Skip to main content
Erschienen in: Shape Memory and Superelasticity 2/2022

26.05.2022 | Technical Article

Aerospace, Energy Recovery, and Medical Applications: Shape Memory Alloy Case Studies for CASMART 3rd Student Design Challenge

verfasst von: Faith Gantz, Hannah Stroud, John C. Fuller, Kelsa Adams, Peter E. Caltagirone, Hande Ozcan, Ibrahim Karaman, Darren J. Hartl, Aaron P. Stebner, William Trehern, Travis Turner, Robert W. Wheeler, Marcus L. Young, Othmane Benafan

Erschienen in: Shape Memory and Superelasticity | Ausgabe 2/2022

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This collection of case studies presents a brief introduction of fundamental concepts for four SMA-based applications in the aerospace, energy, and medical fields designed by students and facilitated by professionals. The Consortium for the Advancement of Shape Memory Alloy Research and Technology (CASMART) Student Design Challenge is used as an outreach strategy to promote the implementation of state-of-the-art designs with SMA technology and is meant to inspire the next generation of SMA research. Student design challenge teams address real-world problems facing the SMA community and receive guidance and feedback from CASMART members. Student teams’ hardware and materials deliverables had to meet basic function requirements specific to the application. Key results from seven teams (four hardware designs and three materials designs) highlight the design priorities, processes, and challenges raised during development. The hardware designs used NiTi wires shape set and implemented by the students into prototypes for deployment and reorientation mechanisms in small satellites, linear generators to save energy, and a self-apply tourniquet design. Materials development explored the processability and material properties of CuAl-based and NiTi-based alloys for passive actuators in a deployment and reorientation mechanism for a small satellite, energy recovery from waste heat, and a pseudoelastic spinal curvature correction device.
Fußnoten
1
For more information about CASMART, please visit www.​CASMART.​org.
 
Literatur
1.
Zurück zum Zitat Buehler W, Gilfrich J, Riley R (1963) Effect of low-temperature phase changes on the mechanical properties of alloys near composition Ti–Ni. Appl Phys 34:1475–1477CrossRef Buehler W, Gilfrich J, Riley R (1963) Effect of low-temperature phase changes on the mechanical properties of alloys near composition Ti–Ni. Appl Phys 34:1475–1477CrossRef
2.
Zurück zum Zitat Jani JM, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 1980–2015(56):1078–1113CrossRef Jani JM, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 1980–2015(56):1078–1113CrossRef
3.
Zurück zum Zitat Jani JM, Leary M, Subic A (2014) Shape memory alloys in automotive applications. Appl Mech Mater 663:248–253CrossRef Jani JM, Leary M, Subic A (2014) Shape memory alloys in automotive applications. Appl Mech Mater 663:248–253CrossRef
4.
Zurück zum Zitat Chaudhari R, Vora JJ, Parikh DM (2021) A review on applications of nitinol shape memory alloy. In: Recent Advances in Mechanical Infrastructure. Springer, pp 123–132 Chaudhari R, Vora JJ, Parikh DM (2021) A review on applications of nitinol shape memory alloy. In: Recent Advances in Mechanical Infrastructure. Springer, pp 123–132
5.
Zurück zum Zitat Cross WB, Kariotis AH, Stimler FJ (1969) Nitinol characterization study. NASA, Langley Research Center Cross WB, Kariotis AH, Stimler FJ (1969) Nitinol characterization study. NASA, Langley Research Center
6.
Zurück zum Zitat Jackson CM, Wagner HM, Wasilewski RJ (1972) 55-Nitinol-the alloy with a memory: it’s physical metallurgy properties, and applications. NASA SP-5110, vol 5110. NASA Special Publication Jackson CM, Wagner HM, Wasilewski RJ (1972) 55-Nitinol-the alloy with a memory: it’s physical metallurgy properties, and applications. NASA SP-5110, vol 5110. NASA Special Publication
7.
Zurück zum Zitat Duerig TW, Melton KN, Stöckel D (2013) Engineering aspects of shape memory alloys. Butterworth-Heinemann, Oxford Duerig TW, Melton KN, Stöckel D (2013) Engineering aspects of shape memory alloys. Butterworth-Heinemann, Oxford
8.
Zurück zum Zitat Calkins FT, Mabe JH (2010) Shape memory alloy based morphing aerostructures Calkins FT, Mabe JH (2010) Shape memory alloy based morphing aerostructures
9.
Zurück zum Zitat Derby S, Sreekumar M, Nagarajan T, Singaperumal M, Zoppi M, Molfino R (2007) Critical review of current trends in shape memory alloy actuators for intelligent robots. Ind Robot Derby S, Sreekumar M, Nagarajan T, Singaperumal M, Zoppi M, Molfino R (2007) Critical review of current trends in shape memory alloy actuators for intelligent robots. Ind Robot
10.
Zurück zum Zitat Rodrigue H, Wang W, Han M-W, Kim TJY, Ahn S-H (2017) An overview of shape memory alloy-coupled actuators and robots. Soft Robot 4(1):3–15CrossRef Rodrigue H, Wang W, Han M-W, Kim TJY, Ahn S-H (2017) An overview of shape memory alloy-coupled actuators and robots. Soft Robot 4(1):3–15CrossRef
11.
Zurück zum Zitat Sutou Y, Omori T, Wang JJ, Kainuma R, Ishida K (2004) Characteristics of Cu–Al–Mn-based shape memory alloys and their applications. Mater Sci Eng A 378(1–2):278–282CrossRef Sutou Y, Omori T, Wang JJ, Kainuma R, Ishida K (2004) Characteristics of Cu–Al–Mn-based shape memory alloys and their applications. Mater Sci Eng A 378(1–2):278–282CrossRef
12.
Zurück zum Zitat Schmidt M, Schütze A, Seelecke S (2015) Scientific test setup for investigation of shape memory alloy based elastocaloric cooling processes. Int J Refrig 54:88–97CrossRef Schmidt M, Schütze A, Seelecke S (2015) Scientific test setup for investigation of shape memory alloy based elastocaloric cooling processes. Int J Refrig 54:88–97CrossRef
13.
Zurück zum Zitat Hou H et al (2019) Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing. Science 366(6469):1116–1121CrossRef Hou H et al (2019) Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing. Science 366(6469):1116–1121CrossRef
17.
Zurück zum Zitat Benafan O, Moholt MR, Bass M, Mabe JH, Nicholson DE, Calkins FT (2019) Recent advancements in rotary shape memory alloy actuators for aeronautics. Shape Mem Superelast 5(4):415–428CrossRef Benafan O, Moholt MR, Bass M, Mabe JH, Nicholson DE, Calkins FT (2019) Recent advancements in rotary shape memory alloy actuators for aeronautics. Shape Mem Superelast 5(4):415–428CrossRef
21.
Zurück zum Zitat Young ML et al (2019) Characterization and processing of high temperature shape memory alloys for aerospace applications. In: AIAA Scitech 2019 Forum, p 1196 Young ML et al (2019) Characterization and processing of high temperature shape memory alloys for aerospace applications. In: AIAA Scitech 2019 Forum, p 1196
24.
Zurück zum Zitat Benafan O et al (2014) Shape memory alloy actuator design: CASMART collaborative best practices and case studies. Int J Mech Mater Des 10(1):1–42CrossRef Benafan O et al (2014) Shape memory alloy actuator design: CASMART collaborative best practices and case studies. Int J Mech Mater Des 10(1):1–42CrossRef
25.
Zurück zum Zitat Caltagirone PE et al (2021) Shape memory alloy-enabled expandable space habitat—case studies for second CASMART student design challenge. Shape Memory Superelast 1–24 Caltagirone PE et al (2021) Shape memory alloy-enabled expandable space habitat—case studies for second CASMART student design challenge. Shape Memory Superelast 1–24
27.
Zurück zum Zitat Ma J, Karaman I, Noebe RD (2010) High temperature shape memory alloys. Int Mater Rev 55(5):257–315CrossRef Ma J, Karaman I, Noebe RD (2010) High temperature shape memory alloys. Int Mater Rev 55(5):257–315CrossRef
28.
Zurück zum Zitat Wheeler III RW (2017) Actuation fatigue characterization methods and lifetime predictions of shape memory alloy actuators. Texas A & M University Wheeler III RW (2017) Actuation fatigue characterization methods and lifetime predictions of shape memory alloy actuators. Texas A & M University
29.
Zurück zum Zitat Puig-Suari J, Turner C, Ahlgren W (2001) Development of the standard CubeSat deployer and a CubeSat class PicoSatellite. In: 2001 IEEE Aerospace Conference Proceedings (Cat. No. 01TH8542), vol 1, pp 1–347 Puig-Suari J, Turner C, Ahlgren W (2001) Development of the standard CubeSat deployer and a CubeSat class PicoSatellite. In: 2001 IEEE Aerospace Conference Proceedings (Cat. No. 01TH8542), vol 1, pp 1–347
30.
Zurück zum Zitat Woellert K, Ehrenfreund P, Ricco AJ, Hertzfeld H (2011) Cubesats: Cost-effective science and technology platforms for emerging and developing nations. Adv Space Res 47(4):663–684CrossRef Woellert K, Ehrenfreund P, Ricco AJ, Hertzfeld H (2011) Cubesats: Cost-effective science and technology platforms for emerging and developing nations. Adv Space Res 47(4):663–684CrossRef
31.
Zurück zum Zitat Swartwout M (2011) Attack of the CubeSats: A Statistical Look (SSC11-VI-04). In: 25th Annual AIAA/USU Conference on Small Satellites Swartwout M (2011) Attack of the CubeSats: A Statistical Look (SSC11-VI-04). In: 25th Annual AIAA/USU Conference on Small Satellites
32.
Zurück zum Zitat Hunter R, Korsmeyer D (2015) A Review of NASA Ames CubeSat Program Hunter R, Korsmeyer D (2015) A Review of NASA Ames CubeSat Program
36.
Zurück zum Zitat Kumar PK, Lagoudas DC (2008) Introduction to shape memory alloys. shape memory alloys modeling and engineering applications. Springer, New York Kumar PK, Lagoudas DC (2008) Introduction to shape memory alloys. shape memory alloys modeling and engineering applications. Springer, New York
37.
Zurück zum Zitat Consortium for the Advancement of Shape Memory Alloy Research and Technology. CASMART SMA Actuator Design Tool (2018) Consortium for the Advancement of Shape Memory Alloy Research and Technology. CASMART SMA Actuator Design Tool (2018)
38.
Zurück zum Zitat Fayssoux RS, Cho RH, Herman MJ (2010) A history of bracing for idiopathic scoliosis in North America. Clin Orthopaedics Relat Res 468(3):654–664CrossRef Fayssoux RS, Cho RH, Herman MJ (2010) A history of bracing for idiopathic scoliosis in North America. Clin Orthopaedics Relat Res 468(3):654–664CrossRef
39.
Zurück zum Zitat Chan W-Y et al (2018) Mechanical and clinical evaluation of a shape memory alloy and conventional struts in a flexible scoliotic brace. Ann Biomed Eng 46(8):1194–1205CrossRef Chan W-Y et al (2018) Mechanical and clinical evaluation of a shape memory alloy and conventional struts in a flexible scoliotic brace. Ann Biomed Eng 46(8):1194–1205CrossRef
40.
Zurück zum Zitat Ali A, Fontanari V, Fontana M, Schmölz W (2021) Spinal deformities and advancement in corrective orthoses. Bioengineering 8(1):2CrossRef Ali A, Fontanari V, Fontana M, Schmölz W (2021) Spinal deformities and advancement in corrective orthoses. Bioengineering 8(1):2CrossRef
41.
Zurück zum Zitat Nachemson AL et al (1995) Effectiveness of treatment with a brace in girls who have adolescent idiopathic scoliosis. A prospective, controlled study based on data from the Brace Study of the Scoliosis Research Society. J Bone Joint Surg Ser A 77(6):815–822CrossRef Nachemson AL et al (1995) Effectiveness of treatment with a brace in girls who have adolescent idiopathic scoliosis. A prospective, controlled study based on data from the Brace Study of the Scoliosis Research Society. J Bone Joint Surg Ser A 77(6):815–822CrossRef
42.
Zurück zum Zitat Wong MS et al (2008) The effect of rigid versus flexible spinal orthosis on the clinical efficacy and acceptance of the patients with adolescent idiopathic scoliosis. Spine 33(12):1360–1365CrossRef Wong MS et al (2008) The effect of rigid versus flexible spinal orthosis on the clinical efficacy and acceptance of the patients with adolescent idiopathic scoliosis. Spine 33(12):1360–1365CrossRef
43.
Zurück zum Zitat Coillard C, Leroux MA, Zabjek KF, Rivard C (2003) SpineCor–a non-rigid brace for the treatment of idiopathic scoliosis: post-treatment results. Eur Spine J 12(2):141–148CrossRef Coillard C, Leroux MA, Zabjek KF, Rivard C (2003) SpineCor–a non-rigid brace for the treatment of idiopathic scoliosis: post-treatment results. Eur Spine J 12(2):141–148CrossRef
44.
Zurück zum Zitat Safranski D, Dupont K, Gall K (2020) Pseudoelastic NiTiNOL in orthopaedic applications. Shape Mem Superelast 6(3):332–341CrossRef Safranski D, Dupont K, Gall K (2020) Pseudoelastic NiTiNOL in orthopaedic applications. Shape Mem Superelast 6(3):332–341CrossRef
45.
Zurück zum Zitat GSFC (2021) GSFC-STD-7000 REV B General Environmental Verification Standard (GEVS) for GSFC Flight Programs and Projects. Greenbelt GSFC (2021) GSFC-STD-7000 REV B General Environmental Verification Standard (GEVS) for GSFC Flight Programs and Projects. Greenbelt
47.
Zurück zum Zitat DoD 2018.3 SBIR Solicitation (2018) Shape memory alloy heat engine DoD 2018.3 SBIR Solicitation (2018) Shape memory alloy heat engine
48.
Zurück zum Zitat Moholt M, Benafan O (2017) Spanwise adaptive wing. In: 3rd annual convergent aeronautics solutions showcase and innovation faire, pp 19–20 Moholt M, Benafan O (2017) Spanwise adaptive wing. In: 3rd annual convergent aeronautics solutions showcase and innovation faire, pp 19–20
49.
Zurück zum Zitat Husain SW, Clapp PC (1988) The effect of aging on the fracture behavior of Cu-AI-Ni jo phase alloys. Metall Trans A 19(7):1761–1766CrossRef Husain SW, Clapp PC (1988) The effect of aging on the fracture behavior of Cu-AI-Ni jo phase alloys. Metall Trans A 19(7):1761–1766CrossRef
50.
Zurück zum Zitat Stoeckel D, Pelton A, Duerig T (2004) Self-expanding nitinol stents: material and design considerations. Eur Radiol 14(2):292–301CrossRef Stoeckel D, Pelton A, Duerig T (2004) Self-expanding nitinol stents: material and design considerations. Eur Radiol 14(2):292–301CrossRef
51.
Zurück zum Zitat Hurst CL, Duncanson MG Jr, Nanda RS, Angolkar PV (1990) An evaluation of the shape-memory phenomenon of nickel-titanium orthodontic wires. Am J Orthod Dentofac Orthop 98(1):72–76CrossRef Hurst CL, Duncanson MG Jr, Nanda RS, Angolkar PV (1990) An evaluation of the shape-memory phenomenon of nickel-titanium orthodontic wires. Am J Orthod Dentofac Orthop 98(1):72–76CrossRef
52.
Zurück zum Zitat Hodgson DE, Zider RB (1988) Shape-memory alloy resetting method. Google Patents Hodgson DE, Zider RB (1988) Shape-memory alloy resetting method. Google Patents
53.
Zurück zum Zitat Guerioune M et al (2008) SHS of shape memory CuZnAl alloys. Int J Self Propag High Temp Synth 17(1):41–48CrossRef Guerioune M et al (2008) SHS of shape memory CuZnAl alloys. Int J Self Propag High Temp Synth 17(1):41–48CrossRef
54.
Zurück zum Zitat Dasgupta R (2014) A look into Cu-based shape memory alloys: present scenario and future prospects. J Mater Res 29(16):1681–1698CrossRef Dasgupta R (2014) A look into Cu-based shape memory alloys: present scenario and future prospects. J Mater Res 29(16):1681–1698CrossRef
55.
Zurück zum Zitat Alaneme KK, Okotete EA (2016) Reconciling viability and cost-effective shape memory alloy options—a review of copper and iron based shape memory metallic systems. Eng Sci Technol Int J 19(3):1582–1592 Alaneme KK, Okotete EA (2016) Reconciling viability and cost-effective shape memory alloy options—a review of copper and iron based shape memory metallic systems. Eng Sci Technol Int J 19(3):1582–1592
56.
Zurück zum Zitat Čolić M et al (2010) Relationship between microstructure, cytotoxicity and corrosion properties of a Cu–Al–Ni shape memory alloy. Acta Biomater 6(1):308–317CrossRef Čolić M et al (2010) Relationship between microstructure, cytotoxicity and corrosion properties of a Cu–Al–Ni shape memory alloy. Acta Biomater 6(1):308–317CrossRef
57.
Zurück zum Zitat Ivanić I, Gojić M, Kožuh S (2014) Alloys with shape recollection (Part II): the most significant properties. Chem Ind 63(9–10):331–344 Ivanić I, Gojić M, Kožuh S (2014) Alloys with shape recollection (Part II): the most significant properties. Chem Ind 63(9–10):331–344
58.
Zurück zum Zitat Young ML, Wagner M-X, Frenzel J, Schmahl WW, Eggeler G (2010) Phase volume fractions and strain measurements in an ultrafine-grained NiTi shape-memory alloy during tensile loading. Acta Mater 58(7):2344–2354CrossRef Young ML, Wagner M-X, Frenzel J, Schmahl WW, Eggeler G (2010) Phase volume fractions and strain measurements in an ultrafine-grained NiTi shape-memory alloy during tensile loading. Acta Mater 58(7):2344–2354CrossRef
59.
Zurück zum Zitat Zhen W, Liu X, Xie J (2011) Effects of solidification parameters on microstructure and mechanical properties of continuous columnar-grained Cu–Al–Ni alloy. Prog Nat Sci 21(5):368–374CrossRef Zhen W, Liu X, Xie J (2011) Effects of solidification parameters on microstructure and mechanical properties of continuous columnar-grained Cu–Al–Ni alloy. Prog Nat Sci 21(5):368–374CrossRef
60.
Zurück zum Zitat Morris MA, Lipe T (1994) Microstructural influence of Mn additions on thermoelastic and pseudoelastic properties of Cu Al Ni alloys. Acta Metall Mater 42(5):1583–1594CrossRef Morris MA, Lipe T (1994) Microstructural influence of Mn additions on thermoelastic and pseudoelastic properties of Cu Al Ni alloys. Acta Metall Mater 42(5):1583–1594CrossRef
62.
Zurück zum Zitat Tadaki T, Otsuka K, Shimizu K (1988) Shape memory alloys. Annu Rev Mater Sci 18(1):25–45CrossRef Tadaki T, Otsuka K, Shimizu K (1988) Shape memory alloys. Annu Rev Mater Sci 18(1):25–45CrossRef
63.
Zurück zum Zitat Saud SN, Hamzah E, Abubakar T, Bakhsheshi-Rad HR, Zamri M, Tanemura M (2014) Effects of Mn additions on the structure, mechanical properties, and corrosion behavior of Cu-Al-Ni shape memory alloys. J Mater Eng Perform 23(10):3620–3629CrossRef Saud SN, Hamzah E, Abubakar T, Bakhsheshi-Rad HR, Zamri M, Tanemura M (2014) Effects of Mn additions on the structure, mechanical properties, and corrosion behavior of Cu-Al-Ni shape memory alloys. J Mater Eng Perform 23(10):3620–3629CrossRef
64.
Zurück zum Zitat Yang Q et al (2018) Suppressing heating rate-dependent martensitic stabilization in ductile Cu-Al-Mn shape memory alloys by Ni addition: an experimental and first-principles study. Mater Charact 145:381–388CrossRef Yang Q et al (2018) Suppressing heating rate-dependent martensitic stabilization in ductile Cu-Al-Mn shape memory alloys by Ni addition: an experimental and first-principles study. Mater Charact 145:381–388CrossRef
65.
Zurück zum Zitat Ueland SM, Schuh CA (2013) Grain boundary and triple junction constraints during martensitic transformation in shape memory alloys. J Appl Phys 114(5):53503CrossRef Ueland SM, Schuh CA (2013) Grain boundary and triple junction constraints during martensitic transformation in shape memory alloys. J Appl Phys 114(5):53503CrossRef
66.
Zurück zum Zitat Chen Y, Zhang X, Dunand DC, Schuh CA (2009) Shape memory and superelasticity in polycrystalline Cu–Al–Ni microwires. Appl Phys Lett 95(17):171906CrossRef Chen Y, Zhang X, Dunand DC, Schuh CA (2009) Shape memory and superelasticity in polycrystalline Cu–Al–Ni microwires. Appl Phys Lett 95(17):171906CrossRef
67.
Zurück zum Zitat Van Humbeeck J, Chandrasekaran M, Delaey L (1989) The influence of post quench aging in the beta-phase on the transformation characteristics and the physical and mechanical properties of martensite in a Cu–Al–Ni shape memory alloy. ISIJ Int 29(5):388–394CrossRef Van Humbeeck J, Chandrasekaran M, Delaey L (1989) The influence of post quench aging in the beta-phase on the transformation characteristics and the physical and mechanical properties of martensite in a Cu–Al–Ni shape memory alloy. ISIJ Int 29(5):388–394CrossRef
68.
Zurück zum Zitat Gao Y, Zhu M, Lai JKL (1998) Microstructure characterization and effect of thermal cycling and ageing on vanadium-doped Cu–Al–Ni–Mn high-temperature shape memory alloy. J Mater Sci 33(14):3579–3584CrossRef Gao Y, Zhu M, Lai JKL (1998) Microstructure characterization and effect of thermal cycling and ageing on vanadium-doped Cu–Al–Ni–Mn high-temperature shape memory alloy. J Mater Sci 33(14):3579–3584CrossRef
69.
Zurück zum Zitat Font J, Muntasell J, Pons J, Cesari E (1997) Thermal cycling effects in high temperature Cu–Al–Ni–Mn–B shape memory alloys. J Mater Res 12(9):2288–2297CrossRef Font J, Muntasell J, Pons J, Cesari E (1997) Thermal cycling effects in high temperature Cu–Al–Ni–Mn–B shape memory alloys. J Mater Res 12(9):2288–2297CrossRef
70.
Zurück zum Zitat Adachi K, Shoji K, Hamada Y (1989) Formation of X phases and origin of grain refinement effect in Cu–Al–Ni shape memory alloys added with titanium. ISIJ Int 29(5):378–387CrossRef Adachi K, Shoji K, Hamada Y (1989) Formation of X phases and origin of grain refinement effect in Cu–Al–Ni shape memory alloys added with titanium. ISIJ Int 29(5):378–387CrossRef
71.
Zurück zum Zitat Otsuka K, Wayman CM, Nakai K, Sakamoto H, Shimizu K (1976) Superelasticity effects and stress-induced martensitic transformations in Cu Al Ni alloys. Acta Metall 24(3):207–226CrossRef Otsuka K, Wayman CM, Nakai K, Sakamoto H, Shimizu K (1976) Superelasticity effects and stress-induced martensitic transformations in Cu Al Ni alloys. Acta Metall 24(3):207–226CrossRef
74.
Zurück zum Zitat Recarte V, Pérez-Sáez RB, Bocanegra EH, Nó ML, San Juan J (1999) “Dependence of the martensitic transformation characteristics on concentration in Cu–Al–Ni shape memory alloys. Mater Sci Eng A 273:380–384CrossRef Recarte V, Pérez-Sáez RB, Bocanegra EH, Nó ML, San Juan J (1999) “Dependence of the martensitic transformation characteristics on concentration in Cu–Al–Ni shape memory alloys. Mater Sci Eng A 273:380–384CrossRef
78.
Zurück zum Zitat Mosekilde L, Mosekilde L, Danielsen CC (1987) Biomechanical competence of vertebral trabecular bone in relation to ash density and age in normal individuals. Bone 8(2):79–85CrossRef Mosekilde L, Mosekilde L, Danielsen CC (1987) Biomechanical competence of vertebral trabecular bone in relation to ash density and age in normal individuals. Bone 8(2):79–85CrossRef
Metadaten
Titel
Aerospace, Energy Recovery, and Medical Applications: Shape Memory Alloy Case Studies for CASMART 3rd Student Design Challenge
verfasst von
Faith Gantz
Hannah Stroud
John C. Fuller
Kelsa Adams
Peter E. Caltagirone
Hande Ozcan
Ibrahim Karaman
Darren J. Hartl
Aaron P. Stebner
William Trehern
Travis Turner
Robert W. Wheeler
Marcus L. Young
Othmane Benafan
Publikationsdatum
26.05.2022
Verlag
Springer US
Erschienen in
Shape Memory and Superelasticity / Ausgabe 2/2022
Print ISSN: 2199-384X
Elektronische ISSN: 2199-3858
DOI
https://doi.org/10.1007/s40830-022-00368-z

Weitere Artikel der Ausgabe 2/2022

Shape Memory and Superelasticity 2/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.