Skip to main content
Erschienen in: Engineering with Computers 2/2024

11.04.2023 | Original Article

Hybrid kernel approach to improving the numerical stability of machine learning for parametric equations with Gaussian processes in the noisy and noise-free data assumptions

verfasst von: Mohsen Esmaeilbeigi, Meysam Cheraghi

Erschienen in: Engineering with Computers | Ausgabe 2/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In many applied sciences, the main aim is to learn the parameters of parametric operators which best fit the observed data. Raissi et al. (J Comput Phys 348(1):683–693, 2017) provide an innovative method to resolve such problems by employing Gaussian process (GP) within a Bayesian framework. In this methodology, GP priors are modified based on the particular form of operators and are employed to infer hyperparameters by the maximum likelihood estimation (MLE). However, MLE-based and Bayesian inference usually involves setting up a covariance matrix that can be ill-conditioned. In this paper, the numerical stability of the methodology is investigated during training and prediction in two different assumptions: noisy and noise-free data. Based on the numerical simulations, for noisy data observations, by increasing noise in the data, the uncertainty in the predictions increases, and the accuracy of estimating the parameters decreases. However, the likelihood computation and model prediction will be significantly stable. While in the noise-free data observations, by increasing the number of data, the uncertainty quantification encoded in the posterior variances is significantly reduced, and the accuracy of the estimates is increased. But, the conditioning of the problem will be seriously distorted and we will face a very ill-condition problem. Therefore, in this paper, an approach is provided to manage the problem conditioning in the best possible way and consequently to improve the method performance in the noise-free data assumption using the hybrid kernels technique.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Raissi M, Perdikaris P, Em Karniadakis G (2017) Machine learning of linear differential equations using Gaussian processes. J Comput Phys 348(1):683–693MathSciNetCrossRef Raissi M, Perdikaris P, Em Karniadakis G (2017) Machine learning of linear differential equations using Gaussian processes. J Comput Phys 348(1):683–693MathSciNetCrossRef
2.
Zurück zum Zitat Bender EA (1978) An introduction to mathematical modeling. Dover Publications Inc., Mineola Bender EA (1978) An introduction to mathematical modeling. Dover Publications Inc., Mineola
3.
Zurück zum Zitat Bouhlel MA, Martins JRRA (2019) Gradient-enhanced kriging for high-dimensional problems. Eng Comput 35:157–173CrossRef Bouhlel MA, Martins JRRA (2019) Gradient-enhanced kriging for high-dimensional problems. Eng Comput 35:157–173CrossRef
4.
Zurück zum Zitat Shao W, Deng H, Ma Y et al (2012) Extended Gaussian Kriging for computer experiments in engineering design. Eng Comput 28:161–178CrossRef Shao W, Deng H, Ma Y et al (2012) Extended Gaussian Kriging for computer experiments in engineering design. Eng Comput 28:161–178CrossRef
5.
Zurück zum Zitat Arthur CK, Temeng VA, Ziggah YY (2020) Novel approach to predicting blast-induced ground vibration using Gaussian process regression. Eng Comput 36:29–42CrossRef Arthur CK, Temeng VA, Ziggah YY (2020) Novel approach to predicting blast-induced ground vibration using Gaussian process regression. Eng Comput 36:29–42CrossRef
6.
Zurück zum Zitat Narayan A, Yan L, Zhou T (2021) Optimal design for kernel interpolation: applications to uncertainty quantification. J Comput Phys 430:1–20MathSciNetCrossRef Narayan A, Yan L, Zhou T (2021) Optimal design for kernel interpolation: applications to uncertainty quantification. J Comput Phys 430:1–20MathSciNetCrossRef
7.
Zurück zum Zitat Qin T, Chen Z, Jakeman JD, Xiu D (2021) Deep learning of parameterized equations with applications to uncertanity quantification. Int J Uncert Quantif 11(2):63–82CrossRef Qin T, Chen Z, Jakeman JD, Xiu D (2021) Deep learning of parameterized equations with applications to uncertanity quantification. Int J Uncert Quantif 11(2):63–82CrossRef
8.
Zurück zum Zitat Mueller JL, Siltanen S (2012) Linear and nonlinear inverse problems with practical applications, computational science and engineering, vol 10. SIAM, PhiladelphiaCrossRef Mueller JL, Siltanen S (2012) Linear and nonlinear inverse problems with practical applications, computational science and engineering, vol 10. SIAM, PhiladelphiaCrossRef
9.
Zurück zum Zitat Neto FDM (2013) An introduction to inverse problems with applications. Springer, BerlinCrossRef Neto FDM (2013) An introduction to inverse problems with applications. Springer, BerlinCrossRef
10.
Zurück zum Zitat Dass SC, Lee J, Lee K et al (2017) Laplace based approximate posterior inference for differential equation models. Stat Comput 27:679–698MathSciNetCrossRef Dass SC, Lee J, Lee K et al (2017) Laplace based approximate posterior inference for differential equation models. Stat Comput 27:679–698MathSciNetCrossRef
11.
Zurück zum Zitat Williams CK, Rasmussen CE (2006) Gaussian processes for machine learning. The MIT Press, Cambridge Williams CK, Rasmussen CE (2006) Gaussian processes for machine learning. The MIT Press, Cambridge
12.
Zurück zum Zitat Murphy KP (2012) Machine learning: a probabilistic perspective. MIT Press, Cambridge Murphy KP (2012) Machine learning: a probabilistic perspective. MIT Press, Cambridge
13.
Zurück zum Zitat Raissi M, Perdikaris P, Em Karniadakis G (2018) Numerical Gaussian processes for time-dependent and nonlinear partial differential equations. SIAM J Sci Comput 40(1):172–198MathSciNetCrossRef Raissi M, Perdikaris P, Em Karniadakis G (2018) Numerical Gaussian processes for time-dependent and nonlinear partial differential equations. SIAM J Sci Comput 40(1):172–198MathSciNetCrossRef
14.
Zurück zum Zitat Vapnik V (2013) The nature of statistical learning theory. Springer, New York Vapnik V (2013) The nature of statistical learning theory. Springer, New York
15.
Zurück zum Zitat Cavoretto R, De Rossi A, Perracchione E (2023) Learning with partition of unity-based Kriging estimators. Appl Math Comput 448:127938MathSciNet Cavoretto R, De Rossi A, Perracchione E (2023) Learning with partition of unity-based Kriging estimators. Appl Math Comput 448:127938MathSciNet
16.
Zurück zum Zitat Tikhonov A (1963) Solution of incorrectly formulated problems and the regularization method. Soviet Math. Dokl. 5:1035–1038 Tikhonov A (1963) Solution of incorrectly formulated problems and the regularization method. Soviet Math. Dokl. 5:1035–1038
17.
Zurück zum Zitat Poggio T, Girosi F (1990) Networks for approximation and learning. Proc IEEE 78:1481–1497CrossRef Poggio T, Girosi F (1990) Networks for approximation and learning. Proc IEEE 78:1481–1497CrossRef
18.
Zurück zum Zitat Fasshauer GE (2007) Meshfree approximation methods with Matlab, interdisciplinary mathematical sciences, vol 6. World Scientific Publishing, Singapore Fasshauer GE (2007) Meshfree approximation methods with Matlab, interdisciplinary mathematical sciences, vol 6. World Scientific Publishing, Singapore
19.
Zurück zum Zitat Fasshauer GE, McCourt M (2015) Kernel-based approximation methods using MATLAB, interdisciplinary mathematical sciences. World Scientific Publishing, Singapore Fasshauer GE, McCourt M (2015) Kernel-based approximation methods using MATLAB, interdisciplinary mathematical sciences. World Scientific Publishing, Singapore
20.
Zurück zum Zitat Kohn R, Ansley CF, Tharm D (1991) The performance of cross-validation and maximum likelihood estimators of spline smoothing parameters. J Am Stat Assoc 86(416):1042–1050MathSciNetCrossRef Kohn R, Ansley CF, Tharm D (1991) The performance of cross-validation and maximum likelihood estimators of spline smoothing parameters. J Am Stat Assoc 86(416):1042–1050MathSciNetCrossRef
21.
Zurück zum Zitat Sacks J, Welch WJ, Mitchell TJ, Wynn HP (1989) Design and Analysis of Computer Experiments. Stat Sci 4(4):409–435MathSciNet Sacks J, Welch WJ, Mitchell TJ, Wynn HP (1989) Design and Analysis of Computer Experiments. Stat Sci 4(4):409–435MathSciNet
22.
Zurück zum Zitat Rasmussen CE, Ghahramani Z (2001) Occam’s razor. Adv Neural Inform Process Syst 294–300 Rasmussen CE, Ghahramani Z (2001) Occam’s razor. Adv Neural Inform Process Syst 294–300
23.
Zurück zum Zitat Perkins TJ, Jaeger J, Reinitz J, Glass L (2006) Reverse engineering the gap gene network of Drosophila melanogaster. PLoS Comput Biol 2(5):e51CrossRef Perkins TJ, Jaeger J, Reinitz J, Glass L (2006) Reverse engineering the gap gene network of Drosophila melanogaster. PLoS Comput Biol 2(5):e51CrossRef
24.
Zurück zum Zitat Alvarez MA, Luengo D, Lawrence ND (2023) Linear latent force models using Gaussian processes. IEEE Trans Pattern Anal Mach Intell 35(11):2693–2705 Alvarez MA, Luengo D, Lawrence ND (2023) Linear latent force models using Gaussian processes. IEEE Trans Pattern Anal Mach Intell 35(11):2693–2705
25.
Zurück zum Zitat Poustelnikova E, Pisarev A, Blagov M, Samsonova M, Reinitz J (2004) A database for management of gene expression data in situ. Bioinformatics 20(14):2212–2221CrossRef Poustelnikova E, Pisarev A, Blagov M, Samsonova M, Reinitz J (2004) A database for management of gene expression data in situ. Bioinformatics 20(14):2212–2221CrossRef
26.
Zurück zum Zitat Chatrabgoun O, Esmaeilbeigi M, Cheraghi M (2022) Stable likelihood computation for machine learning of linear differential operators with Gaussian processes. Int J Uncertain Quantif 12(3):75–99MathSciNetCrossRef Chatrabgoun O, Esmaeilbeigi M, Cheraghi M (2022) Stable likelihood computation for machine learning of linear differential operators with Gaussian processes. Int J Uncertain Quantif 12(3):75–99MathSciNetCrossRef
27.
Zurück zum Zitat Wendland H (2000) Scattered data approximation. Cambridge University Press, Cambridge Wendland H (2000) Scattered data approximation. Cambridge University Press, Cambridge
29.
Zurück zum Zitat Hussain M (2021) Hybrid radial basis function methods of lines for the numerical solution of viscous Burgers’ equation. Comput Appl Math 40:107MathSciNetCrossRef Hussain M (2021) Hybrid radial basis function methods of lines for the numerical solution of viscous Burgers’ equation. Comput Appl Math 40:107MathSciNetCrossRef
30.
Zurück zum Zitat Hussain M, Haq S (2020) A hybrid radial basis functions collocation technique to numerically solve fractional advection diffusion models. Numer Methods Partial Differ Equ 36:1254–1279MathSciNetCrossRef Hussain M, Haq S (2020) A hybrid radial basis functions collocation technique to numerically solve fractional advection diffusion models. Numer Methods Partial Differ Equ 36:1254–1279MathSciNetCrossRef
31.
Zurück zum Zitat Mishra PK, Fasshauer GE, Sen MK, Ling L (2019) A stabilized radial basis-finite difference (RBF-FD) method with hybrid kernels. Comput Math Appl 77:2354–2368MathSciNetCrossRef Mishra PK, Fasshauer GE, Sen MK, Ling L (2019) A stabilized radial basis-finite difference (RBF-FD) method with hybrid kernels. Comput Math Appl 77:2354–2368MathSciNetCrossRef
Metadaten
Titel
Hybrid kernel approach to improving the numerical stability of machine learning for parametric equations with Gaussian processes in the noisy and noise-free data assumptions
verfasst von
Mohsen Esmaeilbeigi
Meysam Cheraghi
Publikationsdatum
11.04.2023
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 2/2024
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-023-01818-7

Weitere Artikel der Ausgabe 2/2024

Engineering with Computers 2/2024 Zur Ausgabe

Neuer Inhalt