Skip to main content
Erschienen in: Shape Memory and Superelasticity 2/2022

08.06.2022 | Technical Article

Electrical Resistance Modeling of Shape Memory Alloy Wire Using an Efficient Performance Analysis Approach

verfasst von: Vaibhav B. Vaijapurkar, Y. Ravinder

Erschienen in: Shape Memory and Superelasticity | Ausgabe 2/2022

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study describes a new method for modeling the electric resistance of Shape Memory Alloy wires (SMA). In order to account for the shape memory effect, wire- and spring-based devices have recently been employed in the design of actuators for displacement control. Because of its nonlinear characteristics, understanding the change in resistance over temperature and time is important in control system design. As a result, additional experiments and modeling are needed to determine the major influence of temperature fluctuation from ambient to transformation temperature in the thermal cycle, which is currently unexplored in the literature. The primary goal of this study is to find the optimum SMA wire for the tactile device under development. In terms of length, diameter changes, and stress impact, a comprehensive parametric analysis of the selected sample was performed. Furthermore, the novel approaches for determining resistance value over temperature-dependent stress fluctuation improve the displacement control strategy. The outcomes of the confirmed experiments and simulations are shown to be superior to the present method.
Literatur
1.
Zurück zum Zitat Dutta SM, Ghorbel FH (2005) Differential hysteresis modeling of a shape memory alloy wire actuator. IEEE/ASME Trans Mechatron 10(2):189–197CrossRef Dutta SM, Ghorbel FH (2005) Differential hysteresis modeling of a shape memory alloy wire actuator. IEEE/ASME Trans Mechatron 10(2):189–197CrossRef
2.
Zurück zum Zitat Zhu S, Zhang Y (2007) ‘A thermomechanical constitutive model for super elastic SMA wire with strain-rate dependence’ IOP publishing. J Smart Mater Struct 16(5):1696–1707CrossRef Zhu S, Zhang Y (2007) ‘A thermomechanical constitutive model for super elastic SMA wire with strain-rate dependence’ IOP publishing. J Smart Mater Struct 16(5):1696–1707CrossRef
3.
Zurück zum Zitat Novak V, Sittner P, Dayananda GN, Braz-Fernandes FM, Mahesh KK (2008) Electric resistance variation of NiTi shape memory alloy wires in thermomechanical tests: Experiments and simulation. Mater Sci Eng A 482:127–133CrossRef Novak V, Sittner P, Dayananda GN, Braz-Fernandes FM, Mahesh KK (2008) Electric resistance variation of NiTi shape memory alloy wires in thermomechanical tests: Experiments and simulation. Mater Sci Eng A 482:127–133CrossRef
5.
Zurück zum Zitat Roberto R, Tannuri EA (2009) Modeling, control and experimental validation of a novel actuator based on shape memory alloys. Mechatronics 19(7):1169–1177CrossRef Roberto R, Tannuri EA (2009) Modeling, control and experimental validation of a novel actuator based on shape memory alloys. Mechatronics 19(7):1169–1177CrossRef
6.
Zurück zum Zitat Lan C-C, Fan C-H (2010) An accurate self-sensing method for the control of shape memory alloy actuated flexures. Sens Actuators A 163(1):323–332CrossRef Lan C-C, Fan C-H (2010) An accurate self-sensing method for the control of shape memory alloy actuated flexures. Sens Actuators A 163(1):323–332CrossRef
7.
Zurück zum Zitat Nespoli A, Besseghini S, Pittaccio S, Villa E, Viscuso S (2010) The high potential of shape memory alloys in developing miniature mechanical devices: a review on shape memory alloy mini-actuators. J Sens Actuators A 158(1):149–160CrossRef Nespoli A, Besseghini S, Pittaccio S, Villa E, Viscuso S (2010) The high potential of shape memory alloys in developing miniature mechanical devices: a review on shape memory alloy mini-actuators. J Sens Actuators A 158(1):149–160CrossRef
8.
Zurück zum Zitat Cui Di, Song G, Li H (2010) ‘Modeling of the electrical resistance of shape memory alloy wires’ IOP Publishing. Smart Mater Struct 19(N0):5 Cui Di, Song G, Li H (2010) ‘Modeling of the electrical resistance of shape memory alloy wires’ IOP Publishing. Smart Mater Struct 19(N0):5
9.
Zurück zum Zitat Pathak A, Brei D, Luntz J (2010) Transformation strain-based method for characterization of convective heat transfer from shape memory alloy wires. Smart Mater Struct 19(3):1–10CrossRef Pathak A, Brei D, Luntz J (2010) Transformation strain-based method for characterization of convective heat transfer from shape memory alloy wires. Smart Mater Struct 19(3):1–10CrossRef
10.
Zurück zum Zitat Donmez B, Ozkhan B, Kadioglu S (2010) Precise position control using shape memory alloy wires. Turk J Electr Eng Comput Sci 18(5):899–912 Donmez B, Ozkhan B, Kadioglu S (2010) Precise position control using shape memory alloy wires. Turk J Electr Eng Comput Sci 18(5):899–912
11.
Zurück zum Zitat Song H, E. Kubica, R. Gorbet (2011) Resistance modelling of SMA wire actuators. In: Proceedings of international workshop smart materials, Structures and NDT in Aerospace Conference Song H, E. Kubica, R. Gorbet (2011) Resistance modelling of SMA wire actuators. In: Proceedings of international workshop smart materials, Structures and NDT in Aerospace Conference
12.
Zurück zum Zitat Zhang Jian Jun (2011) Modeling of electrical resistivity evolution using free energy analysis for NiTi shape memory alloy wires. Adv Mater Res 311:2282–2285CrossRef Zhang Jian Jun (2011) Modeling of electrical resistivity evolution using free energy analysis for NiTi shape memory alloy wires. Adv Mater Res 311:2282–2285CrossRef
13.
Zurück zum Zitat Furst SJ, Seelecke S (2012) Modeling and experimental characterization of the stress, strain, and resistance of shape memory alloy actuator wires with controlled power input. J Intell Mater Syst Struct 23(11):1233–1247CrossRef Furst SJ, Seelecke S (2012) Modeling and experimental characterization of the stress, strain, and resistance of shape memory alloy actuator wires with controlled power input. J Intell Mater Syst Struct 23(11):1233–1247CrossRef
14.
Zurück zum Zitat Ma J, Huang H, Huang J (2013) Characteristics Analysis and Testing of SMA Spring Actuator. Adv Mater Sci Eng 2013:1–7 Ma J, Huang H, Huang J (2013) Characteristics Analysis and Testing of SMA Spring Actuator. Adv Mater Sci Eng 2013:1–7
15.
Zurück zum Zitat Bhargaw HN, Ahmed M, Sinha P (2013) Thermo-electric behavior of NiTi shape memory alloy. Trans Nonferrous Metals Soc China 23(8):2329–2335CrossRef Bhargaw HN, Ahmed M, Sinha P (2013) Thermo-electric behavior of NiTi shape memory alloy. Trans Nonferrous Metals Soc China 23(8):2329–2335CrossRef
16.
Zurück zum Zitat Georges T, Brailovski V, Terriault P (2013) Experimental bench for shape memory alloys actuators design and testing. Soc Exp Mech Wily Online Library Exp Tech 37(6):24–33 Georges T, Brailovski V, Terriault P (2013) Experimental bench for shape memory alloys actuators design and testing. Soc Exp Mech Wily Online Library Exp Tech 37(6):24–33
17.
Zurück zum Zitat Roh J-H (2014) Thermomechanical modeling of shape memory alloys with rate dependency on the pseudoelastic behavior. Math Probl Eng 2014:1–9CrossRef Roh J-H (2014) Thermomechanical modeling of shape memory alloys with rate dependency on the pseudoelastic behavior. Math Probl Eng 2014:1–9CrossRef
18.
Zurück zum Zitat Eisakhani A, Gao X, Gorbet R, Culham JR (2014) Electrical resistance and natural convection heat transfer modeling of shape memory alloy wires. In: ASME International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, vol 46569, p V08BT10A014 Eisakhani A, Gao X, Gorbet R, Culham JR (2014) Electrical resistance and natural convection heat transfer modeling of shape memory alloy wires. In: ASME International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, vol 46569, p V08BT10A014
19.
Zurück zum Zitat Talebi H, Golestanian H, Zakerzadeh MR, Homaei H (2014) Thermoelectric Heat Transfer Modeling of Shape Memory Alloy Actuators. In: the proceedings of 22nd Annual International Conference on Mechanical Engineering-ISME2014, 2014 Talebi H, Golestanian H, Zakerzadeh MR, Homaei H (2014) Thermoelectric Heat Transfer Modeling of Shape Memory Alloy Actuators. In: the proceedings of 22nd Annual International Conference on Mechanical Engineering-ISME2014, 2014
20.
Zurück zum Zitat Chemisky Y, Hartl DJ, Meraghni F (2018) Three-dimensional constitutive model for structural and functional fatigue of shape memory alloy actuators. Int J Fatigue 112:263–278CrossRef Chemisky Y, Hartl DJ, Meraghni F (2018) Three-dimensional constitutive model for structural and functional fatigue of shape memory alloy actuators. Int J Fatigue 112:263–278CrossRef
21.
Zurück zum Zitat Viet NV, Zaki W, Moumni WZ (2019) A model for shape memory alloy beams accounting for tensile compressive asymmetry. J Intell Mater Syst Struct 30(2697–2715):2019 Viet NV, Zaki W, Moumni WZ (2019) A model for shape memory alloy beams accounting for tensile compressive asymmetry. J Intell Mater Syst Struct 30(2697–2715):2019
22.
Zurück zum Zitat Chatziathanasiou D, Chemisky Y, Chatzigeorgiou G, Meraghni F (2016) Modeling of coupled phase transformation and reorientation in shape memory alloys under non-proportional thermomechanical loading. Int J Plast 82:192–224CrossRef Chatziathanasiou D, Chemisky Y, Chatzigeorgiou G, Meraghni F (2016) Modeling of coupled phase transformation and reorientation in shape memory alloys under non-proportional thermomechanical loading. Int J Plast 82:192–224CrossRef
24.
Zurück zum Zitat Lara-Quintanilla A, Bersee HEN (2016) A study on the contraction and cooling times of actively cooled shape memory alloy wires. J Intell Mater Syst Struct 27(3):403–417CrossRef Lara-Quintanilla A, Bersee HEN (2016) A study on the contraction and cooling times of actively cooled shape memory alloy wires. J Intell Mater Syst Struct 27(3):403–417CrossRef
25.
Zurück zum Zitat Lima WM, de Araújo CJ, Gomes RM, da Rocha Souto C, Marques de Lima AM, Cavalcanti Catunda SY (2017) Study of the stability of the NiTi wire applied to thermomechanical actuators. In: 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp 1–6 Lima WM, de Araújo CJ, Gomes RM, da Rocha Souto C, Marques de Lima AM, Cavalcanti Catunda SY (2017) Study of the stability of the NiTi wire applied to thermomechanical actuators. In: 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp 1–6
26.
Zurück zum Zitat Driesen JB, Fischer C, de Sousa GL, et al. (2018) A labview/arduino measurement system for shape memory alloy wires. In: 2018 13th IEEE International Conference on Industry Applications (INDUSCON), pp 1179–1186 Driesen JB, Fischer C, de Sousa GL, et al. (2018) A labview/arduino measurement system for shape memory alloy wires. In: 2018 13th IEEE International Conference on Industry Applications (INDUSCON), pp 1179–1186
27.
Zurück zum Zitat Sreekanth M (2018) Abraham T Mathew, R Vijayakumar, ‘A novel model-based approach for resistance estimation using rise time and sensorless position control of sub-millimeter shape memory alloy helical spring actuator.’ J Intell Mater Syst Struct 29(6):1050–1064CrossRef Sreekanth M (2018) Abraham T Mathew, R Vijayakumar, ‘A novel model-based approach for resistance estimation using rise time and sensorless position control of sub-millimeter shape memory alloy helical spring actuator.’ J Intell Mater Syst Struct 29(6):1050–1064CrossRef
28.
Zurück zum Zitat Dorin C, Blanco D, Moreno LE (2019) Flexible shape-memory alloy-based actuator: Mechanical design optimization according to application. Actuators Multidiscip Digital Publ Inst 9(2):87–94 Dorin C, Blanco D, Moreno LE (2019) Flexible shape-memory alloy-based actuator: Mechanical design optimization according to application. Actuators Multidiscip Digital Publ Inst 9(2):87–94
29.
Zurück zum Zitat Sakagami T, Seki K, Iwasaki M (2019) Sensorless position control based on resistance and heat transfer models in shape memory alloy actuators. In: 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp 217–222 Sakagami T, Seki K, Iwasaki M (2019) Sensorless position control based on resistance and heat transfer models in shape memory alloy actuators. In: 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp 217–222
30.
Zurück zum Zitat Je-Sung K (2018) Design of shape memory alloy coil spring actuator for improving performance in cyclic actuation. Materials 11(11):1–16 Je-Sung K (2018) Design of shape memory alloy coil spring actuator for improving performance in cyclic actuation. Materials 11(11):1–16
31.
Zurück zum Zitat Zhang D, Zhao X, Han J, Li X, Zhang B (2019) Active modeling and control for shape memory alloy actuators. IEEE Access 7:162549–162558CrossRef Zhang D, Zhao X, Han J, Li X, Zhang B (2019) Active modeling and control for shape memory alloy actuators. IEEE Access 7:162549–162558CrossRef
32.
Zurück zum Zitat El-Naggar A, Youssef MA (2020) Shape memory alloy heat activation: State of the art review. AIMS Mater Sci 7(6):836–858CrossRef El-Naggar A, Youssef MA (2020) Shape memory alloy heat activation: State of the art review. AIMS Mater Sci 7(6):836–858CrossRef
33.
Zurück zum Zitat Toptas E, Celebi MF, Ersoy S (2021) Measurement of temperature and displacement with NiTi actuators under certain electrical conditions. J Measurements Eng 9(2):15 Toptas E, Celebi MF, Ersoy S (2021) Measurement of temperature and displacement with NiTi actuators under certain electrical conditions. J Measurements Eng 9(2):15
34.
Zurück zum Zitat Liu X, Liu H, Tan J (2021) Actuation frequency modeling and prediction for shape memory alloy actuators. IEEE/ASME Trans Mechatron 26(3):1536–1546CrossRef Liu X, Liu H, Tan J (2021) Actuation frequency modeling and prediction for shape memory alloy actuators. IEEE/ASME Trans Mechatron 26(3):1536–1546CrossRef
Metadaten
Titel
Electrical Resistance Modeling of Shape Memory Alloy Wire Using an Efficient Performance Analysis Approach
verfasst von
Vaibhav B. Vaijapurkar
Y. Ravinder
Publikationsdatum
08.06.2022
Verlag
Springer US
Erschienen in
Shape Memory and Superelasticity / Ausgabe 2/2022
Print ISSN: 2199-384X
Elektronische ISSN: 2199-3858
DOI
https://doi.org/10.1007/s40830-022-00369-y

Weitere Artikel der Ausgabe 2/2022

Shape Memory and Superelasticity 2/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.