (2001) Review of advanced composite structures for naval ships and submarines. Compos Struct 53(1):21–42CrossRef
10.
Zurück zum Zitat Zhou XQ, Yu DY, Shao XY et al (2016) Research and applications of viscoelastic vibration damping materials: a review. Compos Struct 136:460–480CrossRef Zhou XQ, Yu DY, Shao XY et al (2016) Research and applications of viscoelastic vibration damping materials: a review. Compos Struct 136:460–480CrossRef
11.
Zurück zum Zitat Adhikari S, Wagner N (2004) Direct time-domain integration method for exponentially damped linear systems. Comput Struct 82(29):2453–2461CrossRef Adhikari S, Wagner N (2004) Direct time-domain integration method for exponentially damped linear systems. Comput Struct 82(29):2453–2461CrossRef
12.
Zurück zum Zitat Adhikari S, Wagner N (2003) Analysis of asymmetric nonviscously damped linear dynamic systems. J Appl Mech 70(6):885–893CrossRef Adhikari S, Wagner N (2003) Analysis of asymmetric nonviscously damped linear dynamic systems. J Appl Mech 70(6):885–893CrossRef
13.
Zurück zum Zitat Biot MA (1955) Variational principles in irreversible thermodynamics with application to viscoelasticity. Phys Rev 97(6):1463–1469MathSciNetCrossRef Biot MA (1955) Variational principles in irreversible thermodynamics with application to viscoelasticity. Phys Rev 97(6):1463–1469MathSciNetCrossRef
14.
Zurück zum Zitat Golla DF, Hughes PC (1985) Dynamics of viscoelastic structures—a time-domain, finite element formulation. J Appl Mech 52(4):897–906MathSciNetCrossRef Golla DF, Hughes PC (1985) Dynamics of viscoelastic structures—a time-domain, finite element formulation. J Appl Mech 52(4):897–906MathSciNetCrossRef
15.
Zurück zum Zitat Lesieutre GA, Mingori DL (1990) Finite element modeling of frequency-dependent material damping using augmenting thermodynamic fields. Aiaa J Guid Control Dyn 13(6):1040–1050CrossRef Lesieutre GA, Mingori DL (1990) Finite element modeling of frequency-dependent material damping using augmenting thermodynamic fields. Aiaa J Guid Control Dyn 13(6):1040–1050CrossRef
16.
Zurück zum Zitat Reggio A, De Angelis M, Betti R (2013) A state-space methodology to identify modal and physical parameters of non-viscously damped systems. Mech Syst Signal Process 41(1):380–395CrossRef Reggio A, De Angelis M, Betti R (2013) A state-space methodology to identify modal and physical parameters of non-viscously damped systems. Mech Syst Signal Process 41(1):380–395CrossRef
17.
Zurück zum Zitat Li L, Hu Y, Wang X (2014) Harmonic response calculation of viscoelastic structures using classical normal modes: an iterative method. Comput Struct 133:39–50CrossRef Li L, Hu Y, Wang X (2014) Harmonic response calculation of viscoelastic structures using classical normal modes: an iterative method. Comput Struct 133:39–50CrossRef
18.
Zurück zum Zitat Liu Q (2018) Stationary random response of non-viscously damped polymer matrix composite structure systems. Compos Struct 202:1–8CrossRef Liu Q (2018) Stationary random response of non-viscously damped polymer matrix composite structure systems. Compos Struct 202:1–8CrossRef
19.
Zurück zum Zitat Cortés F, Mateos M, Elejabarrieta MJ (2009) A direct integration formulation for exponentially damped structural systems. Comput Struct 87(5):391–394CrossRef Cortés F, Mateos M, Elejabarrieta MJ (2009) A direct integration formulation for exponentially damped structural systems. Comput Struct 87(5):391–394CrossRef
20.
Zurück zum Zitat Dokainish MA, Subbaraj K (1989) A survey of direct time-integration methods in computational structural dynamics—I. Explicit methods. Comput Struct 32(6):1371–1386MathSciNetCrossRef Dokainish MA, Subbaraj K (1989) A survey of direct time-integration methods in computational structural dynamics—I. Explicit methods. Comput Struct 32(6):1371–1386MathSciNetCrossRef
21.
Zurück zum Zitat Subbaraj K, Dokainish MA (1989) A survey of direct time-integration methods in computational structural dynamics—II. Implicit methods. Comput Struct 32(6):1387–1401MathSciNetCrossRef Subbaraj K, Dokainish MA (1989) A survey of direct time-integration methods in computational structural dynamics—II. Implicit methods. Comput Struct 32(6):1387–1401MathSciNetCrossRef
22.
Zurück zum Zitat Bathe KJ, Baig MMI (2005) On a composite implicit time integration procedure for nonlinear dynamics. Comput Struct 83(31):2513–2524MathSciNetCrossRef Bathe KJ, Baig MMI (2005) On a composite implicit time integration procedure for nonlinear dynamics. Comput Struct 83(31):2513–2524MathSciNetCrossRef
23.
Zurück zum Zitat Bathe KJ (1996) Finite element procedures. Prentice Hall, Upper Saddle River Bathe KJ (1996) Finite element procedures. Prentice Hall, Upper Saddle River
24.
Zurück zum Zitat Liu Q (2014) Computational method of the dynamic response for nonviscously damped structure systems. J Eng Mech 140(11):04014085CrossRef Liu Q (2014) Computational method of the dynamic response for nonviscously damped structure systems. J Eng Mech 140(11):04014085CrossRef
25.
Zurück zum Zitat Puthanpurayil AM, Carr AJ, Dhakal RP (2014) A generic time domain implementation scheme for non-classical convolution damping models. Eng Struct 71:88–98CrossRef Puthanpurayil AM, Carr AJ, Dhakal RP (2014) A generic time domain implementation scheme for non-classical convolution damping models. Eng Struct 71:88–98CrossRef
26.
Zurück zum Zitat Shen R, Qian X, Zhou J (2019) Direct integration for non-viscous structural systems and its simplification. Mech Res Commun 95:8–15CrossRef Shen R, Qian X, Zhou J (2019) Direct integration for non-viscous structural systems and its simplification. Mech Res Commun 95:8–15CrossRef
27.
Zurück zum Zitat Liu Q (2016) Explicit computational method of dynamic response for non-viscously damped structure systems. Mech Res Commun 71:48–55CrossRef Liu Q (2016) Explicit computational method of dynamic response for non-viscously damped structure systems. Mech Res Commun 71:48–55CrossRef
28.
Zurück zum Zitat Zhai W (1996) Two simple fast integration methods for large-scale dynamic problems in engineering. Int J Numer Methods Eng 39(24):4199–4214MathSciNetCrossRef Zhai W (1996) Two simple fast integration methods for large-scale dynamic problems in engineering. Int J Numer Methods Eng 39(24):4199–4214MathSciNetCrossRef
29.
Zurück zum Zitat Hulbert GM, Chung J (1996) Explicit time integration algorithms for structural dynamics with optimal numerical dissipation. Comput Methods Appl Mech Eng 137(2):175–188MathSciNetCrossRef Hulbert GM, Chung J (1996) Explicit time integration algorithms for structural dynamics with optimal numerical dissipation. Comput Methods Appl Mech Eng 137(2):175–188MathSciNetCrossRef
30.
Zurück zum Zitat Tchamwa B, Conway T, Wielgosz C (1999) An accurate explicit direct time integration method for computational structural dynamics. ASME Int Mech Eng Congr Expos 16448:77–84 Tchamwa B, Conway T, Wielgosz C (1999) An accurate explicit direct time integration method for computational structural dynamics. ASME Int Mech Eng Congr Expos 16448:77–84
31.
Zurück zum Zitat Soares D (2022) Three novel truly-explicit time-marching procedures considering adaptive dissipation control. Eng Comput 38(4):3251–3268CrossRef Soares D (2022) Three novel truly-explicit time-marching procedures considering adaptive dissipation control. Eng Comput 38(4):3251–3268CrossRef
32.
Zurück zum Zitat Wen W, Deng S, Duan S et al (2021) A high-order accurate explicit time integration method based on cubic b-spline interpolation and weighted residual technique for structural dynamics. Int J Numer Methods Eng 122(2):431–454MathSciNetCrossRef Wen W, Deng S, Duan S et al (2021) A high-order accurate explicit time integration method based on cubic b-spline interpolation and weighted residual technique for structural dynamics. Int J Numer Methods Eng 122(2):431–454MathSciNetCrossRef
33.
Zurück zum Zitat Noh G, Bathe KJ (2013) An explicit time integration scheme for the analysis of wave propagations. Comput Struct 129:178–193CrossRef Noh G, Bathe KJ (2013) An explicit time integration scheme for the analysis of wave propagations. Comput Struct 129:178–193CrossRef
34.
Zurück zum Zitat Wen W, Liu T, Duan S (2022) A novel sub-step explicit time integration method based on cubic B-spline interpolation for linear and nonlinear dynamics. Comput Math Appl 127:154–180MathSciNetCrossRef Wen W, Liu T, Duan S (2022) A novel sub-step explicit time integration method based on cubic B-spline interpolation for linear and nonlinear dynamics. Comput Math Appl 127:154–180MathSciNetCrossRef
35.
Zurück zum Zitat Shen R, Qian X, Zhou J et al (2021) A time integration method based on the weak form Galerkin method for non-viscous damping systems. Mech Syst Signal Process 151:107361CrossRef Shen R, Qian X, Zhou J et al (2021) A time integration method based on the weak form Galerkin method for non-viscous damping systems. Mech Syst Signal Process 151:107361CrossRef
36.
Zurück zum Zitat Wagner N, Adhikari S (2003) Symmetric state-space method for a class of nonviscously damped systems. AIAA J 41(5):951–956CrossRef Wagner N, Adhikari S (2003) Symmetric state-space method for a class of nonviscously damped systems. AIAA J 41(5):951–956CrossRef
Metadaten
Titel
A time-marching procedure based on a sub-step explicit time integration scheme for non-viscous damping systems
verfasst von
Tianhao Liu
Weibin Wen
Pan Wang
Fan Feng
Publikationsdatum
24.05.2023
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 2/2024
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-023-01838-3

Weitere Artikel der Ausgabe 2/2024

Engineering with Computers 2/2024 Zur Ausgabe

Neuer Inhalt