Skip to main content
Erschienen in: Shape Memory and Superelasticity 2/2022

17.05.2022 | Technical Article

Oxide Layer Formation, Corrosion, and Biocompatibility of Nitinol Cardiovascular Devices

verfasst von: Srinidhi Nagaraja, Ronald Brown, David Saylor, Andreas Undisz

Erschienen in: Shape Memory and Superelasticity | Ausgabe 2/2022

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nitinol-based cardiovascular devices can undergo corrosion following placement in the body and the resulting corrosion events may have potential implications on the mechanical integrity and biocompatibility of the device. This review article summarizes the critical factors that influence the degree to which Nitinol devices are susceptible to in vitro and in vivo corrosion, the extent of nickel release from the device, and the potential adverse biological effects following nickel release from the device. In particular, local and uniform corrosion resistance of the device is related to the quality of the protective surface oxide layer that is established by heat treatments and common surface processing techniques during device fabrication. Further, Nitinol implants in the cardiovascular system may be subjected to mechanical loading (pre-strain, fatigue, and fretting) and interact with different metals that can impact the corrosion behavior of the material. Biological responses that may occur following nickel release from Nitinol devices, such as cytotoxicity, thrombus formation, local effects on vascular tissue, systemic effects, and hypersensitivity, are discussed in this review. In addition, the use of computational biokinetic models in the absence of experimentally derived data to estimate local and systemic nickel concentrations in the body is discussed.
Literatur
3.
Zurück zum Zitat Heintz C, Riepe G, Birken L et al (2001) Corroded Nitinol wires in explanted aortic endografts: an important mechanism. J Endovasc Ther 8(3):248–253CrossRef Heintz C, Riepe G, Birken L et al (2001) Corroded Nitinol wires in explanted aortic endografts: an important mechanism. J Endovasc Ther 8(3):248–253CrossRef
7.
Zurück zum Zitat Halwani DO, Anderson PG, Lemons JE et al (2010) In vivo corrosion and local release of metallic ions from vascular stents into surrounding tissue. J Invasive Cardiol 22:528–535 Halwani DO, Anderson PG, Lemons JE et al (2010) In vivo corrosion and local release of metallic ions from vascular stents into surrounding tissue. J Invasive Cardiol 22:528–535
8.
Zurück zum Zitat Cragg AH, De Jong SC, Barnhart WH et al (1993) Nitinol intravascular stent: results of preclinical evaluation. Radiology 189:775–778CrossRef Cragg AH, De Jong SC, Barnhart WH et al (1993) Nitinol intravascular stent: results of preclinical evaluation. Radiology 189:775–778CrossRef
13.
Zurück zum Zitat Burian M, Neumann T, Weber M et al (2006) Nickel release, a possible indicator for the duration of antiplatelet treatment, from a nickel cardiac device in vivo: a study in patients with atrial septal defects implanted with an Amplatzer occluder. Int J Clin Pharmacol Ther 44:107–112CrossRef Burian M, Neumann T, Weber M et al (2006) Nickel release, a possible indicator for the duration of antiplatelet treatment, from a nickel cardiac device in vivo: a study in patients with atrial septal defects implanted with an Amplatzer occluder. Int J Clin Pharmacol Ther 44:107–112CrossRef
15.
Zurück zum Zitat Sohmura T (1988) Improvement in corrosion resistance in Ni–Ti shape memory alloy for implant by oxide film coating, p 574 Sohmura T (1988) Improvement in corrosion resistance in Ni–Ti shape memory alloy for implant by oxide film coating, p 574
16.
Zurück zum Zitat Pelton AR, DiCello J, Miyazaki S (2000) Optimisation of processing and properties of medical grade Nitinol wire. Minim Invasive Ther 9:107–118CrossRef Pelton AR, DiCello J, Miyazaki S (2000) Optimisation of processing and properties of medical grade Nitinol wire. Minim Invasive Ther 9:107–118CrossRef
17.
Zurück zum Zitat Shabalovskaya S, Rondelli G, Anderegg J et al (2003) Effect of chemical etching and aging in boiling water on the corrosion resistance of Nitinol wires with black oxide resulting from manufacturing process. J Biomed Mater Res B 66B:331–340CrossRef Shabalovskaya S, Rondelli G, Anderegg J et al (2003) Effect of chemical etching and aging in boiling water on the corrosion resistance of Nitinol wires with black oxide resulting from manufacturing process. J Biomed Mater Res B 66B:331–340CrossRef
21.
Zurück zum Zitat Undisz A (2018) The variability of natural NiTi surfaces. Jena Undisz A (2018) The variability of natural NiTi surfaces. Jena
22.
Zurück zum Zitat Chan CM, Trigwell S, Duerig T (1990) Oxidation of an NiTi alloy. Surf Interface Anal 15:349–354CrossRef Chan CM, Trigwell S, Duerig T (1990) Oxidation of an NiTi alloy. Surf Interface Anal 15:349–354CrossRef
23.
Zurück zum Zitat Firstov GS, Vitchev RG, Kumar H et al (2002) Surface oxidation of NiTi shape memory alloy. Biomaterials 23:4863–4871CrossRef Firstov GS, Vitchev RG, Kumar H et al (2002) Surface oxidation of NiTi shape memory alloy. Biomaterials 23:4863–4871CrossRef
24.
Zurück zum Zitat Zeng CL, Li MC, Liu GQ, Wu WT (2002) Air oxidation of Ni–Ti alloys at 650–850 degrees C. Oxid Met 58:171–184CrossRef Zeng CL, Li MC, Liu GQ, Wu WT (2002) Air oxidation of Ni–Ti alloys at 650–850 degrees C. Oxid Met 58:171–184CrossRef
25.
Zurück zum Zitat Michiardi A, Aparicio C, Planell JA, Gil FJ (2006) New oxidation treatment of NiTi shape memory alloys to obtain Ni-free surfaces and to improve biocompatibility. J Biomed Mater Res B 77:249–256CrossRef Michiardi A, Aparicio C, Planell JA, Gil FJ (2006) New oxidation treatment of NiTi shape memory alloys to obtain Ni-free surfaces and to improve biocompatibility. J Biomed Mater Res B 77:249–256CrossRef
29.
Zurück zum Zitat Trepanier C, Tabrizian M, Yahia LH et al (1998) Effect of modification of oxide layer on NiTi stent corrosion resistance. J Biomed Mater Res 43:433–440CrossRef Trepanier C, Tabrizian M, Yahia LH et al (1998) Effect of modification of oxide layer on NiTi stent corrosion resistance. J Biomed Mater Res 43:433–440CrossRef
30.
Zurück zum Zitat Sharma AK (1992) Anodizing titanium for space applications. Thin Solid Films 208:48–54CrossRef Sharma AK (1992) Anodizing titanium for space applications. Thin Solid Films 208:48–54CrossRef
33.
Zurück zum Zitat Belyaev SP, Gil’mutdinov FZ, Kanunnikova OM, (1999) Investigation of oxidation and segregation processes at the surface of titanium nickelide. Tech Phys Lett 25:546–548CrossRef Belyaev SP, Gil’mutdinov FZ, Kanunnikova OM, (1999) Investigation of oxidation and segregation processes at the surface of titanium nickelide. Tech Phys Lett 25:546–548CrossRef
34.
Zurück zum Zitat Zhu L, Fino JM, Pelton A (2003). In: Pelton AR, Duerig TW (eds) Oxidation of Nitinol. ASM International, Materials Park Zhu L, Fino JM, Pelton A (2003). In: Pelton AR, Duerig TW (eds) Oxidation of Nitinol. ASM International, Materials Park
38.
Zurück zum Zitat Espinos JP, Fernandez A, Gonzalezelipe AR (1993) Oxidation and diffusion-processes in nickel–titanium oxide systems. Surf Sci 295:402–410CrossRef Espinos JP, Fernandez A, Gonzalezelipe AR (1993) Oxidation and diffusion-processes in nickel–titanium oxide systems. Surf Sci 295:402–410CrossRef
41.
Zurück zum Zitat Shabalovskaya SA (1996) On the nature of the biocompatibility and on medical applications of NiTi shape memory and superelastic alloys. Biomed Mater Eng 6:267–289 Shabalovskaya SA (1996) On the nature of the biocompatibility and on medical applications of NiTi shape memory and superelastic alloys. Biomed Mater Eng 6:267–289
42.
Zurück zum Zitat Barison S, Cattarin S, Daolio S et al (2004) Characterisation of surface oxidation of nickel–titanium alloy by ion-beam and electrochemical techniques. Electrochim Acta 50:11–18CrossRef Barison S, Cattarin S, Daolio S et al (2004) Characterisation of surface oxidation of nickel–titanium alloy by ion-beam and electrochemical techniques. Electrochim Acta 50:11–18CrossRef
43.
Zurück zum Zitat Gu YW, Tay BY, Lim CS, Yong MS (2005) Characterization of bioactive surface oxidation layer on NiTi alloy. Appl Surf Sci 252:2038–2049CrossRef Gu YW, Tay BY, Lim CS, Yong MS (2005) Characterization of bioactive surface oxidation layer on NiTi alloy. Appl Surf Sci 252:2038–2049CrossRef
46.
Zurück zum Zitat Sittner P, Liu Y, Novak V (2005) On the origin of Luders-like deformation of NiTi shape memory alloys. J Mech Phys Solids 53:1719–1746CrossRef Sittner P, Liu Y, Novak V (2005) On the origin of Luders-like deformation of NiTi shape memory alloys. J Mech Phys Solids 53:1719–1746CrossRef
50.
Zurück zum Zitat Corbett RA (2003) Laboratory corrosion testing of medical implants. ASM International, Materials Park, pp 166–171 Corbett RA (2003) Laboratory corrosion testing of medical implants. ASM International, Materials Park, pp 166–171
52.
Zurück zum Zitat Pound BG (2006) Susceptibility of Nitinol to localized corrosion. J Biomed Mater Res A 77:185–191CrossRef Pound BG (2006) Susceptibility of Nitinol to localized corrosion. J Biomed Mater Res A 77:185–191CrossRef
70.
Zurück zum Zitat Trepanier C, Pelton A (2003) Effect of strain on the corrosion resistance of Nitinol and stainless steel in a simulated physiological environment. In: Materials and processes for medical devices conference proceedings, Pacific Grove, CA, pp 394–398 Trepanier C, Pelton A (2003) Effect of strain on the corrosion resistance of Nitinol and stainless steel in a simulated physiological environment. In: Materials and processes for medical devices conference proceedings, Pacific Grove, CA, pp 394–398
79.
Zurück zum Zitat Kleinstreuer C, Li Z, Basciano CA et al (2008) Computational mechanics of Nitinol stent grafts. J Biomech 41:2370–2378CrossRef Kleinstreuer C, Li Z, Basciano CA et al (2008) Computational mechanics of Nitinol stent grafts. J Biomech 41:2370–2378CrossRef
80.
Zurück zum Zitat Sivan S, Di Prima M, Weaver JD (2017) Effect of applied potential on fatigue life of electropolished Nitinol wires. Shape Mem Superelast 3:238–249CrossRef Sivan S, Di Prima M, Weaver JD (2017) Effect of applied potential on fatigue life of electropolished Nitinol wires. Shape Mem Superelast 3:238–249CrossRef
87.
Zurück zum Zitat Pelton AR, Blaich H (2017) Towards the understanding of biocompatibility in Nitinol medical devices. SurFACTS Biomater 22(1):3–7 Pelton AR, Blaich H (2017) Towards the understanding of biocompatibility in Nitinol medical devices. SurFACTS Biomater 22(1):3–7
88.
Zurück zum Zitat Kazimierczak A, Podraza W, Lenart S et al (2013) Electrical potentials between stent-grafts made from different metals induce negligible corrosion. Eur J Vasc Endovasc Surg 46:432–437CrossRef Kazimierczak A, Podraza W, Lenart S et al (2013) Electrical potentials between stent-grafts made from different metals induce negligible corrosion. Eur J Vasc Endovasc Surg 46:432–437CrossRef
94.
Zurück zum Zitat Ryhänen J, Niemi E, Serlo W et al (1997) Biocompatibility of nickel–titanium shape memory metal and its corrosion behavior in human cell cultures. J Biomed Mater Res Off J Soc Biomater Jpn Soc Biomater 35:451–457CrossRef Ryhänen J, Niemi E, Serlo W et al (1997) Biocompatibility of nickel–titanium shape memory metal and its corrosion behavior in human cell cultures. J Biomed Mater Res Off J Soc Biomater Jpn Soc Biomater 35:451–457CrossRef
95.
Zurück zum Zitat Wever DJ, Veldhuizen AG, Sanders MM et al (1997) Cytotoxic, allergic and genotoxic activity of a nickel–titanium alloy. Biomaterials 18:1115–1120CrossRef Wever DJ, Veldhuizen AG, Sanders MM et al (1997) Cytotoxic, allergic and genotoxic activity of a nickel–titanium alloy. Biomaterials 18:1115–1120CrossRef
101.
Zurück zum Zitat Armitage DA, Grant DM (2003) Characterisation of surface-modified nickel titanium alloys. Mater Sci Eng A 349:89–97CrossRef Armitage DA, Grant DM (2003) Characterisation of surface-modified nickel titanium alloys. Mater Sci Eng A 349:89–97CrossRef
109.
Zurück zum Zitat Honari G, Ellis SG, Wilkoff BL et al (2008) Hypersensitivity reactions associated with endovascular devices. Contact Dermat 59:7–22CrossRef Honari G, Ellis SG, Wilkoff BL et al (2008) Hypersensitivity reactions associated with endovascular devices. Contact Dermat 59:7–22CrossRef
114.
Zurück zum Zitat Verma DR, Khan MF, Tandar A et al (2015) Nickel elution properties of contemporary interatrial shunt closure devices. J Invasive Cardiol 27:99–104 Verma DR, Khan MF, Tandar A et al (2015) Nickel elution properties of contemporary interatrial shunt closure devices. J Invasive Cardiol 27:99–104
118.
Zurück zum Zitat Sunderman FW (1983) Potential toxicity from nickel contamination of intravenous fluids. Ann Clin Lab Sci 13:1–4 Sunderman FW (1983) Potential toxicity from nickel contamination of intravenous fluids. Ann Clin Lab Sci 13:1–4
Metadaten
Titel
Oxide Layer Formation, Corrosion, and Biocompatibility of Nitinol Cardiovascular Devices
verfasst von
Srinidhi Nagaraja
Ronald Brown
David Saylor
Andreas Undisz
Publikationsdatum
17.05.2022
Verlag
Springer US
Erschienen in
Shape Memory and Superelasticity / Ausgabe 2/2022
Print ISSN: 2199-384X
Elektronische ISSN: 2199-3858
DOI
https://doi.org/10.1007/s40830-022-00365-2

Weitere Artikel der Ausgabe 2/2022

Shape Memory and Superelasticity 2/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.