Skip to main content
Erschienen in: Engineering with Computers 2/2024

17.09.2023 | Original Article

Computational modeling of flow-mediated angiogenesis: Stokes–Darcy flow on a growing vessel network

verfasst von: Adithya Srinivasan, Adrian Moure, Hector Gomez

Erschienen in: Engineering with Computers | Ausgabe 2/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Tumor angiogenesis, the growth of new blood vessels towards a tumor, plays a critical role in cancer progression. Tumors release tumor angiogenic factors (TAF) that trigger angiogenesis upon reaching a pre-existing capillary. Although not frequently studied, the convective transport of TAF plays a key role in determining the resulting shape of the vasculature. In this work, we propose a computational method that couples an angiogenesis model with Stokes–Darcy flow to simulate the impact of flow on angiogenesis. We use the phase-field method to implicitly describe the vasculature and capture the temporally evolving interface between the intra- and extravascular flow. The implicit description of the interface eliminates the need to re-mesh the vasculature which would otherwise be required due to the movement of the interface. We propose a finite-element discretization to solve the coupled problem and illustrate the accuracy of the algorithm by comparing a numerical solution with a manufactured test case in a simplified scenario. The numerical simulations demonstrate the impact of the convective transport of TAF on the shape of the vasculature. It predicts that the vasculature network grows prominently against the flow direction and that the growth of vasculature is enhanced with increasing interstitial flow magnitude.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186 Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186
2.
Zurück zum Zitat Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249–257 Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249–257
3.
Zurück zum Zitat Abe Y, Watanabe M, Chung S, Kamm RD, Tanishita K, Sudo R (2019) Balance of interstitial flow magnitude and vascular endothelial growth factor concentration modulates three-dimensional microvascular network formation. APL Bioeng 3(3):036102 Abe Y, Watanabe M, Chung S, Kamm RD, Tanishita K, Sudo R (2019) Balance of interstitial flow magnitude and vascular endothelial growth factor concentration modulates three-dimensional microvascular network formation. APL Bioeng 3(3):036102
4.
Zurück zum Zitat Shirure VS, Lezia A, Tao A, Alonzo LF, George SC (2017) Low levels of physiological interstitial flow eliminate morphogen gradients and guide angiogenesis. Angiogenesis 20:493–504 Shirure VS, Lezia A, Tao A, Alonzo LF, George SC (2017) Low levels of physiological interstitial flow eliminate morphogen gradients and guide angiogenesis. Angiogenesis 20:493–504
5.
Zurück zum Zitat Kim S, Chung M, Ahn J, Lee S, Jeon NL (2016) Interstitial flow regulates the angiogenic response and phenotype of endothelial cells in a 3D culture model. Lab Chip 16(21):4189–4199 Kim S, Chung M, Ahn J, Lee S, Jeon NL (2016) Interstitial flow regulates the angiogenic response and phenotype of endothelial cells in a 3D culture model. Lab Chip 16(21):4189–4199
6.
Zurück zum Zitat Galie PA, Nguyen D-HT, Choi CK, Cohen DM, Janmey PA, Chen CS (2014) Fluid shear stress threshold regulates angiogenic sprouting. Proc Natl Acad Sci 111(22):7968–7973 Galie PA, Nguyen D-HT, Choi CK, Cohen DM, Janmey PA, Chen CS (2014) Fluid shear stress threshold regulates angiogenic sprouting. Proc Natl Acad Sci 111(22):7968–7973
7.
Zurück zum Zitat Akbari E, Spychalski GB, Rangharajan KK, Prakash S, Song JW (2019) Competing fluid forces control endothelial sprouting in a 3-D microfluidic vessel bifurcation model. Micromachines 10(7):451 Akbari E, Spychalski GB, Rangharajan KK, Prakash S, Song JW (2019) Competing fluid forces control endothelial sprouting in a 3-D microfluidic vessel bifurcation model. Micromachines 10(7):451
8.
Zurück zum Zitat Ghaffari S, Leask RL, Jones EA (2015) Flow dynamics control the location of sprouting and direct elongation during developmental angiogenesis. Development 142(23):4151–4157 Ghaffari S, Leask RL, Jones EA (2015) Flow dynamics control the location of sprouting and direct elongation during developmental angiogenesis. Development 142(23):4151–4157
9.
Zurück zum Zitat Udan RS, Vadakkan TJ, Dickinson ME (2013) Dynamic responses of endothelial cells to changes in blood flow during vascular remodeling of the mouse yolk sac. Development 140(19):4041–4050 Udan RS, Vadakkan TJ, Dickinson ME (2013) Dynamic responses of endothelial cells to changes in blood flow during vascular remodeling of the mouse yolk sac. Development 140(19):4041–4050
10.
Zurück zum Zitat Song JW, Munn LL (2011) Fluid forces control endothelial sprouting. Proc Natl Acad Sci 108(37):15342–15347 Song JW, Munn LL (2011) Fluid forces control endothelial sprouting. Proc Natl Acad Sci 108(37):15342–15347
11.
Zurück zum Zitat Moure A, Vilanova G, Gomez H (2022) Inverting angiogenesis with interstitial flow and chemokine matrix-binding affinity. Sci Rep 12(1):4237 Moure A, Vilanova G, Gomez H (2022) Inverting angiogenesis with interstitial flow and chemokine matrix-binding affinity. Sci Rep 12(1):4237
12.
Zurück zum Zitat McDougall SR, Anderson AR, Chaplain MA (2006) Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J Theor Biol 241(3):564–589MathSciNet McDougall SR, Anderson AR, Chaplain MA (2006) Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J Theor Biol 241(3):564–589MathSciNet
13.
Zurück zum Zitat Vilanova G, Burés M, Colominas I, Gomez H (2018) Computational modelling suggests complex interactions between interstitial flow and tumour angiogenesis. J R Soc Interface 15(146):20180415 Vilanova G, Burés M, Colominas I, Gomez H (2018) Computational modelling suggests complex interactions between interstitial flow and tumour angiogenesis. J R Soc Interface 15(146):20180415
14.
Zurück zum Zitat Pradelli F, Minervini G, Tosatto SC (2022) Mocafe: a comprehensive python library for simulating cancer development with phase field models. Bioinformatics 38(18):4440–4441 Pradelli F, Minervini G, Tosatto SC (2022) Mocafe: a comprehensive python library for simulating cancer development with phase field models. Bioinformatics 38(18):4440–4441
15.
Zurück zum Zitat Travasso R, Corvera E, Castro Ponce M, Rodríguez-Manzaneque J, Rodrguez-Manzaneque J, Hernández-Machado A (2011) Tumor angiogenesis and vascular patterning: a mathematical model. PLoS ONE 6:19989 Travasso R, Corvera E, Castro Ponce M, Rodríguez-Manzaneque J, Rodrguez-Manzaneque J, Hernández-Machado A (2011) Tumor angiogenesis and vascular patterning: a mathematical model. PLoS ONE 6:19989
16.
Zurück zum Zitat Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid-structure interaction: methods and applications. John Wiley and Sons, New Jersey Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid-structure interaction: methods and applications. John Wiley and Sons, New Jersey
17.
Zurück zum Zitat Discacciati M, Quarteroni A et al (2009) Navier-Stokes/Darcy coupling: modeling, analysis, and numerical approximation. Rev Mat Complut 22(2):315–426MathSciNet Discacciati M, Quarteroni A et al (2009) Navier-Stokes/Darcy coupling: modeling, analysis, and numerical approximation. Rev Mat Complut 22(2):315–426MathSciNet
18.
Zurück zum Zitat Gomez H, Zee KG (2018) Computational phase-field modeling. Encyclopedia of computational mechanics, 2nd edn. Wiley, New Jersey, pp 1–35 Gomez H, Zee KG (2018) Computational phase-field modeling. Encyclopedia of computational mechanics, 2nd edn. Wiley, New Jersey, pp 1–35
19.
Zurück zum Zitat Gomez H, Bures M, Moure A (2019) A review on computational modelling of phase-transition problems. Phil Trans R Soc A 377(2143):20180203MathSciNet Gomez H, Bures M, Moure A (2019) A review on computational modelling of phase-transition problems. Phil Trans R Soc A 377(2143):20180203MathSciNet
20.
Zurück zum Zitat Bures M, Moure A, Gomez H (2021) Computational treatment of interface dynamics via phase-field modeling. Numerical simulation in physics and engineering: trends and applications: lecture notes of the XVIII ‘Jacques-Louis Lions’ Spanish-French school. Springer, Cham, pp 81–118 Bures M, Moure A, Gomez H (2021) Computational treatment of interface dynamics via phase-field modeling. Numerical simulation in physics and engineering: trends and applications: lecture notes of the XVIII ‘Jacques-Louis Lions’ Spanish-French school. Springer, Cham, pp 81–118
21.
Zurück zum Zitat Wells GN, Kuhl E, Garikipati K (2006) A discontinuous Galerkin method for the Cahn-Hilliard equation. J Comput Phys 218(2):860–877MathSciNet Wells GN, Kuhl E, Garikipati K (2006) A discontinuous Galerkin method for the Cahn-Hilliard equation. J Comput Phys 218(2):860–877MathSciNet
22.
Zurück zum Zitat Wu H (2021) A review on the cahn-hilliard equation: classical results and recent advances in dynamic boundary conditions. arXiv preprint arXiv:2112.13812 Wu H (2021) A review on the cahn-hilliard equation: classical results and recent advances in dynamic boundary conditions. arXiv preprint arXiv:​2112.​13812
23.
Zurück zum Zitat Hellström M, Phng L-K, Hofmann JJ, Wallgard E, Coultas L, Lindblom P, Alva J, Nilsson A-K, Karlsson L, Gaiano N et al (2007) Dll4 signalling through notch1 regulates formation of tip cells during angiogenesis. Nature 445(7129):776–780 Hellström M, Phng L-K, Hofmann JJ, Wallgard E, Coultas L, Lindblom P, Alva J, Nilsson A-K, Karlsson L, Gaiano N et al (2007) Dll4 signalling through notch1 regulates formation of tip cells during angiogenesis. Nature 445(7129):776–780
24.
Zurück zum Zitat Vilanova G, Colominas I, Gomez H (2013) Capillary networks in tumor angiogenesis: From discrete endothelial cells to phase-field averaged descriptions via isogeometric analysis. Int J Numer Methods Biomed Eng 29(10):1015–1037MathSciNet Vilanova G, Colominas I, Gomez H (2013) Capillary networks in tumor angiogenesis: From discrete endothelial cells to phase-field averaged descriptions via isogeometric analysis. Int J Numer Methods Biomed Eng 29(10):1015–1037MathSciNet
25.
Zurück zum Zitat Vilanova G, Colominas I, Gomez H (2017) Computational modeling of tumor-induced angiogenesis. Arch Comput Methods Eng 24(4):1071–1102MathSciNet Vilanova G, Colominas I, Gomez H (2017) Computational modeling of tumor-induced angiogenesis. Arch Comput Methods Eng 24(4):1071–1102MathSciNet
26.
Zurück zum Zitat Evans LC (2022) Partial differential equations, vol 19. American Mathematical Society, Providence Evans LC (2022) Partial differential equations, vol 19. American Mathematical Society, Providence
27.
Zurück zum Zitat Beavers GS, Joseph DD (1967) Boundary conditions at a naturally permeable wall. J Fluid Mech 30(1):197–207 Beavers GS, Joseph DD (1967) Boundary conditions at a naturally permeable wall. J Fluid Mech 30(1):197–207
28.
Zurück zum Zitat Layton WJ, Schieweck F, Yotov I (2002) Coupling fluid flow with porous media flow. SIAM J Numer Anal 40(6):2195–2218MathSciNet Layton WJ, Schieweck F, Yotov I (2002) Coupling fluid flow with porous media flow. SIAM J Numer Anal 40(6):2195–2218MathSciNet
29.
Zurück zum Zitat Payne LE, Straughan B (1998) Analysis of the boundary condition at the interface between a viscous fluid and a porous medium and related modelling questions. J Math Pures et Appl 77(4):317–354MathSciNet Payne LE, Straughan B (1998) Analysis of the boundary condition at the interface between a viscous fluid and a porous medium and related modelling questions. J Math Pures et Appl 77(4):317–354MathSciNet
30.
Zurück zum Zitat Nield D (2009) The beavers-joseph boundary condition and related matters: a historical and critical note. Transp Porous Media 78:537–540MathSciNet Nield D (2009) The beavers-joseph boundary condition and related matters: a historical and critical note. Transp Porous Media 78:537–540MathSciNet
31.
Zurück zum Zitat Bukač M, Muha B (2021) Analysis of the diffuse interface method for the stokes-darcy coupled problem. arXiv preprint arXiv:2112.12831 Bukač M, Muha B (2021) Analysis of the diffuse interface method for the stokes-darcy coupled problem. arXiv preprint arXiv:​2112.​12831
32.
Zurück zum Zitat Fried E (2006) On the relationship between supplemental balances in two theories for pure interface motion. SIAM J Appl Math 66(4):1130–1149MathSciNet Fried E (2006) On the relationship between supplemental balances in two theories for pure interface motion. SIAM J Appl Math 66(4):1130–1149MathSciNet
33.
Zurück zum Zitat Donea J, Huerta A (2003) Finite element methods for flow problems. John Wiley and Sons, New Jersey Donea J, Huerta A (2003) Finite element methods for flow problems. John Wiley and Sons, New Jersey
34.
Zurück zum Zitat Tezduyar TE (1991) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1–44MathSciNet Tezduyar TE (1991) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1–44MathSciNet
35.
Zurück zum Zitat Hughes TJ, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, nurbs, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195MathSciNet Hughes TJ, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, nurbs, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195MathSciNet
36.
Zurück zum Zitat Gómez H, Calo VM, Bazilevs Y, Hughes TJ (2008) Isogeometric analysis of the Cahn-Hilliard phase-field model. Comput Methods Appl Mech Eng 197(49–50):4333–4352MathSciNet Gómez H, Calo VM, Bazilevs Y, Hughes TJ (2008) Isogeometric analysis of the Cahn-Hilliard phase-field model. Comput Methods Appl Mech Eng 197(49–50):4333–4352MathSciNet
37.
Zurück zum Zitat Chung J, Hulbert G (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha\) method. J Appl Mech 60(2):371MathSciNet Chung J, Hulbert G (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha\) method. J Appl Mech 60(2):371MathSciNet
38.
Zurück zum Zitat Jansen KE, Whiting CH, Hulbert GM (2000) A generalized-\(\alpha\) method for integrating the filtered Navier-Stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng 190(3–4):305–319MathSciNet Jansen KE, Whiting CH, Hulbert GM (2000) A generalized-\(\alpha\) method for integrating the filtered Navier-Stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng 190(3–4):305–319MathSciNet
39.
Zurück zum Zitat Saad Y, Schultz MH (1986) Gmres: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7(3):856–869MathSciNet Saad Y, Schultz MH (1986) Gmres: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7(3):856–869MathSciNet
40.
Zurück zum Zitat Amestoy PR, Duff IS, L’Excellent J-Y, Koster J (2001) A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J Matrix Anal Appl 23(1):15–41MathSciNet Amestoy PR, Duff IS, L’Excellent J-Y, Koster J (2001) A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J Matrix Anal Appl 23(1):15–41MathSciNet
41.
Zurück zum Zitat Logg A, Wells GN (2010) Dolfin: automated finite element computing. ACM Trans Math Softw (TOMS) 37(2):1–28MathSciNet Logg A, Wells GN (2010) Dolfin: automated finite element computing. ACM Trans Math Softw (TOMS) 37(2):1–28MathSciNet
42.
Zurück zum Zitat Logg A, Mardal K-A, Wells G (2012) Automated solution of differential equations by the finite element method: the FEniCS book, vol 84. Springer, Cham Logg A, Mardal K-A, Wells G (2012) Automated solution of differential equations by the finite element method: the FEniCS book, vol 84. Springer, Cham
43.
Zurück zum Zitat Kirby RC (2004) Algorithm 839: fiat, a new paradigm for computing finite element basis functions. ACM Trans Mathl Softw (TOMS) 30(4):502–516MathSciNet Kirby RC (2004) Algorithm 839: fiat, a new paradigm for computing finite element basis functions. ACM Trans Mathl Softw (TOMS) 30(4):502–516MathSciNet
44.
Zurück zum Zitat Kirby RC, Logg A (2006) A compiler for variational forms. ACM Trans Math Softw (TOMS) 32(3):417–444MathSciNet Kirby RC, Logg A (2006) A compiler for variational forms. ACM Trans Math Softw (TOMS) 32(3):417–444MathSciNet
45.
Zurück zum Zitat Alnæs MS, Logg A, Ølgaard KB, Rognes ME, Wells GN (2014) Unified form language: a domain-specific language for weak formulations of partial differential equations. ACM Trans Math Softw (TOMS) 40(2):1–37MathSciNet Alnæs MS, Logg A, Ølgaard KB, Rognes ME, Wells GN (2014) Unified form language: a domain-specific language for weak formulations of partial differential equations. ACM Trans Math Softw (TOMS) 40(2):1–37MathSciNet
46.
Zurück zum Zitat Alnæs M, Blechta J, Hake J, Johansson A, Kehlet B, Logg A, Richardson C, Ring J, Rognes ME, Wells GN (2015) The fenics project version 1.5. Arch Numer Softw 3(100) Alnæs M, Blechta J, Hake J, Johansson A, Kehlet B, Logg A, Richardson C, Ring J, Rognes ME, Wells GN (2015) The fenics project version 1.5. Arch Numer Softw 3(100)
47.
Zurück zum Zitat Swartz MA, Fleury ME (2007) Interstitial flow and its effects in soft tissues. Annu Rev Biomed Eng 9:229–256 Swartz MA, Fleury ME (2007) Interstitial flow and its effects in soft tissues. Annu Rev Biomed Eng 9:229–256
48.
Zurück zum Zitat Shiu Y-T, Weiss JA, Hoying JB, Iwamoto MN, Joung IS, Quam CT (2005) The role of mechanical stresses in angiogenesis. Crit Rev Biomed Eng 33(5):431–510 Shiu Y-T, Weiss JA, Hoying JB, Iwamoto MN, Joung IS, Quam CT (2005) The role of mechanical stresses in angiogenesis. Crit Rev Biomed Eng 33(5):431–510
49.
Zurück zum Zitat Schugart RC, Friedman A, Zhao R, Sen CK (2008) Wound angiogenesis as a function of tissue oxygen tension: a mathematical model. Proc Natl Acad Sci 105(7):2628–2633 Schugart RC, Friedman A, Zhao R, Sen CK (2008) Wound angiogenesis as a function of tissue oxygen tension: a mathematical model. Proc Natl Acad Sci 105(7):2628–2633
50.
Zurück zum Zitat Tong S, Yuan F (2008) Dose response of angiogenesis to basic fibroblast growth factor in rat corneal pocket assay: I. Experimental characterizations. Microvasc Res 75(1):10–15 Tong S, Yuan F (2008) Dose response of angiogenesis to basic fibroblast growth factor in rat corneal pocket assay: I. Experimental characterizations. Microvasc Res 75(1):10–15
51.
Zurück zum Zitat Tong S, Yuan F (2008) Dose response of angiogenesis to basic fibroblast growth factor in rat corneal pocket assay: II. Numerical simulations. Microvasc Res 75(1):16–24 Tong S, Yuan F (2008) Dose response of angiogenesis to basic fibroblast growth factor in rat corneal pocket assay: II. Numerical simulations. Microvasc Res 75(1):16–24
52.
Zurück zum Zitat Kleinheinz J, Jung S, Wermker K, Fischer C, Joos U (2010) Release kinetics of vegf165 from a collagen matrix and structural matrix changes in a circulation model. Head Face Med 6(1):1–7 Kleinheinz J, Jung S, Wermker K, Fischer C, Joos U (2010) Release kinetics of vegf165 from a collagen matrix and structural matrix changes in a circulation model. Head Face Med 6(1):1–7
53.
Zurück zum Zitat Xu J, Vilanova G, Gomez H (2016) A mathematical model coupling tumor growth and angiogenesis. PLoS ONE 11(2):0149422 Xu J, Vilanova G, Gomez H (2016) A mathematical model coupling tumor growth and angiogenesis. PLoS ONE 11(2):0149422
54.
Zurück zum Zitat Xu J, Vilanova G, Gomez H (2017) Full-scale, three-dimensional simulation of early-stage tumor growth: the onset of malignancy. Comput Methods Appl Mech Eng 314:126–146MathSciNet Xu J, Vilanova G, Gomez H (2017) Full-scale, three-dimensional simulation of early-stage tumor growth: the onset of malignancy. Comput Methods Appl Mech Eng 314:126–146MathSciNet
55.
Zurück zum Zitat Gebb S, Stevens T (2004) On lung endothelial cell heterogeneity. Microvasc Res 68(1):1–12 Gebb S, Stevens T (2004) On lung endothelial cell heterogeneity. Microvasc Res 68(1):1–12
56.
Zurück zum Zitat Stoter SK, Müller P, Cicalese L, Tuveri M, Schillinger D, Hughes TJ (2017) A diffuse interface method for the Navier-Stokes/Darcy equations: Perfusion profile for a patient-specific human liver based on MRI scans. Comput Methods Appl Mech Eng 321:70–102MathSciNet Stoter SK, Müller P, Cicalese L, Tuveri M, Schillinger D, Hughes TJ (2017) A diffuse interface method for the Navier-Stokes/Darcy equations: Perfusion profile for a patient-specific human liver based on MRI scans. Comput Methods Appl Mech Eng 321:70–102MathSciNet
57.
Zurück zum Zitat Caiazzo A, John V, Wilbrandt U (2014) On classical iterative subdomain methods for the Stokes-Darcy problem. Comput Geosci 18:711–728MathSciNet Caiazzo A, John V, Wilbrandt U (2014) On classical iterative subdomain methods for the Stokes-Darcy problem. Comput Geosci 18:711–728MathSciNet
58.
Zurück zum Zitat Flores J, Romero AM, Travasso RD, Poire EC (2013) Flow and anastomosis in vascular networks. J Theor Biol 317:257–270MathSciNet Flores J, Romero AM, Travasso RD, Poire EC (2013) Flow and anastomosis in vascular networks. J Theor Biol 317:257–270MathSciNet
59.
Zurück zum Zitat Moreira-Soares M, Coimbra R, Rebelo L, Carvalho J, DM Travasso R (2018) Angiogenic factors produced by hypoxic cells are a leading driver of anastomoses in sprouting angiogenesis-a computational study. Sci Rep 8(1):1–12 Moreira-Soares M, Coimbra R, Rebelo L, Carvalho J, DM Travasso R (2018) Angiogenic factors produced by hypoxic cells are a leading driver of anastomoses in sprouting angiogenesis-a computational study. Sci Rep 8(1):1–12
Metadaten
Titel
Computational modeling of flow-mediated angiogenesis: Stokes–Darcy flow on a growing vessel network
verfasst von
Adithya Srinivasan
Adrian Moure
Hector Gomez
Publikationsdatum
17.09.2023
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 2/2024
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-023-01889-6

Weitere Artikel der Ausgabe 2/2024

Engineering with Computers 2/2024 Zur Ausgabe

Neuer Inhalt