Skip to main content
Erschienen in: Engineering with Computers 2/2024

25.06.2023 | Original Article

Dynamic crack propagation in anisotropic solids under non-classical thermal shock

verfasst von: Seyed Hadi Bayat, Mohammad Bagher Nazari

Erschienen in: Engineering with Computers | Ausgabe 2/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Dynamic crack propagation in anisotropic cracked solids exposed to a generalized thermal shock within the framework of XFEM is investigated in this paper. The generalized theories of thermoelasticity, especially the Green–Naghdi (GN) model, are critically reviewed to demonstrate its features to study thermal wave transmission in anisotropic materials. An interaction integral is developed to extract stress intensity factors (SIFs) for dynamically moving cracks in anisotropic solids under thermal loading. In addition, a new set of tip enrichment functions for the temperature, based on the GN II model, is derived. Besides, the modified form of the maximum tangential stress (MTS) criterion, by using the near-tip stress field of a dynamically moving crack, is implemented to predict the crack growth direction. The accuracy and robustness of the proposed interaction integral and the modified form of the MTS criterion are investigated in several numerical examples including quasi-stationary as well as dynamic crack propagation in anisotropic structures. In the last two examples, the impact of material anisotropy, thermal shock magnitude, and the GN dissipation coefficient on the crack propagation path is examined. These examples show that for strong anisotropy, the thermal shock magnitude does not have any significant effect on the crack growth path. However, the crack may grow in an unexpected path for weak anisotropy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Straughan B (2011) Heat waves. Springer Science & Business Media, New York Straughan B (2011) Heat waves. Springer Science & Business Media, New York
2.
Zurück zum Zitat Lord H, Shulman Y (1967) A generalized dynamical theory of thermoelasticity. J Mech Phys Solids 15(5):299–309 Lord H, Shulman Y (1967) A generalized dynamical theory of thermoelasticity. J Mech Phys Solids 15(5):299–309
3.
Zurück zum Zitat Green AE, Lindsay KA (1972) Thermoelasticity. J Elast 2(1):1–7 Green AE, Lindsay KA (1972) Thermoelasticity. J Elast 2(1):1–7
4.
Zurück zum Zitat Green AE, Naghdi PM (1992) On undamped heat waves in an elastic solid. J Therm Stresses 15(2):253–264MathSciNet Green AE, Naghdi PM (1992) On undamped heat waves in an elastic solid. J Therm Stresses 15(2):253–264MathSciNet
5.
Zurück zum Zitat Green AE, Naghdi PM (1993) Thermoelasticity without energy dissipation. J Elast 31(3):189–208MathSciNet Green AE, Naghdi PM (1993) Thermoelasticity without energy dissipation. J Elast 31(3):189–208MathSciNet
6.
Zurück zum Zitat Choudhuri SK (2007) On a thermoelastic three-phase-lag model. J Therm Stresses 30(3):231–238 Choudhuri SK (2007) On a thermoelastic three-phase-lag model. J Therm Stresses 30(3):231–238
7.
Zurück zum Zitat Zamani A, Hetnarski RB, Eslami MR (2011) Second sound in a cracked layer based on Lord-Shulman theory. J Therm Stresses 34(3):181–200 Zamani A, Hetnarski RB, Eslami MR (2011) Second sound in a cracked layer based on Lord-Shulman theory. J Therm Stresses 34(3):181–200
8.
Zurück zum Zitat Esmati V, Nazari MB, Rokhi MM (2018) Implementation of XFEM for dynamic thermoelastic crack analysis under non-classic thermal shock. Theoret Appl Fract Mech 95:42–58 Esmati V, Nazari MB, Rokhi MM (2018) Implementation of XFEM for dynamic thermoelastic crack analysis under non-classic thermal shock. Theoret Appl Fract Mech 95:42–58
9.
Zurück zum Zitat Bayat SH, Nazari MB (2022) Dynamic crack propagation under generalized thermal shock based on Lord-Shulman model. Theoret Appl Fract Mech 122:103557 Bayat SH, Nazari MB (2022) Dynamic crack propagation under generalized thermal shock based on Lord-Shulman model. Theoret Appl Fract Mech 122:103557
10.
Zurück zum Zitat Zarmehri NR, Nazari MB, Rokhi MM (2018) XFEM analysis of a 2D cracked finite domain under thermal shock based on Green-Lindsay theory. Eng Fract Mech 191:286–299 Zarmehri NR, Nazari MB, Rokhi MM (2018) XFEM analysis of a 2D cracked finite domain under thermal shock based on Green-Lindsay theory. Eng Fract Mech 191:286–299
11.
Zurück zum Zitat Shahsavan M, Nazari MB, Rokhi MM (2019) Dynamic analysis of cracks under thermal shock considering thermoelasticity without energy dissipation. J Therm Stresses 42(5):607–628 Shahsavan M, Nazari MB, Rokhi MM (2019) Dynamic analysis of cracks under thermal shock considering thermoelasticity without energy dissipation. J Therm Stresses 42(5):607–628
12.
Zurück zum Zitat Nazari MB, Rokhi MM (2020) Evaluation of SIFs for cracks under thermal impact based on Green-Naghdi theory. Theoret Appl Fract Mech 107:102557 Nazari MB, Rokhi MM (2020) Evaluation of SIFs for cracks under thermal impact based on Green-Naghdi theory. Theoret Appl Fract Mech 107:102557
13.
Zurück zum Zitat Bayat SH, Nazari MB (2023) Dynamic crack propagation under thermal impact. Int J Solids Str 264:112090 Bayat SH, Nazari MB (2023) Dynamic crack propagation under thermal impact. Int J Solids Str 264:112090
14.
Zurück zum Zitat Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48(1):175–209MathSciNet Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48(1):175–209MathSciNet
15.
Zurück zum Zitat Wang Y, Zhou X, Kou M (2018) A coupled thermo-mechanical bond-based peridynamics for simulating thermal cracking in rocks. Int J Fract 211(1):13–42 Wang Y, Zhou X, Kou M (2018) A coupled thermo-mechanical bond-based peridynamics for simulating thermal cracking in rocks. Int J Fract 211(1):13–42
16.
Zurück zum Zitat Wang Y, Zhou X, Kou M (2018) Peridynamic investigation on thermal fracturing behavior of ceramic nuclear fuel pellets under power cycles. Ceram Int 44(10):11512–11542 Wang Y, Zhou X, Kou M (2018) Peridynamic investigation on thermal fracturing behavior of ceramic nuclear fuel pellets under power cycles. Ceram Int 44(10):11512–11542
17.
Zurück zum Zitat Wang Y, Zhou X, Kou M (2018) Numerical studies on thermal shock crack branching instability in brittle solids. Eng Fract Mech 204:157–184 Wang Y, Zhou X, Kou M (2018) Numerical studies on thermal shock crack branching instability in brittle solids. Eng Fract Mech 204:157–184
18.
Zurück zum Zitat Wang Y, Zhou X (2019) Peridynamic simulation of thermal failure behaviors in rocks subjected to heating from boreholes. Int J Rock Mech Min Sci 117:31–48 Wang Y, Zhou X (2019) Peridynamic simulation of thermal failure behaviors in rocks subjected to heating from boreholes. Int J Rock Mech Min Sci 117:31–48
19.
Zurück zum Zitat Wang Y, Zhou X, Zhang T (2019) Size effect of thermal shock crack patterns in ceramics: Insights from a nonlocal numerical approach. Mech Mater 137:103133 Wang Y, Zhou X, Zhang T (2019) Size effect of thermal shock crack patterns in ceramics: Insights from a nonlocal numerical approach. Mech Mater 137:103133
20.
Zurück zum Zitat Wang L, Xu J, Wang J (2018) A peridynamic framework and simulation of non-Fourier and nonlocal heat conduction. Int J Heat Mass Transf 118:1284–1292 Wang L, Xu J, Wang J (2018) A peridynamic framework and simulation of non-Fourier and nonlocal heat conduction. Int J Heat Mass Transf 118:1284–1292
21.
Zurück zum Zitat Wen Z, Hou C, Zhao M, Wan X (2023) A peridynamic model for non-Fourier heat transfer in orthotropic plate with uninsulated cracks. Appl Math Model 115:706–723MathSciNet Wen Z, Hou C, Zhao M, Wan X (2023) A peridynamic model for non-Fourier heat transfer in orthotropic plate with uninsulated cracks. Appl Math Model 115:706–723MathSciNet
22.
Zurück zum Zitat Zhou XP, Bi J (2018) Numerical simulation of thermal cracking in rocks based on general particle dynamics. J Eng Mech 144(1):04017156 Zhou XP, Bi J (2018) Numerical simulation of thermal cracking in rocks based on general particle dynamics. J Eng Mech 144(1):04017156
23.
Zurück zum Zitat Rabczuk T, Song J, Zhuang X, Anitescu C (2019) Extended finite element and meshfree methods, Academic Press Rabczuk T, Song J, Zhuang X, Anitescu C (2019) Extended finite element and meshfree methods, Academic Press
24.
Zurück zum Zitat Stroh AN (1958) Dislocations and Cracks in Anisotropic Elasticity. Philos Mag 3(30):625–646MathSciNet Stroh AN (1958) Dislocations and Cracks in Anisotropic Elasticity. Philos Mag 3(30):625–646MathSciNet
25.
Zurück zum Zitat Sih GC, Paris PC, Irwin GR (1965) On cracks in rectilinearly anisotropic bodies. Int J FractMech 1(3):189–203 Sih GC, Paris PC, Irwin GR (1965) On cracks in rectilinearly anisotropic bodies. Int J FractMech 1(3):189–203
26.
Zurück zum Zitat Carloni C, Piva A, Viola E (2003) An alternative complex variable formulation for an inclined crack in an orthotropic medium. Eng Fract Mech 70(15):2033–2058 Carloni C, Piva A, Viola E (2003) An alternative complex variable formulation for an inclined crack in an orthotropic medium. Eng Fract Mech 70(15):2033–2058
27.
Zurück zum Zitat Nobile L, Carloni C (2005) Fracture analysis for orthotropic cracked plates. Compos Str 68(3):285–293 Nobile L, Carloni C (2005) Fracture analysis for orthotropic cracked plates. Compos Str 68(3):285–293
28.
Zurück zum Zitat Saouma VE, Sikiotis ES (1986) Stress intensity factors in anisotropic bodies using singular isoparametric elements. Eng Fract Mech 25(1):115–121 Saouma VE, Sikiotis ES (1986) Stress intensity factors in anisotropic bodies using singular isoparametric elements. Eng Fract Mech 25(1):115–121
29.
Zurück zum Zitat Saouma VE, Ayari ML, Leavell DA (1987) Mixed mode crack propagation in homogeneous anisotropic solids. Eng Fract Mech 27(2):171–184 Saouma VE, Ayari ML, Leavell DA (1987) Mixed mode crack propagation in homogeneous anisotropic solids. Eng Fract Mech 27(2):171–184
30.
Zurück zum Zitat Boone TJ, Wawrzynek PA, Ingraffea AR (1987) Finite element modeling of fracture propagation in orthotropic materials. Eng Fract Mech 26(2):185–201 Boone TJ, Wawrzynek PA, Ingraffea AR (1987) Finite element modeling of fracture propagation in orthotropic materials. Eng Fract Mech 26(2):185–201
31.
Zurück zum Zitat Doblare M, Espiga F, Garcia L, Alcantud M (1990) Study of crack propagation in orthotropic materials by using the boundary element method. Eng Fract Mech 37(5):953–967 Doblare M, Espiga F, Garcia L, Alcantud M (1990) Study of crack propagation in orthotropic materials by using the boundary element method. Eng Fract Mech 37(5):953–967
32.
Zurück zum Zitat Aliabadi MH, Sollero P (1998) Crack growth analysis in homogeneous orthotropic laminates. Compos Sci Technol 58(10):1697–1703 Aliabadi MH, Sollero P (1998) Crack growth analysis in homogeneous orthotropic laminates. Compos Sci Technol 58(10):1697–1703
33.
Zurück zum Zitat García-Sánchez F, Zhang C, Sáez A (2008) A two-dimensional time-domain boundary element method for dynamic crack problems in anisotropic solids. Eng Fract Mech 75(6):1412–1430 García-Sánchez F, Zhang C, Sáez A (2008) A two-dimensional time-domain boundary element method for dynamic crack problems in anisotropic solids. Eng Fract Mech 75(6):1412–1430
34.
Zurück zum Zitat Ghorashi SS, Mohammadi S, Sabbagh-Yazdi S-R (2011) Orthotropic enriched element free Galerkin method for fracture analysis of composites. Eng Fract Mech 78(9):1906–1927 Ghorashi SS, Mohammadi S, Sabbagh-Yazdi S-R (2011) Orthotropic enriched element free Galerkin method for fracture analysis of composites. Eng Fract Mech 78(9):1906–1927
35.
Zurück zum Zitat Zhang J, Zhou G, Gong S, Wang S (2017) Transient heat transfer analysis of anisotropic material by using Element-Free Galerkin method. Int Commun Heat Mass Transfer 84:134–143 Zhang J, Zhou G, Gong S, Wang S (2017) Transient heat transfer analysis of anisotropic material by using Element-Free Galerkin method. Int Commun Heat Mass Transfer 84:134–143
36.
Zurück zum Zitat Zhang J-P, Wang S-S, Gong S-G, Zuo Q-S, Hu H-Y (2019) Thermo-mechanical coupling analysis of the orthotropic structures by using element-free Galerkin method. Eng Anal Bound Elem 101:198–213MathSciNet Zhang J-P, Wang S-S, Gong S-G, Zuo Q-S, Hu H-Y (2019) Thermo-mechanical coupling analysis of the orthotropic structures by using element-free Galerkin method. Eng Anal Bound Elem 101:198–213MathSciNet
37.
Zurück zum Zitat Asadpoure A, Mohammadi S, Vafai A (2006) Modeling crack in orthotropic media using a coupled finite element and partition of unity methods. Finite Elem Anal Des 42(13):1165–1175 Asadpoure A, Mohammadi S, Vafai A (2006) Modeling crack in orthotropic media using a coupled finite element and partition of unity methods. Finite Elem Anal Des 42(13):1165–1175
38.
Zurück zum Zitat Motamedi D, Mohammadi S (2010) Dynamic analysis of fixed cracks in composites by the extended finite element method. Eng Fract Mech 77(17):3373–3393 Motamedi D, Mohammadi S (2010) Dynamic analysis of fixed cracks in composites by the extended finite element method. Eng Fract Mech 77(17):3373–3393
39.
Zurück zum Zitat Bouhala L, Makradi A, Belouettar S (2015) Thermo-anisotropic crack propagation by XFEM. Int J Mech Sci 103:235–246 Bouhala L, Makradi A, Belouettar S (2015) Thermo-anisotropic crack propagation by XFEM. Int J Mech Sci 103:235–246
40.
Zurück zum Zitat Huynh DBP, Belytschko T (2009) The extended finite element method for fracture in composite materials. Int J Numer Meth Eng 77:214–239MathSciNet Huynh DBP, Belytschko T (2009) The extended finite element method for fracture in composite materials. Int J Numer Meth Eng 77:214–239MathSciNet
42.
Zurück zum Zitat Bayat SH, Nazari MB (2023) Dynamic crack analysis in anisotropic media under wave-like thermal loading. Eur J Mech A/Solids 99:104913MathSciNet Bayat SH, Nazari MB (2023) Dynamic crack analysis in anisotropic media under wave-like thermal loading. Eur J Mech A/Solids 99:104913MathSciNet
43.
Zurück zum Zitat Ghorashi SS, Valizadeh N, Mohammadi S, Rabczuk T (2015) T-spline based XIGA for fracture analysis of orthotropic media. Comput Str 147:138–146 Ghorashi SS, Valizadeh N, Mohammadi S, Rabczuk T (2015) T-spline based XIGA for fracture analysis of orthotropic media. Comput Str 147:138–146
44.
Zurück zum Zitat Gu J, Yu T, Lich LV, Tanaka S, Qiu L, Bui TQ (2019) Adaptive orthotropic XIGA for fracture analysis of composites. Compos B Eng 176:107259 Gu J, Yu T, Lich LV, Tanaka S, Qiu L, Bui TQ (2019) Adaptive orthotropic XIGA for fracture analysis of composites. Compos B Eng 176:107259
45.
Zurück zum Zitat Asadpoure A, Mohammadi S (2007) Developing new enrichment functions for crack simulation in orthotropic media by the extended finite element method. Int J Numer Meth Eng 69:2150–2172 Asadpoure A, Mohammadi S (2007) Developing new enrichment functions for crack simulation in orthotropic media by the extended finite element method. Int J Numer Meth Eng 69:2150–2172
46.
Zurück zum Zitat Bayat SH, Nazari MB (2021) Thermal fracture analysis in orthotropic materials by XFEM. Theoret Appl Fract Mech 112:102843 Bayat SH, Nazari MB (2021) Thermal fracture analysis in orthotropic materials by XFEM. Theoret Appl Fract Mech 112:102843
47.
Zurück zum Zitat Cahill L, Natarajan S, Bordas S, O’Higgins R, McCarthy C (2014) An experimental/numerical investigation into the main driving force for crack propagation in uni-directional fibre-reinforced composite laminae. Compos Str 107:119–130 Cahill L, Natarajan S, Bordas S, O’Higgins R, McCarthy C (2014) An experimental/numerical investigation into the main driving force for crack propagation in uni-directional fibre-reinforced composite laminae. Compos Str 107:119–130
48.
Zurück zum Zitat Nguyen MN, Nguyen NT, Truong TT, Bui TQ (2019) Thermal-mechanical crack propagation in orthotropic composite materials by the extended four-node consecutive-interpolation element. Eng Fract Mech 206:89–113 Nguyen MN, Nguyen NT, Truong TT, Bui TQ (2019) Thermal-mechanical crack propagation in orthotropic composite materials by the extended four-node consecutive-interpolation element. Eng Fract Mech 206:89–113
49.
Zurück zum Zitat Wu KC (1989) On the crack-tip fields of a dynamically propagating crack in an anisotropic elastic solid. Int J Fract 41(4):253–266 Wu KC (1989) On the crack-tip fields of a dynamically propagating crack in an anisotropic elastic solid. Int J Fract 41(4):253–266
50.
Zurück zum Zitat Wu K-C (2000) Dynamic crack growth in anisotropic material. Int J Fract 106(1):1–12 Wu K-C (2000) Dynamic crack growth in anisotropic material. Int J Fract 106(1):1–12
51.
Zurück zum Zitat Atkinson C (1965) The propagation of a brittle crack in anisotropic material. Int J Eng Sci 3(1):77–91MathSciNet Atkinson C (1965) The propagation of a brittle crack in anisotropic material. Int J Eng Sci 3(1):77–91MathSciNet
52.
Zurück zum Zitat Lee KH, Hawong J-S, Choi S-H (1996) Dynamic stress intensity factors KI, KII and dynamic crack propagation characteristics of orthotropic material. Eng Fract Mech 53:119–140 Lee KH, Hawong J-S, Choi S-H (1996) Dynamic stress intensity factors KI, KII and dynamic crack propagation characteristics of orthotropic material. Eng Fract Mech 53:119–140
53.
Zurück zum Zitat Gao X, Kang XW, Wang HG (2009) Dynamic crack tip fields and dynamic crack propagation characteristics of anisotropic material. Theoret Appl Fract Mech 51(1):73–85 Gao X, Kang XW, Wang HG (2009) Dynamic crack tip fields and dynamic crack propagation characteristics of anisotropic material. Theoret Appl Fract Mech 51(1):73–85
54.
Zurück zum Zitat Motamedi D, Mohammadi S (2009) Dynamic crack propagation analysis of orthotropic media by the extended finite element method. Int J Fract 161(1):21–39 Motamedi D, Mohammadi S (2009) Dynamic crack propagation analysis of orthotropic media by the extended finite element method. Int J Fract 161(1):21–39
55.
Zurück zum Zitat Motamedi D, Mohammadi S (2012) Fracture analysis of composites by time independent moving-crack orthotropic XFEM. Int J Mech Sci 54(1):20–37 Motamedi D, Mohammadi S (2012) Fracture analysis of composites by time independent moving-crack orthotropic XFEM. Int J Mech Sci 54(1):20–37
56.
Zurück zum Zitat Hetnarski RB, Eslami MR (2009) Thermal Stresses – Advanced Theory and Applications. Springer, Netherlands Hetnarski RB, Eslami MR (2009) Thermal Stresses – Advanced Theory and Applications. Springer, Netherlands
57.
Zurück zum Zitat Chandrasekharaiah DS (1998) Hyperbolic thermoelasticity: a review of recent literature. Appl Mech Rev 51(12):705–729 Chandrasekharaiah DS (1998) Hyperbolic thermoelasticity: a review of recent literature. Appl Mech Rev 51(12):705–729
58.
Zurück zum Zitat Yu YJ, Xue Z-N, Tian X-G (2018) A modified Green-Lindsay thermoelasticity with strain rate to eliminate the discontinuity. Meccanica 53(10):2543–2554MathSciNet Yu YJ, Xue Z-N, Tian X-G (2018) A modified Green-Lindsay thermoelasticity with strain rate to eliminate the discontinuity. Meccanica 53(10):2543–2554MathSciNet
59.
Zurück zum Zitat Green A, Naghdi PM (1991) A re-examination of the basic postulates of thermomechanics. Proc Royal Soc London Series A 432:171–194MathSciNet Green A, Naghdi PM (1991) A re-examination of the basic postulates of thermomechanics. Proc Royal Soc London Series A 432:171–194MathSciNet
60.
Zurück zum Zitat Coleman BD, Noll W (1963) The thermodynamics of elastic materials with heat conduction and viscosity. Arch Ration Mech Anal 13(1):167–178MathSciNet Coleman BD, Noll W (1963) The thermodynamics of elastic materials with heat conduction and viscosity. Arch Ration Mech Anal 13(1):167–178MathSciNet
61.
Zurück zum Zitat Quintanilla R (1999) On the spatial behavior in thermoelasticity without energy dissipation. J Therm Stresses 22:213–224MathSciNet Quintanilla R (1999) On the spatial behavior in thermoelasticity without energy dissipation. J Therm Stresses 22:213–224MathSciNet
62.
Zurück zum Zitat Kaw AK (2005) Mechanics of Composite Materials (2nd Ed.), CRC Press Kaw AK (2005) Mechanics of Composite Materials (2nd Ed.), CRC Press
63.
Zurück zum Zitat Dag S (2006) Thermal fracture analysis of orthotropic functionally graded materials using an equivalent domain integral approach. Eng Fract Mech 73:2802–2828 Dag S (2006) Thermal fracture analysis of orthotropic functionally graded materials using an equivalent domain integral approach. Eng Fract Mech 73:2802–2828
64.
Zurück zum Zitat Khoei AR (2014) Extended finite element method: theory and applications. Wiley Khoei AR (2014) Extended finite element method: theory and applications. Wiley
65.
Zurück zum Zitat Chu SJ, Hong CS (1990) Application of the Jk integral to mixed mode crack problems for anisotropic composite laminates. Eng Fract Mech 35(6):1093–1103 Chu SJ, Hong CS (1990) Application of the Jk integral to mixed mode crack problems for anisotropic composite laminates. Eng Fract Mech 35(6):1093–1103
66.
Zurück zum Zitat Kim J-H, Paulino GH (2003) The interaction integral for fracture of orthotropic functionally graded materials: evaluation of stress intensity factors. Int J Solids Str 40(15):3967–4001 Kim J-H, Paulino GH (2003) The interaction integral for fracture of orthotropic functionally graded materials: evaluation of stress intensity factors. Int J Solids Str 40(15):3967–4001
67.
Zurück zum Zitat Bayat SH, Nazari MB (2023) Dynamically propagating cracks in anisotropic plates subjected to hyperbolic thermal shock. Adv Mater Process Technol pp. 1–33 Bayat SH, Nazari MB (2023) Dynamically propagating cracks in anisotropic plates subjected to hyperbolic thermal shock. Adv Mater Process Technol pp. 1–33
68.
Zurück zum Zitat Rice JR (1968) A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech 35(2):379–386 Rice JR (1968) A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech 35(2):379–386
69.
Zurück zum Zitat Stern M, Becker EB, Dunham RS (1976) A contour integral computation of mixed-mode stress intensity factors. Int J Fract 12(3):359–368 Stern M, Becker EB, Dunham RS (1976) A contour integral computation of mixed-mode stress intensity factors. Int J Fract 12(3):359–368
70.
Zurück zum Zitat Yau JF, Wang SS, Corten HT (1980) A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity. J Appl Mech 47(2):335–341 Yau JF, Wang SS, Corten HT (1980) A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity. J Appl Mech 47(2):335–341
71.
Zurück zum Zitat Wang S, Yau J, Corten HT (1980) A mixed-mode crack analysis of rectilinear anisotropic solids using conservation laws of elasticity. Int J Fract 16:247–259MathSciNet Wang S, Yau J, Corten HT (1980) A mixed-mode crack analysis of rectilinear anisotropic solids using conservation laws of elasticity. Int J Fract 16:247–259MathSciNet
72.
Zurück zum Zitat Li FZ, Shih CF, Needleman A (1985) A comparison of methods for calculating energy release rates. Eng Fract Mech 21(2):405–421 Li FZ, Shih CF, Needleman A (1985) A comparison of methods for calculating energy release rates. Eng Fract Mech 21(2):405–421
73.
Zurück zum Zitat Dolbow JE, Gosz M (2002) On the computation of mixed-mode stress intensity factors in functionally graded materials. Int J Solids Struct 39(9):2557–2574 Dolbow JE, Gosz M (2002) On the computation of mixed-mode stress intensity factors in functionally graded materials. Int J Solids Struct 39(9):2557–2574
74.
Zurück zum Zitat Duflot M (2008) The extended finite element method in thermoelastic fracture mechanics. Int J Numer Meth Eng 74(5):827–847MathSciNet Duflot M (2008) The extended finite element method in thermoelastic fracture mechanics. Int J Numer Meth Eng 74(5):827–847MathSciNet
75.
Zurück zum Zitat Mohtarami E, Baghbanan A, Hashemolhosseini H, Bordas SP (2019) Fracture mechanism simulation of inhomogeneous anisotropic rocks by extended finite element method. Theoret Appl Fract Mech 104:102359 Mohtarami E, Baghbanan A, Hashemolhosseini H, Bordas SP (2019) Fracture mechanism simulation of inhomogeneous anisotropic rocks by extended finite element method. Theoret Appl Fract Mech 104:102359
76.
Zurück zum Zitat Krysl P, Belytschko T (1999) The Element Free Galerkin method for dynamic propagation of arbitrary 3-D cracks. Int J Numer Meth Eng 44(6):767–800 Krysl P, Belytschko T (1999) The Element Free Galerkin method for dynamic propagation of arbitrary 3-D cracks. Int J Numer Meth Eng 44(6):767–800
77.
Zurück zum Zitat Song SH, Paulino GH (2006) Dynamic stress intensity factors for homogeneous and smoothly heterogeneous materials using the interaction integral method. Int J Solids Str 43(16):4830–4866 Song SH, Paulino GH (2006) Dynamic stress intensity factors for homogeneous and smoothly heterogeneous materials using the interaction integral method. Int J Solids Str 43(16):4830–4866
78.
Zurück zum Zitat Réthoré J, Gravouil A, Combescure A (2005) An energy-conserving scheme for dynamic crack growth using the eXtended finite element method. Int J Numer Meth Eng 63(5):631–659MathSciNet Réthoré J, Gravouil A, Combescure A (2005) An energy-conserving scheme for dynamic crack growth using the eXtended finite element method. Int J Numer Meth Eng 63(5):631–659MathSciNet
79.
Zurück zum Zitat Anderson TL (2017) Fracture mechanics: fundamentals and applications, CRC press Anderson TL (2017) Fracture mechanics: fundamentals and applications, CRC press
80.
Zurück zum Zitat Dongye C, Ting TCT (1989) Explicit expressions of Barnett-Lothe tensors and their associated tensors for orthotropic materials. Q Appl Math 47(4):723–234MathSciNet Dongye C, Ting TCT (1989) Explicit expressions of Barnett-Lothe tensors and their associated tensors for orthotropic materials. Q Appl Math 47(4):723–234MathSciNet
81.
Zurück zum Zitat Bargmann S, Steinmann P (2006) Theoretical and computational aspects of non-classical thermoelasticity. Comput Methods Appl Mech Eng 196(1–3):516–527MathSciNet Bargmann S, Steinmann P (2006) Theoretical and computational aspects of non-classical thermoelasticity. Comput Methods Appl Mech Eng 196(1–3):516–527MathSciNet
82.
Zurück zum Zitat Chen T-C, Weng C-I (1988) Generalized coupled transient thermoelastic plane problems by laplace transform/finite element method. J Appl Mech 55(2):377–382 Chen T-C, Weng C-I (1988) Generalized coupled transient thermoelastic plane problems by laplace transform/finite element method. J Appl Mech 55(2):377–382
83.
Zurück zum Zitat Tamma KK, Railkar SB (1990) Evaluation of thermally induced non-fourier stress wave disturbances via tailored hybrid transfinite element formulations. Comput Str 34(1):5–16 Tamma KK, Railkar SB (1990) Evaluation of thermally induced non-fourier stress wave disturbances via tailored hybrid transfinite element formulations. Comput Str 34(1):5–16
84.
Zurück zum Zitat Tehrani PH, Eslami MR (2000) Boundary element analysis of coupled thermoelasticity with relaxation times in finite domain. AIAA J 38(3):534–541 Tehrani PH, Eslami MR (2000) Boundary element analysis of coupled thermoelasticity with relaxation times in finite domain. AIAA J 38(3):534–541
85.
Zurück zum Zitat Hosseini SM, Sladek J, Sladek V (2014) Two dimensional transient analysis of coupled non-Fick diffusion–thermoelasticity based on Green-Naghdi theory using the meshless local Petrov-Galerkin (MLPG) method. Int J Mech Sci 82:74–80 Hosseini SM, Sladek J, Sladek V (2014) Two dimensional transient analysis of coupled non-Fick diffusion–thermoelasticity based on Green-Naghdi theory using the meshless local Petrov-Galerkin (MLPG) method. Int J Mech Sci 82:74–80
86.
Zurück zum Zitat Tamma KK, Namburu RR (1992) An effective finite element modeling/analysis approach for dynamic thermoelasticity due to second sound effects. Comput Mech 9(2):73–84 Tamma KK, Namburu RR (1992) An effective finite element modeling/analysis approach for dynamic thermoelasticity due to second sound effects. Comput Mech 9(2):73–84
87.
Zurück zum Zitat Li C, Guo H (2017) Time-domain finite element analysis to nonlinear transient responses of generalized diffusion-thermoelasticity with variable thermal conductivity and diffusivity. Int J Mech Sci 131–132:234–244 Li C, Guo H (2017) Time-domain finite element analysis to nonlinear transient responses of generalized diffusion-thermoelasticity with variable thermal conductivity and diffusivity. Int J Mech Sci 131–132:234–244
88.
Zurück zum Zitat Kiani Y, Eslami MR (2017) A GDQ approach to thermally nonlinear generalized thermoelasticity of disks. J Therm Stresses 40:121–133 Kiani Y, Eslami MR (2017) A GDQ approach to thermally nonlinear generalized thermoelasticity of disks. J Therm Stresses 40:121–133
89.
Zurück zum Zitat Newmark NM (1959) A method of computation for structural dynamics. J Eng Mech Div 85(3):67–94 Newmark NM (1959) A method of computation for structural dynamics. J Eng Mech Div 85(3):67–94
90.
Zurück zum Zitat Wen L, Tian R (2016) Improved XFEM: Accurate and robust dynamic crack growth simulation. Comput Methods Appl Mech Eng 308(3):256–285MathSciNet Wen L, Tian R (2016) Improved XFEM: Accurate and robust dynamic crack growth simulation. Comput Methods Appl Mech Eng 308(3):256–285MathSciNet
91.
Zurück zum Zitat Chopra AK (2017) Dynamics of Structures. University of California at Berkeley, Pearson Chopra AK (2017) Dynamics of Structures. University of California at Berkeley, Pearson
92.
Zurück zum Zitat Erdogan F, Sih GC (1963) On the crack extension in plates under plane loading and transverse shear. J Basic Eng 85(4):519–525 Erdogan F, Sih GC (1963) On the crack extension in plates under plane loading and transverse shear. J Basic Eng 85(4):519–525
93.
Zurück zum Zitat Nejati M, Bahrami B, Ayatollahi MR, Driesner T (2021) On the anisotropy of shear fracture toughness in rocks. Theoret Appl Fract Mech 113:102946 Nejati M, Bahrami B, Ayatollahi MR, Driesner T (2021) On the anisotropy of shear fracture toughness in rocks. Theoret Appl Fract Mech 113:102946
94.
Zurück zum Zitat ‬Gdoutos E (2005) Fracture mechanics: An Introduction, Springer ‬Gdoutos E (2005) Fracture mechanics: An Introduction, Springer
95.
Zurück zum Zitat Hirshikesh Natarajan S, Annabattula RK (2019) "Modeling crack propagation in variable stiffness composite laminates using the phase field method. Comp Str 209:424–433 Hirshikesh Natarajan S, Annabattula RK (2019) "Modeling crack propagation in variable stiffness composite laminates using the phase field method. Comp Str 209:424–433
96.
Zurück zum Zitat Kalthoff JF (1985) On the measurement of dynamic fracture toughnesses — a review of recent work. Int J Fract 27(3):277–298 Kalthoff JF (1985) On the measurement of dynamic fracture toughnesses — a review of recent work. Int J Fract 27(3):277–298
97.
Zurück zum Zitat Belytschko T, Chen H, Xu J, Zi G (2003) Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int J Numer Meth Eng 58(12):1873–1905 Belytschko T, Chen H, Xu J, Zi G (2003) Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int J Numer Meth Eng 58(12):1873–1905
98.
Zurück zum Zitat Freund L (1990) Dynamic Fracture Mechanics. Cambridge University Press, Cambridge Freund L (1990) Dynamic Fracture Mechanics. Cambridge University Press, Cambridge
99.
Zurück zum Zitat Menouillard T, Song J-H, Duan Q (2010) Time dependent crack tip enrichment for dynamic crack propagation. Int J Fract 162(1):33–49 Menouillard T, Song J-H, Duan Q (2010) Time dependent crack tip enrichment for dynamic crack propagation. Int J Fract 162(1):33–49
Metadaten
Titel
Dynamic crack propagation in anisotropic solids under non-classical thermal shock
verfasst von
Seyed Hadi Bayat
Mohammad Bagher Nazari
Publikationsdatum
25.06.2023
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 2/2024
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-023-01848-1

Weitere Artikel der Ausgabe 2/2024

Engineering with Computers 2/2024 Zur Ausgabe

Neuer Inhalt