Skip to main content
Erschienen in: Shape Memory and Superelasticity 2/2022

08.07.2022 | Review

Pre-strain and Mean Strain Effects on the Fatigue Behavior of Superelastic Nitinol Medical Devices

verfasst von: A. R. Pelton, B. T. Berg, P. Saffari, A. P. Stebner, A. N. Bucsek

Erschienen in: Shape Memory and Superelasticity | Ausgabe 2/2022

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

There is a growing body of evidence that “in situ” modification of the microstructure of Nitinol due to pre-strain and mean strain strongly influence the fatigue properties of implanted medical devices and often, counterintuitively, for the better. The purpose of this review paper is to focus on the experimental evidence and to support these finding with micro-mechanical and metallurgical references. Pre-strain effects are well recognized in Nitinol thermal actuator fatigue behavior and applied in medical device applications but the effects of mean strain remain controversial. Detailed reviews of the pertinent literature indicate that pre-strains intensify texture, increase martensite volume fraction, and induce plasticity that may enhance or degrade fatigue performance. The majority of experimental studies demonstrate that fatigue cycling with mean strains within the two-phase region leads to longer lives compared to cycling in the linear elastic region or at mean strains greater than the end of the stress plateau. These effects are described in terms of martensite stabilization, cyclic phase change, and the decrease in composite modulus with increasing mean strain. These factors combine to result in alternating strain between approximately constant upper and lower plateau stresses to induce phase change.
Fußnoten
1
Originally presented at SMST 2013, Prague, Czech Republic.
 
Literatur
1.
Zurück zum Zitat Porter DA, Easterling KE (1992) Phase transformations in metals and alloys. Chapman & Hall, New YorkCrossRef Porter DA, Easterling KE (1992) Phase transformations in metals and alloys. Chapman & Hall, New YorkCrossRef
2.
Zurück zum Zitat Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci 50:511–678CrossRef Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci 50:511–678CrossRef
3.
Zurück zum Zitat Bhattacharya K (2003) Microstructure of martensite. Oxford University Press, Oxford, p 288 Bhattacharya K (2003) Microstructure of martensite. Oxford University Press, Oxford, p 288
4.
Zurück zum Zitat Duerig T, Pelton A, Stoeckel D (1999) An overview of Nitinol medical applications. Mater Sci Eng A 273–275:149–160CrossRef Duerig T, Pelton A, Stoeckel D (1999) An overview of Nitinol medical applications. Mater Sci Eng A 273–275:149–160CrossRef
5.
Zurück zum Zitat Morgan NB (2004) Medical shape memory alloy applications—the market and its products. Mater Sci Eng A 378(1–2):16–23CrossRef Morgan NB (2004) Medical shape memory alloy applications—the market and its products. Mater Sci Eng A 378(1–2):16–23CrossRef
6.
Zurück zum Zitat Mordor Intelligence (2020) Nitinol medical devices market—growth, trends and forecast (2020–2025). Mordor Intelligence, Hyderabad Mordor Intelligence (2020) Nitinol medical devices market—growth, trends and forecast (2020–2025). Mordor Intelligence, Hyderabad
7.
Zurück zum Zitat Cheng CP (ed) (2019) Handbook of vascular motion. Elsevier-Academic, London Cheng CP (ed) (2019) Handbook of vascular motion. Elsevier-Academic, London
8.
Zurück zum Zitat Eggeler G, Hornbogen E, Yawny A, Heckmann A, Wagner M (2004) Structural and functional fatigue of NiTi shape memory alloys. Mater Sci Eng A 378:24–33CrossRef Eggeler G, Hornbogen E, Yawny A, Heckmann A, Wagner M (2004) Structural and functional fatigue of NiTi shape memory alloys. Mater Sci Eng A 378:24–33CrossRef
9.
Zurück zum Zitat Mitchell MR (1996) Fundamentals of modern fatigue analysis for design. In: ASM handbook, fatigue and fracture. ASM International, Materials Park, pp 227–262 Mitchell MR (1996) Fundamentals of modern fatigue analysis for design. In: ASM handbook, fatigue and fracture. ASM International, Materials Park, pp 227–262
10.
Zurück zum Zitat FDA (2021) Technical considerations for non-clinical assessment of medical devices containing Nitinol. FDA, Silver Spring FDA (2021) Technical considerations for non-clinical assessment of medical devices containing Nitinol. FDA, Silver Spring
11.
Zurück zum Zitat ASTM (2017) F3211-17 standard guide for fatigue-to-fracture (FtF) methodology for cardiovascular medical devices. ASTM International, West Conshohocken ASTM (2017) F3211-17 standard guide for fatigue-to-fracture (FtF) methodology for cardiovascular medical devices. ASTM International, West Conshohocken
12.
Zurück zum Zitat Wöhler A (1870) Über die Festigkeitsversuche mit Eisen and Stahl. Z Bauwes 20:73–106 Wöhler A (1870) Über die Festigkeitsversuche mit Eisen and Stahl. Z Bauwes 20:73–106
13.
Zurück zum Zitat ISO (2021) ISO 5840:2021 cardiovascular implants—cardiac valve prostheses ISO (2021) ISO 5840:2021 cardiovascular implants—cardiac valve prostheses
14.
Zurück zum Zitat Duerig TW, Tolomeo DE, Wholey M (2000) An overview of superelastic stent design. Minim Invasive Ther Allied Technol 9(3/4):235–246CrossRef Duerig TW, Tolomeo DE, Wholey M (2000) An overview of superelastic stent design. Minim Invasive Ther Allied Technol 9(3/4):235–246CrossRef
15.
Zurück zum Zitat Dordoni E, Meoli A, Wu W, Dubini G, Migliavacca F, Pennati G, Petrini L (2014) Fatigue behaviour of Nitinol peripheral stents: the role of plaque shape studied with computational structural analyses. Med Eng Phys 36:842–849CrossRef Dordoni E, Meoli A, Wu W, Dubini G, Migliavacca F, Pennati G, Petrini L (2014) Fatigue behaviour of Nitinol peripheral stents: the role of plaque shape studied with computational structural analyses. Med Eng Phys 36:842–849CrossRef
16.
Zurück zum Zitat Bonsignore C (2004) A decade of evolution in stent design. In: Pelton AR, Duerig TW (eds) SMST 2003: international conference on shape memory and superelastic technologies. International Organization on SMST, Pacific Grove, pp 519–528 Bonsignore C (2004) A decade of evolution in stent design. In: Pelton AR, Duerig TW (eds) SMST 2003: international conference on shape memory and superelastic technologies. International Organization on SMST, Pacific Grove, pp 519–528
17.
Zurück zum Zitat Robertson SW, Pelton AR, Ritchie RO (2012) Mechanical fatigue and fracture of Nitinol. Int Mater Rev 57(1):1–36CrossRef Robertson SW, Pelton AR, Ritchie RO (2012) Mechanical fatigue and fracture of Nitinol. Int Mater Rev 57(1):1–36CrossRef
18.
Zurück zum Zitat Mahtabi MJ, Shamsaei N, Mitchell MR (2015) Fatigue of Nitinol: the state-of-the-art and ongoing challenges. J Mech Behav Biomed Mater 50:228–254CrossRef Mahtabi MJ, Shamsaei N, Mitchell MR (2015) Fatigue of Nitinol: the state-of-the-art and ongoing challenges. J Mech Behav Biomed Mater 50:228–254CrossRef
19.
Zurück zum Zitat Gbur JL, Lewandowski JJ (2016) Fatigue and fracture of wires and cables for biomedical applications. Int Mater Rev 61(4):231–314CrossRef Gbur JL, Lewandowski JJ (2016) Fatigue and fracture of wires and cables for biomedical applications. Int Mater Rev 61(4):231–314CrossRef
20.
Zurück zum Zitat Reinoehl M, Bradley D, Bouthot R, Proft J (2001) The influence of melt practice on final fatigue properties of superelastic NiTi wires. In: Russell SM, Pelton AR (eds) Shape memory and superelastic technologies. The International Organization on Shape Memory and Superelastic Technologies, Pacific Grove, pp 397–403 Reinoehl M, Bradley D, Bouthot R, Proft J (2001) The influence of melt practice on final fatigue properties of superelastic NiTi wires. In: Russell SM, Pelton AR (eds) Shape memory and superelastic technologies. The International Organization on Shape Memory and Superelastic Technologies, Pacific Grove, pp 397–403
21.
Zurück zum Zitat Morgan N, Wick A, DiCello J, Graham R (2008) Carbon and oxygen levels in Nitinol alloys and the implications for medical device manufacture and durability, In: Berg B, Mitchell MR, Proft J (eds) Proceedings of the international conference on shape memory and superelastic technologies, ASM International, Pacific Grove, pp 821–828. Morgan N, Wick A, DiCello J, Graham R (2008) Carbon and oxygen levels in Nitinol alloys and the implications for medical device manufacture and durability, In: Berg B, Mitchell MR, Proft J (eds) Proceedings of the international conference on shape memory and superelastic technologies, ASM International, Pacific Grove, pp 821–828.
22.
Zurück zum Zitat Rahim M, Frenzel J, Frotscher M, Pfetzing-Micklich J, Steegmüller R, Wohlschlögel M, Mughrabi H, Eggeler G (2013) Impurity levels and fatigue lives of pseudoelastic NiTi shape memory alloys. Acta Mater 61(10):3667–3686CrossRef Rahim M, Frenzel J, Frotscher M, Pfetzing-Micklich J, Steegmüller R, Wohlschlögel M, Mughrabi H, Eggeler G (2013) Impurity levels and fatigue lives of pseudoelastic NiTi shape memory alloys. Acta Mater 61(10):3667–3686CrossRef
23.
Zurück zum Zitat Robertson SW, Launey M, Shelley O, Ong I, Vien L, Senthilnathan K, Saffari P, Schlegel S, Pelton AR (2015) A statistical approach to understand the role of inclusions on the fatigue resistance of superelastic Nitinol wire and tubing. J Mech Behav Biomed Mater 51:119–131CrossRef Robertson SW, Launey M, Shelley O, Ong I, Vien L, Senthilnathan K, Saffari P, Schlegel S, Pelton AR (2015) A statistical approach to understand the role of inclusions on the fatigue resistance of superelastic Nitinol wire and tubing. J Mech Behav Biomed Mater 51:119–131CrossRef
24.
Zurück zum Zitat Launey M, Robertson SW, Vien L, Senthilnathan K, Chintapalli P, Pelton AR (2014) Influence of microstructural purity on the bending fatigue behavior of VAR-melted superelastic Nitinol. J Mech Behav Biomed Mater 34:181–186CrossRef Launey M, Robertson SW, Vien L, Senthilnathan K, Chintapalli P, Pelton AR (2014) Influence of microstructural purity on the bending fatigue behavior of VAR-melted superelastic Nitinol. J Mech Behav Biomed Mater 34:181–186CrossRef
25.
Zurück zum Zitat Urbano MF, Cadelli A, Sczerzenie F, Luccarelli P, Beretta S, Coda A (2015) Inclusions size-based fatigue life prediction model of NiTi alloy for biomedical applications. Shape Mem Superelast 1(2):240–251CrossRef Urbano MF, Cadelli A, Sczerzenie F, Luccarelli P, Beretta S, Coda A (2015) Inclusions size-based fatigue life prediction model of NiTi alloy for biomedical applications. Shape Mem Superelast 1(2):240–251CrossRef
26.
Zurück zum Zitat Pelton AR, Pelton SM, Jörn T, Ulmer J, Niedermaier D, Plaskonka K, LePage WS, Saffari P, Mitchell MR (2019) The quest for fatigue-resistant Nitinol for medical implants. In: Mitchell MR, Berg BT, Woods TO, Jerina KL (eds) STP1616: fourth symposium on fatigue and fracture of metallic medical materials and devices. ASTM International, West Conshohocken, pp 1–30 Pelton AR, Pelton SM, Jörn T, Ulmer J, Niedermaier D, Plaskonka K, LePage WS, Saffari P, Mitchell MR (2019) The quest for fatigue-resistant Nitinol for medical implants. In: Mitchell MR, Berg BT, Woods TO, Jerina KL (eds) STP1616: fourth symposium on fatigue and fracture of metallic medical materials and devices. ASTM International, West Conshohocken, pp 1–30
27.
Zurück zum Zitat Kim Y, Miyazaki, S (1997) Fatigue life of Ti–50 at.% Ni and Ti–40Ni–10Cu (at.%) shape memory alloy wires. In: Shape memory and superelastic technologies-97, 1997. SMST, Asilomar Kim Y, Miyazaki, S (1997) Fatigue life of Ti–50 at.% Ni and Ti–40Ni–10Cu (at.%) shape memory alloy wires. In: Shape memory and superelastic technologies-97, 1997. SMST, Asilomar
28.
Zurück zum Zitat Miyazaki S, Mizukoshi K, Ueki T, Sakuma T, Liu Y (1999) Fatigue life of Ti–50 at% Ni and Ti–40Ni–10 Cu (at%) shape memory alloy wires. Mater Sci Eng A 273–275:658–663CrossRef Miyazaki S, Mizukoshi K, Ueki T, Sakuma T, Liu Y (1999) Fatigue life of Ti–50 at% Ni and Ti–40Ni–10 Cu (at%) shape memory alloy wires. Mater Sci Eng A 273–275:658–663CrossRef
29.
Zurück zum Zitat Pelton AR, Fino-Decker J, Vien L, Bonsignore C, Saffari P, Launey M, Mitchell MR (2013) Rotary-bending fatigue characteristics of medical-grade Nitinol wire. J Mech Behav Biomed Mater 27:19–32CrossRef Pelton AR, Fino-Decker J, Vien L, Bonsignore C, Saffari P, Launey M, Mitchell MR (2013) Rotary-bending fatigue characteristics of medical-grade Nitinol wire. J Mech Behav Biomed Mater 27:19–32CrossRef
30.
Zurück zum Zitat Launey ME, Ong I, Berg B, Saffari P, Stebner AP, Pelton SM, Pelton AR (2022) Considerations on tension–tension uniaxial fatigue of superelastic Nitinol (to be published) Launey ME, Ong I, Berg B, Saffari P, Stebner AP, Pelton SM, Pelton AR (2022) Considerations on tension–tension uniaxial fatigue of superelastic Nitinol (to be published)
31.
Zurück zum Zitat Kleinstreuer C, Li Z, Basciano CA, Seelecke S, Farber MA (2008) Computational mechanics of Nitinol stent grafts. J Biomech 41(11):2370–2378CrossRef Kleinstreuer C, Li Z, Basciano CA, Seelecke S, Farber MA (2008) Computational mechanics of Nitinol stent grafts. J Biomech 41(11):2370–2378CrossRef
32.
Zurück zum Zitat Kumar GP, Mathew L (2012) Self-expanding aortic valve stent—material optimization. Comput Biol Med 42(11):1060–1063CrossRef Kumar GP, Mathew L (2012) Self-expanding aortic valve stent—material optimization. Comput Biol Med 42(11):1060–1063CrossRef
33.
Zurück zum Zitat Shaw JA, Kyriakides S (1995) Thermomechanical aspects of NiTi. J Mech Phys Solids 43(8):1243–1281CrossRef Shaw JA, Kyriakides S (1995) Thermomechanical aspects of NiTi. J Mech Phys Solids 43(8):1243–1281CrossRef
34.
Zurück zum Zitat Gall K, Sehitoglu H, Anderson R, Karaman I, Chumlyakov YI, Kireeva IV (2001) On the mechanical behavior of single crystal NiTi shape memory alloys and related polycrystalline phenomenon. Mater Sci Eng A 317(1–2):85–92CrossRef Gall K, Sehitoglu H, Anderson R, Karaman I, Chumlyakov YI, Kireeva IV (2001) On the mechanical behavior of single crystal NiTi shape memory alloys and related polycrystalline phenomenon. Mater Sci Eng A 317(1–2):85–92CrossRef
35.
Zurück zum Zitat Gall K, Maier HJ (2002) Cyclic deformation mechanisms in precipitated NiTi shape memory alloys. Acta Mater 50(18):4643–4657CrossRef Gall K, Maier HJ (2002) Cyclic deformation mechanisms in precipitated NiTi shape memory alloys. Acta Mater 50(18):4643–4657CrossRef
36.
Zurück zum Zitat Brinson LC, Schmidt I, Lammering R (2004) Stress-induced transformation behavior of a polycrystalline NiTi shape memory alloy: micro and macromechanical investigations via in situ optical microscopy. J Mech Phys Solids 52(7):1549–1571CrossRef Brinson LC, Schmidt I, Lammering R (2004) Stress-induced transformation behavior of a polycrystalline NiTi shape memory alloy: micro and macromechanical investigations via in situ optical microscopy. J Mech Phys Solids 52(7):1549–1571CrossRef
37.
Zurück zum Zitat Pelton AR (2011) Nitinol fatigue: a review of microstructures and mechanisms. J Mater Eng Perform 20(4):613–617CrossRef Pelton AR (2011) Nitinol fatigue: a review of microstructures and mechanisms. J Mater Eng Perform 20(4):613–617CrossRef
38.
Zurück zum Zitat Delville R, Malard B, Pilch J, Sittner P, Schryvers D (2011) Transmission electron microscopy investigation of dislocation slip during superelastic cycling of Ni–Ti wires. Int J Plast 27(2):282–297CrossRef Delville R, Malard B, Pilch J, Sittner P, Schryvers D (2011) Transmission electron microscopy investigation of dislocation slip during superelastic cycling of Ni–Ti wires. Int J Plast 27(2):282–297CrossRef
39.
Zurück zum Zitat Pelton AR, Huang GH, Moine P, Sinclair R (2012) Effects of thermal cycling on microstructure and properties in Nitinol. Mater Sci Eng A 532:130–138CrossRef Pelton AR, Huang GH, Moine P, Sinclair R (2012) Effects of thermal cycling on microstructure and properties in Nitinol. Mater Sci Eng A 532:130–138CrossRef
40.
Zurück zum Zitat Miyazaki S, Igo Y, Otsuka K (1986) Effect of thermal cycling on the transformation temperatures of Ti–Ni alloys. Acta Metall 34(10):2045–2051CrossRef Miyazaki S, Igo Y, Otsuka K (1986) Effect of thermal cycling on the transformation temperatures of Ti–Ni alloys. Acta Metall 34(10):2045–2051CrossRef
41.
Zurück zum Zitat Urbina C, De la Flor S, Ferrando F (2009) Effect of thermal cycling on the thermomechanical behaviour of NiTi shape memory alloys. Mater Sci Eng A 501(1–2):197–206CrossRef Urbina C, De la Flor S, Ferrando F (2009) Effect of thermal cycling on the thermomechanical behaviour of NiTi shape memory alloys. Mater Sci Eng A 501(1–2):197–206CrossRef
42.
Zurück zum Zitat Henderson E, Nash DH, Dempster WM (2011) On the experimental testing of fine Nitinol wires for medical devices. J Mech Behav Biomed Mater 4(3):261–268CrossRef Henderson E, Nash DH, Dempster WM (2011) On the experimental testing of fine Nitinol wires for medical devices. J Mech Behav Biomed Mater 4(3):261–268CrossRef
43.
Zurück zum Zitat Miyazaki S, Imai T, Igo Y, Otsuka K (1986) Effect of cyclic deformation on the pseudoelasticity characteristics of Ti–Ni alloys. Metall Trans 17A:115–120CrossRef Miyazaki S, Imai T, Igo Y, Otsuka K (1986) Effect of cyclic deformation on the pseudoelasticity characteristics of Ti–Ni alloys. Metall Trans 17A:115–120CrossRef
44.
Zurück zum Zitat Eucken S, Duerig TW (1989) The effects of pseudoelastic prestraining on the tensile behaviour and two-way shape memory effect in aged NiTi. Acta Metall 37(8):2245–2252CrossRef Eucken S, Duerig TW (1989) The effects of pseudoelastic prestraining on the tensile behaviour and two-way shape memory effect in aged NiTi. Acta Metall 37(8):2245–2252CrossRef
45.
Zurück zum Zitat Pelton AR, Simpson J, Stöckel D (1992) Towards the optimization of shape memory actuators: the effects of pre-strained wire. In: Borgmann H, Lenz K (eds) Actuator 92, VDI/VDE, 1992. Technologiezentrum Informationstechnik GmbH, pp 212–216 Pelton AR, Simpson J, Stöckel D (1992) Towards the optimization of shape memory actuators: the effects of pre-strained wire. In: Borgmann H, Lenz K (eds) Actuator 92, VDI/VDE, 1992. Technologiezentrum Informationstechnik GmbH, pp 212–216
46.
Zurück zum Zitat ASTM (2017) E3098-17 standard test method for mechanical uniaxial pre-strain and thermal free recovery of shape memory alloys. ASTM International, West Conshohocken ASTM (2017) E3098-17 standard test method for mechanical uniaxial pre-strain and thermal free recovery of shape memory alloys. ASTM International, West Conshohocken
47.
Zurück zum Zitat Sehitoglu H, Alkan S (2018) Recent progress on modeling slip deformation in shape memory alloys. Shape Mem Superelast 4:11–25CrossRef Sehitoglu H, Alkan S (2018) Recent progress on modeling slip deformation in shape memory alloys. Shape Mem Superelast 4:11–25CrossRef
48.
Zurück zum Zitat Gupta S, Pelton AR, Weaver JD, Gong XY, Nagaraja S (2015) High compressive pre-strains reduce the bending fatigue life of Nitinol wire. J Mech Behav Biomed Mater 44:96–108CrossRef Gupta S, Pelton AR, Weaver JD, Gong XY, Nagaraja S (2015) High compressive pre-strains reduce the bending fatigue life of Nitinol wire. J Mech Behav Biomed Mater 44:96–108CrossRef
49.
Zurück zum Zitat Gupta S, Pelton AR, Weaver JD, Gong XY, Nagaraja S (2019) Corrigendum to “High compressive pre-strains reduce the bending fatigue life of Nitinol wire” [J. Mech. Behav. Biomed. Mater. 44 (2015) 96–108]. J Mech Behav Biomed Mater 93:246CrossRef Gupta S, Pelton AR, Weaver JD, Gong XY, Nagaraja S (2019) Corrigendum to “High compressive pre-strains reduce the bending fatigue life of Nitinol wire” [J. Mech. Behav. Biomed. Mater. 44 (2015) 96–108]. J Mech Behav Biomed Mater 93:246CrossRef
50.
Zurück zum Zitat Gall K, Sehitoglu H (1999) The role of texture in tension–compression asymmetry in polycrystalline NiTi. Int J Plast 15(1):69–92CrossRef Gall K, Sehitoglu H (1999) The role of texture in tension–compression asymmetry in polycrystalline NiTi. Int J Plast 15(1):69–92CrossRef
51.
Zurück zum Zitat Gall K, Sehitoglu H (1999) Corrigendum to “The role of texture in tension–compression asymmetry in polycrystalline NiTi” [International Journal of Plasticity 15 (1999) 69–92]. Int J Plast 15(7):781CrossRef Gall K, Sehitoglu H (1999) Corrigendum to “The role of texture in tension–compression asymmetry in polycrystalline NiTi” [International Journal of Plasticity 15 (1999) 69–92]. Int J Plast 15(7):781CrossRef
52.
Zurück zum Zitat Gall K, Sehitoglu H, Chumlyakov YI, Kireeva IV (1999) Tension–compression asymmetry of the stress–strain response in aged single crystal and polycrystalline NiTi. Acta Mater 47(4):1203–1217CrossRef Gall K, Sehitoglu H, Chumlyakov YI, Kireeva IV (1999) Tension–compression asymmetry of the stress–strain response in aged single crystal and polycrystalline NiTi. Acta Mater 47(4):1203–1217CrossRef
53.
Zurück zum Zitat Bucsek AN, Paranjape HM, Stebner AP (2016) Myths and truths of Nitinol mechanics: elasticity and tension–compression asymmetry. Shape Mem Superelast 2(3):264–271CrossRef Bucsek AN, Paranjape HM, Stebner AP (2016) Myths and truths of Nitinol mechanics: elasticity and tension–compression asymmetry. Shape Mem Superelast 2(3):264–271CrossRef
54.
Zurück zum Zitat Reedlunn B, Churchill CB, Nelson EE, Shaw JA, Daly SH (2012) Tension, compression, and bending of superelastic shape memory alloy tubes. J Mech Phys Solids 63:506–537CrossRef Reedlunn B, Churchill CB, Nelson EE, Shaw JA, Daly SH (2012) Tension, compression, and bending of superelastic shape memory alloy tubes. J Mech Phys Solids 63:506–537CrossRef
55.
Zurück zum Zitat Stebner AP, Vogel SC, Noebe RD, Sisneros TA, Clausen B, Brown DW, Garg A, Brinson LC (2013) Micromechanical quantification of elastic, twinning, and slip strain partitioning exhibited by polycrystalline, monoclinic nickel–titanium during large uniaxial deformations measured via in situ neutron diffraction. J Mech Phys Solids 61(11):2302–2330CrossRef Stebner AP, Vogel SC, Noebe RD, Sisneros TA, Clausen B, Brown DW, Garg A, Brinson LC (2013) Micromechanical quantification of elastic, twinning, and slip strain partitioning exhibited by polycrystalline, monoclinic nickel–titanium during large uniaxial deformations measured via in situ neutron diffraction. J Mech Phys Solids 61(11):2302–2330CrossRef
56.
Zurück zum Zitat Stebner AP, Paranjape HM, Clausen B, Brinson LC, Pelton AR (2015) In situ neutron diffraction studies of large monotonic deformations of superelastic Nitinol. Shape Mem Superelast 1:252–267CrossRef Stebner AP, Paranjape HM, Clausen B, Brinson LC, Pelton AR (2015) In situ neutron diffraction studies of large monotonic deformations of superelastic Nitinol. Shape Mem Superelast 1:252–267CrossRef
57.
Zurück zum Zitat Pelton AR, Clausen B, Stebner AP (2015) In situ neutron diffraction studies of increasing tension strains of superelastic Nitinol. Shape Mem Superelast 1(3):375–386CrossRef Pelton AR, Clausen B, Stebner AP (2015) In situ neutron diffraction studies of increasing tension strains of superelastic Nitinol. Shape Mem Superelast 1(3):375–386CrossRef
58.
Zurück zum Zitat Tušek J, Žerovnik A, Čebron M, Brojan M, Žužek B, Engelbrecht K, Cadelli A (2018) Elastocaloric effect vs fatigue life: exploring the durability limits of Ni–Ti plates under pre-strain conditions for elastocaloric cooling. Acta Mater 150:295–307CrossRef Tušek J, Žerovnik A, Čebron M, Brojan M, Žužek B, Engelbrecht K, Cadelli A (2018) Elastocaloric effect vs fatigue life: exploring the durability limits of Ni–Ti plates under pre-strain conditions for elastocaloric cooling. Acta Mater 150:295–307CrossRef
59.
Zurück zum Zitat Senthilnathan K, Shamimi A, Bonsignore C, Paranjape H, Duerig T (2019) Effect of prestrain on the fatigue life of superelastic Nitinol. J Mater Eng Perform 28:5946–5958CrossRef Senthilnathan K, Shamimi A, Bonsignore C, Paranjape H, Duerig T (2019) Effect of prestrain on the fatigue life of superelastic Nitinol. J Mater Eng Perform 28:5946–5958CrossRef
60.
Zurück zum Zitat Delpueyo D, Jury A, Balandraud X, Grédiac M (2021) Applying full-field measurement techniques for the thermomechanical characterization of shape memory alloys: a review and classification. Shape Mem Superelast 7(4):462–490CrossRef Delpueyo D, Jury A, Balandraud X, Grédiac M (2021) Applying full-field measurement techniques for the thermomechanical characterization of shape memory alloys: a review and classification. Shape Mem Superelast 7(4):462–490CrossRef
61.
Zurück zum Zitat Reedlunn B, Daly S, Shaw J (2013) Superelastic shape memory alloy cables: Part II—subcomponent isothermal responses. Int J Solids Struct 50(20–21):3027–3044CrossRef Reedlunn B, Daly S, Shaw J (2013) Superelastic shape memory alloy cables: Part II—subcomponent isothermal responses. Int J Solids Struct 50(20–21):3027–3044CrossRef
62.
Zurück zum Zitat Reedlunn B, Daly S, Shaw J (2013) Superelastic shape memory alloy cables: Part I—isothermal tension experiments. Int J Solids Struct 50(20–21):3009–3026CrossRef Reedlunn B, Daly S, Shaw J (2013) Superelastic shape memory alloy cables: Part I—isothermal tension experiments. Int J Solids Struct 50(20–21):3009–3026CrossRef
63.
Zurück zum Zitat Watkins RT, Reedlunn B, Daly S, Shaw JA (2018) Uniaxial, pure bending, and column buckling experiments on superelastic NiTi rods and tubes. Int J Solids Struct 146:1–28CrossRef Watkins RT, Reedlunn B, Daly S, Shaw JA (2018) Uniaxial, pure bending, and column buckling experiments on superelastic NiTi rods and tubes. Int J Solids Struct 146:1–28CrossRef
64.
Zurück zum Zitat Reedlunn B, LePage WS, Daly SH, Shaw JA (2020) Axial-torsion behavior of superelastic tubes: Part I, proportional isothermal experiments. Int J Solids Struct 199:1–35CrossRef Reedlunn B, LePage WS, Daly SH, Shaw JA (2020) Axial-torsion behavior of superelastic tubes: Part I, proportional isothermal experiments. Int J Solids Struct 199:1–35CrossRef
65.
Zurück zum Zitat Feng P, Sun Q (2006) Experimental investigation on macroscopic domain formation and evolution in polycrystalline NiTi microtubing under mechanical force. J Mech Phys Solids 54(8):1568–1603CrossRef Feng P, Sun Q (2006) Experimental investigation on macroscopic domain formation and evolution in polycrystalline NiTi microtubing under mechanical force. J Mech Phys Solids 54(8):1568–1603CrossRef
66.
Zurück zum Zitat Shaw JA, Kyriakides S (1997) On the nucleation and propagation of phase transformation fronts in a NiTi alloy. Acta Mater 45(2):683–700CrossRef Shaw JA, Kyriakides S (1997) On the nucleation and propagation of phase transformation fronts in a NiTi alloy. Acta Mater 45(2):683–700CrossRef
67.
Zurück zum Zitat Kimiecik M, Jones JW, Daly S (2016) The effect of microstructure on stress-induced martensitic transformation under cyclic loading in the SMA nickel–titanium. J Mech Phys Solids 89:16–30CrossRef Kimiecik M, Jones JW, Daly S (2016) The effect of microstructure on stress-induced martensitic transformation under cyclic loading in the SMA nickel–titanium. J Mech Phys Solids 89:16–30CrossRef
68.
Zurück zum Zitat Sridhar SK, Stebner AP, Rollett AD (2021) Statistical variations in predicted martensite variant volume fractions in superelastically deformed NiTi modeled using habit plane variants versus correspondence variants. Int J Solids Struct 221:60–76CrossRef Sridhar SK, Stebner AP, Rollett AD (2021) Statistical variations in predicted martensite variant volume fractions in superelastically deformed NiTi modeled using habit plane variants versus correspondence variants. Int J Solids Struct 221:60–76CrossRef
69.
Zurück zum Zitat Barney MM, Xu D, Robertson SW, Schroeder V, Ritchie RO, Pelton AR, Mehta A (2011) Impact of thermomechanical texture on the superelastic response of Nitinol implants. J Mech Behav Biomed Mater 4(7):1431–1439CrossRef Barney MM, Xu D, Robertson SW, Schroeder V, Ritchie RO, Pelton AR, Mehta A (2011) Impact of thermomechanical texture on the superelastic response of Nitinol implants. J Mech Behav Biomed Mater 4(7):1431–1439CrossRef
70.
Zurück zum Zitat Young ML, Wagner MFX, Frenzel J, Schmahl WW, Eggeler G (2010) Phase volume fractions and strain measurements in an ultrafine-grained NiTi shape-memory alloy during tensile loading. Acta Mater 58(7):2344–2354CrossRef Young ML, Wagner MFX, Frenzel J, Schmahl WW, Eggeler G (2010) Phase volume fractions and strain measurements in an ultrafine-grained NiTi shape-memory alloy during tensile loading. Acta Mater 58(7):2344–2354CrossRef
71.
Zurück zum Zitat LePage WS, Shaw JA, Daly SH (2021) Effects of texture on the functional and structural fatigue of a NiTi shape memory alloy. Int J Solids Struct 221:150–164CrossRef LePage WS, Shaw JA, Daly SH (2021) Effects of texture on the functional and structural fatigue of a NiTi shape memory alloy. Int J Solids Struct 221:150–164CrossRef
72.
Zurück zum Zitat Robertson SW, Gong XY, Ritchie RO (2006) Effect of product form and heat treatment on the crystallographic texture of austenitic Nitinol. J Mater Sci 41(3):621–630CrossRef Robertson SW, Gong XY, Ritchie RO (2006) Effect of product form and heat treatment on the crystallographic texture of austenitic Nitinol. J Mater Sci 41(3):621–630CrossRef
73.
Zurück zum Zitat Bucsek AN, Dale D, Ko JYP, Chumlyakov Y, Stebner AP (2018) Measuring stress-induced martensite microstructures using far-field high-energy diffraction microscopy. Acta Crystallogr A 74(Pt 5):425–446CrossRef Bucsek AN, Dale D, Ko JYP, Chumlyakov Y, Stebner AP (2018) Measuring stress-induced martensite microstructures using far-field high-energy diffraction microscopy. Acta Crystallogr A 74(Pt 5):425–446CrossRef
74.
Zurück zum Zitat Bucsek A, Seiner H, Simons H, Yildirim C, Cook P, Chumlyakov Y, Detlefs C, Stebner AP (2019) Sub-surface measurements of the austenite microstructure in response to martensitic phase transformation. Acta Mater 179:273–286CrossRef Bucsek A, Seiner H, Simons H, Yildirim C, Cook P, Chumlyakov Y, Detlefs C, Stebner AP (2019) Sub-surface measurements of the austenite microstructure in response to martensitic phase transformation. Acta Mater 179:273–286CrossRef
75.
Zurück zum Zitat Bucsek AN, Casalena L, Pagan DC, Paul PP, Chumlyakov Y, Mills MJ, Stebner AP (2019) Three-dimensional in situ characterization of phase transformation induced austenite grain refinement in nickel–titanium. Scr Mater 162:361–366CrossRef Bucsek AN, Casalena L, Pagan DC, Paul PP, Chumlyakov Y, Mills MJ, Stebner AP (2019) Three-dimensional in situ characterization of phase transformation induced austenite grain refinement in nickel–titanium. Scr Mater 162:361–366CrossRef
76.
Zurück zum Zitat Bowers ML, Gao Y, Yang L, Gaydosh DJ, De Graef M, Noebe RD, Wang Y, Mills MJ (2015) Austenite grain refinement during load-biased thermal cycling of a Ni49.9Ti50.1 shape memory alloy. Acta Mater 91:318–329CrossRef Bowers ML, Gao Y, Yang L, Gaydosh DJ, De Graef M, Noebe RD, Wang Y, Mills MJ (2015) Austenite grain refinement during load-biased thermal cycling of a Ni49.9Ti50.1 shape memory alloy. Acta Mater 91:318–329CrossRef
77.
Zurück zum Zitat Bowers ML, Gao Y, Yang L, Gaydosh DJ, De Graef M, Noebe RD, Wang Y, Mills MJ (2016) Corrigendum to “Austenite grain refinement during load-biased thermal cycling of a Ni49.9Ti50.1 shape memory alloy” [Acta Mater. 91 (2015) 318–329]. Acta Mater 108:380CrossRef Bowers ML, Gao Y, Yang L, Gaydosh DJ, De Graef M, Noebe RD, Wang Y, Mills MJ (2016) Corrigendum to “Austenite grain refinement during load-biased thermal cycling of a Ni49.9Ti50.1 shape memory alloy” [Acta Mater. 91 (2015) 318–329]. Acta Mater 108:380CrossRef
78.
Zurück zum Zitat Gao Y, Casalena L, Bowers ML, Noebe RD, Mills MJ, Wang Y (2017) An origin of functional fatigue of shape memory alloys. Acta Mater 126:389–400CrossRef Gao Y, Casalena L, Bowers ML, Noebe RD, Mills MJ, Wang Y (2017) An origin of functional fatigue of shape memory alloys. Acta Mater 126:389–400CrossRef
79.
Zurück zum Zitat Li W, Lee S, McKenna M, Casalena L, Pagan D, Mills M, Stebner A, Bucsek A (2022) Three-dimensional in situ characterization of dislocation density in polycrystalline nickel–titanium induced during load-biased thermal cycling (to be published) Li W, Lee S, McKenna M, Casalena L, Pagan D, Mills M, Stebner A, Bucsek A (2022) Three-dimensional in situ characterization of dislocation density in polycrystalline nickel–titanium induced during load-biased thermal cycling (to be published)
80.
Zurück zum Zitat Zhang XY, Brinson LC, Sun QP (2000) The variant selection criteria in single-crystal CuAlNi shape memory alloys. Smart Mater Struct 9:571–581CrossRef Zhang XY, Brinson LC, Sun QP (2000) The variant selection criteria in single-crystal CuAlNi shape memory alloys. Smart Mater Struct 9:571–581CrossRef
81.
Zurück zum Zitat Paranjape HM, Paul PP, Amin-Ahmadi B, Sharma H, Dale D, Ko JYP, Chumlyakov YI, Brinson LC, Stebner AP (2018) In situ, 3D characterization of the deformation mechanics of a superelastic NiTi shape memory alloy single crystal under multiscale constraint. Acta Mater 144:748–757CrossRef Paranjape HM, Paul PP, Amin-Ahmadi B, Sharma H, Dale D, Ko JYP, Chumlyakov YI, Brinson LC, Stebner AP (2018) In situ, 3D characterization of the deformation mechanics of a superelastic NiTi shape memory alloy single crystal under multiscale constraint. Acta Mater 144:748–757CrossRef
82.
Zurück zum Zitat Gall K, Juntunen K, Maier HJ, Sehitoglu H, Chumlyakov YI (2001) Instrumented micro-indentation of NiTi shape-memory alloys. Acta Mater 49(16):3205–3217CrossRef Gall K, Juntunen K, Maier HJ, Sehitoglu H, Chumlyakov YI (2001) Instrumented micro-indentation of NiTi shape-memory alloys. Acta Mater 49(16):3205–3217CrossRef
83.
Zurück zum Zitat Simon T, Kröger A, Somsen C, Dlouhy A, Eggeler G (2009) On the multiplication of dislocations during martensitic transformations in NiTi shape memory alloys. Acta Mater 58(5):1850–1860CrossRef Simon T, Kröger A, Somsen C, Dlouhy A, Eggeler G (2009) On the multiplication of dislocations during martensitic transformations in NiTi shape memory alloys. Acta Mater 58(5):1850–1860CrossRef
84.
Zurück zum Zitat Norfleet DM, Sarosi PM, Manchiraju S, Wagner MFX, Uchic MD, Anderson PM, Mills MJ (2009) Transformation-induced plasticity during pseudoelastic deformation in Ni–Ti microcrystals. Acta Mater 57(12):3549–3561CrossRef Norfleet DM, Sarosi PM, Manchiraju S, Wagner MFX, Uchic MD, Anderson PM, Mills MJ (2009) Transformation-induced plasticity during pseudoelastic deformation in Ni–Ti microcrystals. Acta Mater 57(12):3549–3561CrossRef
85.
Zurück zum Zitat Pfetzing-Micklich J, Ghisleni R, Simon T, Somsen C, Michler J, Eggeler G (2012) Orientation dependence of stress-induced phase transformation and dislocation plasticity in NiTi shape memory alloys on the micro scale. Mater Sci Eng A 538:265–271CrossRef Pfetzing-Micklich J, Ghisleni R, Simon T, Somsen C, Michler J, Eggeler G (2012) Orientation dependence of stress-induced phase transformation and dislocation plasticity in NiTi shape memory alloys on the micro scale. Mater Sci Eng A 538:265–271CrossRef
86.
Zurück zum Zitat Knowles KM, Smith DA (1981) The crystallography of the martensitic transformation in equiatomic nickel–titanium. Acta Metall 29(1):101–110CrossRef Knowles KM, Smith DA (1981) The crystallography of the martensitic transformation in equiatomic nickel–titanium. Acta Metall 29(1):101–110CrossRef
87.
Zurück zum Zitat Mohammed ASK, Sehitoglu H (2020) Martensitic twin boundary migration as a source of irreversible slip in shape memory alloys. Acta Mater 186:50–67CrossRef Mohammed ASK, Sehitoglu H (2020) Martensitic twin boundary migration as a source of irreversible slip in shape memory alloys. Acta Mater 186:50–67CrossRef
88.
Zurück zum Zitat Goo E, Duerig T, Melton KN, Sinclair R (1985) Mechanical twinning in Ti50Ni47Fe3 and Ti49Ni51 Alloys. Acta Metall 33(9):1725–1733CrossRef Goo E, Duerig T, Melton KN, Sinclair R (1985) Mechanical twinning in Ti50Ni47Fe3 and Ti49Ni51 Alloys. Acta Metall 33(9):1725–1733CrossRef
90.
Zurück zum Zitat Chowdhury P, Sehitoglu H (2017) Deformation physics of shape memory alloys—fundamentals at atomistic frontier. Prog Mater Sci 88:49–88CrossRef Chowdhury P, Sehitoglu H (2017) Deformation physics of shape memory alloys—fundamentals at atomistic frontier. Prog Mater Sci 88:49–88CrossRef
91.
Zurück zum Zitat Mohammed ASK, Sehitoglu H (2020) Modeling the interface structure of type II twin boundary in B19′ NiTi from an atomistic and topological standpoint. Acta Mater 183:93–109CrossRef Mohammed ASK, Sehitoglu H (2020) Modeling the interface structure of type II twin boundary in B19′ NiTi from an atomistic and topological standpoint. Acta Mater 183:93–109CrossRef
92.
Zurück zum Zitat Tabanli RM, Simha NK, Berg BT (1999) Mean stress effects on fatigue of NiTi. Mater Sci Eng A 273–275:644–648CrossRef Tabanli RM, Simha NK, Berg BT (1999) Mean stress effects on fatigue of NiTi. Mater Sci Eng A 273–275:644–648CrossRef
93.
Zurück zum Zitat Tolomeo D, Davidson S, Santinoranout M (2000) Cyclic properties of superelastic Nitinol: design implications, In: Russell SM, Pelton AR (eds) SMST-2000: proceedings of the international conference on shape memory and superelastic technologies. International Organization on SMST, Pacific Grove. pp 409–417. Tolomeo D, Davidson S, Santinoranout M (2000) Cyclic properties of superelastic Nitinol: design implications, In: Russell SM, Pelton AR (eds) SMST-2000: proceedings of the international conference on shape memory and superelastic technologies. International Organization on SMST, Pacific Grove. pp 409–417.
94.
Zurück zum Zitat Morgan NB, Painter J, Moffat A (2003) Mean strain effects and microstructural observations during in vitro fatigue testing of NiTi. In: Pelton AR, Duerig TW (eds) SMST-2003: proceedings of the international conference on shape memory and superelastic technologies, 2003. International Organization on SMST, Pacific Grove. pp 303–310 Morgan NB, Painter J, Moffat A (2003) Mean strain effects and microstructural observations during in vitro fatigue testing of NiTi. In: Pelton AR, Duerig TW (eds) SMST-2003: proceedings of the international conference on shape memory and superelastic technologies, 2003. International Organization on SMST, Pacific Grove. pp 303–310
95.
Zurück zum Zitat Pelton AR, Schroeder V, Mitchell MR, Gong X-Y, Barney M, Robertson SW (2008) Fatigue and durability of Nitinol stents. J Mech Behav Biomed Mater 1:153–164CrossRef Pelton AR, Schroeder V, Mitchell MR, Gong X-Y, Barney M, Robertson SW (2008) Fatigue and durability of Nitinol stents. J Mech Behav Biomed Mater 1:153–164CrossRef
96.
Zurück zum Zitat Berti F, Allegretti D, Pennati G, Migliavacca F, Petrini L (2017) Durability of nickel–titanium endovascular devices for peripheral applications. In: European symposium on vascular biomaterials, 2017. Geprovas, Strasbourg Berti F, Allegretti D, Pennati G, Migliavacca F, Petrini L (2017) Durability of nickel–titanium endovascular devices for peripheral applications. In: European symposium on vascular biomaterials, 2017. Geprovas, Strasbourg
97.
Zurück zum Zitat Bonsignore C (2017) Present and future approaches to lifetime prediction of superelastic Nitinol. Theor Appl Fract Mech 92:298–305CrossRef Bonsignore C (2017) Present and future approaches to lifetime prediction of superelastic Nitinol. Theor Appl Fract Mech 92:298–305CrossRef
98.
Zurück zum Zitat Catoor D, Ma Z, Kumar S (2019) Cyclic response and fatigue failure of Nitinol under tension–tension loading. J Mater Res 34:1–19 Catoor D, Ma Z, Kumar S (2019) Cyclic response and fatigue failure of Nitinol under tension–tension loading. J Mater Res 34:1–19
99.
Zurück zum Zitat Cao H, Wu MH, Zhou F, McMeeking RM, Ritchie RO (2020) The influence of mean strain on the high-cycle fatigue of Nitinol with application to medical devices. J Mech Phys Solids 143:104057CrossRef Cao H, Wu MH, Zhou F, McMeeking RM, Ritchie RO (2020) The influence of mean strain on the high-cycle fatigue of Nitinol with application to medical devices. J Mech Phys Solids 143:104057CrossRef
100.
Zurück zum Zitat Tabanli RM, Simha NK, Berg BT (2001) Mean strain effects on the fatigue properties of superelastic NiTi. Metall Mater Trans A (USA) 32A(7):1866–1869CrossRef Tabanli RM, Simha NK, Berg BT (2001) Mean strain effects on the fatigue properties of superelastic NiTi. Metall Mater Trans A (USA) 32A(7):1866–1869CrossRef
101.
Zurück zum Zitat Gerber H (1874) Bestimmung der zulassigen Spannungen in Eisen-konstructionen. Z Bayerischen Archit Ing-Vereins 6:101–110 Gerber H (1874) Bestimmung der zulassigen Spannungen in Eisen-konstructionen. Z Bayerischen Archit Ing-Vereins 6:101–110
102.
Zurück zum Zitat Goodman J (1899) Mechanics applied to engineering. Longmans Green, London, p 616 Goodman J (1899) Mechanics applied to engineering. Longmans Green, London, p 616
103.
Zurück zum Zitat Soderberg CR (1939) Factor of safety and working stress. Trans Am Soc Mech Eng 52:13–28 Soderberg CR (1939) Factor of safety and working stress. Trans Am Soc Mech Eng 52:13–28
104.
Zurück zum Zitat Morrow J (1965) Cyclic plastic strain energy and fatigue of metals. In: International friction, damping, and cyclic plasticity. ASTM, Philadelphia Morrow J (1965) Cyclic plastic strain energy and fatigue of metals. In: International friction, damping, and cyclic plasticity. ASTM, Philadelphia
106.
Zurück zum Zitat Rebelo N, Zipse A, Schlun M, Dreher G (2011) A material model for the cyclic behavior of Nitinol. J Mater Eng Perform 20(4):605–612CrossRef Rebelo N, Zipse A, Schlun M, Dreher G (2011) A material model for the cyclic behavior of Nitinol. J Mater Eng Perform 20(4):605–612CrossRef
107.
Zurück zum Zitat Schlun M, Zipse A, Dreher G, Rebelo N (2011) Effects of cyclic loading on the uniaxial behavior of Nitinol. J Mater Eng Perform 20(4):684–687CrossRef Schlun M, Zipse A, Dreher G, Rebelo N (2011) Effects of cyclic loading on the uniaxial behavior of Nitinol. J Mater Eng Perform 20(4):684–687CrossRef
108.
Zurück zum Zitat Stebner A, Bhattacharya K (2014) Micromechanics inspired, phenomenological model of fully coupled plasticity, phase transformation, and martensite reorientation in shape memory alloys. In: Society of Engineering Science 51st annual technical meeting 2014. Purdue University, West Lafayette Stebner A, Bhattacharya K (2014) Micromechanics inspired, phenomenological model of fully coupled plasticity, phase transformation, and martensite reorientation in shape memory alloys. In: Society of Engineering Science 51st annual technical meeting 2014. Purdue University, West Lafayette
109.
Zurück zum Zitat Kelly A, Stebner AP, Bhattacharya K (2016) A micromechanics-inspired constitutive model for shape-memory alloys that accounts for initiation and saturation of phase transformation. J Mech Phys Solids 97:197–224CrossRef Kelly A, Stebner AP, Bhattacharya K (2016) A micromechanics-inspired constitutive model for shape-memory alloys that accounts for initiation and saturation of phase transformation. J Mech Phys Solids 97:197–224CrossRef
110.
Zurück zum Zitat Bonsignore C, Shamini A, Duerig T (2019) The role of parent phase compliance on the fatigue lifetime of Ni–Ti. Shape Mem Superelast 5:407–414CrossRef Bonsignore C, Shamini A, Duerig T (2019) The role of parent phase compliance on the fatigue lifetime of Ni–Ti. Shape Mem Superelast 5:407–414CrossRef
111.
Zurück zum Zitat Paranjape HM, Ng B, Ong I, Vien L, Huntley C (2020) Phase transformation volume amplitude as a low-cycle fatigue indicator in nickel–titanium shape memory alloys. Scr Mater 178:442–446CrossRef Paranjape HM, Ng B, Ong I, Vien L, Huntley C (2020) Phase transformation volume amplitude as a low-cycle fatigue indicator in nickel–titanium shape memory alloys. Scr Mater 178:442–446CrossRef
113.
Zurück zum Zitat Smith KN, Watson P, Topper TH (1970) A stress–strain function for the fatigue of metals. J Mater JMLSA 5(4):767–778 Smith KN, Watson P, Topper TH (1970) A stress–strain function for the fatigue of metals. J Mater JMLSA 5(4):767–778
Metadaten
Titel
Pre-strain and Mean Strain Effects on the Fatigue Behavior of Superelastic Nitinol Medical Devices
verfasst von
A. R. Pelton
B. T. Berg
P. Saffari
A. P. Stebner
A. N. Bucsek
Publikationsdatum
08.07.2022
Verlag
Springer US
Erschienen in
Shape Memory and Superelasticity / Ausgabe 2/2022
Print ISSN: 2199-384X
Elektronische ISSN: 2199-3858
DOI
https://doi.org/10.1007/s40830-022-00377-y

Weitere Artikel der Ausgabe 2/2022

Shape Memory and Superelasticity 2/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.