Skip to main content
Erschienen in: Wireless Personal Communications 1/2021

02.01.2021

An Efficient and Secure Data Forwarding Mechanism for Opportunistic IoT

verfasst von: Nisha Kandhoul, Sanjay K. Dhurandher

Erschienen in: Wireless Personal Communications | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Internet of Things (IoT) is a heterogeneous network of interconnected things where users, smart devices and wireless technologies, collude for providing services. It is expected that a great deal of devices will get connected to the Internet in the near future. Opportunistic networks(OppNet) are a class of disruption tolerant networks characterized by uncertain topology and intermittent connectivity between the nodes. Opportunistic Internet of Things(OppIoT) is an amalgamation of the OppNet and IoT exploiting the communication between the IoT devices and the communities formed by humans. The data is exposed to a wide unfamiliar audience and the message delivery is dependent on the residual battery of the node, as most of the energy is spent on node discovery and message transmission. In such a scenario where a huge number of devices are accommodated, a scalable, adaptable, inter-operable, energy-efficient and secure network architecture is required. This paper proposes a novel defense mechanism against black hole and packet fabrication attacks for OppIoT, GFRSA, A Green Forwarding ratio and RSA (Rivest, Shamir and Adleman) based secure routing protocol. The selection of the next hop is based on node’s forwarding behavior, current energy level and its predicted message delivery probability. For further enhancing the security provided by the protocol, the messages are encrypted using asymmetric cryptography before transmission. Simulations performed using opportunistic network environment (ONE) simulator convey that GFRSA provides message security, saves energy and outperforms the existing protocols, LPRF-MC (Location Prediction-based Forwarding for Routing using Markov Chain) and RSASec (Asymmetric RSA-based security approach) in terms of correct packet delivery by 27.37%, message delivery probability is higher by 34.51%, number of messages dropped are reduced by 15.17% and the residual node energy is higher by 14.08%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer Networks, 54(15), 2787–2805.CrossRef Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer Networks, 54(15), 2787–2805.CrossRef
2.
Zurück zum Zitat Pelusi, L., Passarella, A., & Conti, M. (2006). Opportunistic networking: Data forwarding in disconnected mobile ad hoc networks. IEEE Communications Magazine, 44(11), 134–141.CrossRef Pelusi, L., Passarella, A., & Conti, M. (2006). Opportunistic networking: Data forwarding in disconnected mobile ad hoc networks. IEEE Communications Magazine, 44(11), 134–141.CrossRef
3.
Zurück zum Zitat Guo, B., Zhang, D., Wang, Z., Yu, Z., & Zhou, X. (2013). Opportunistic IoT: Exploring the harmonious interaction between human and the internet of things. Journal of Network and Computer Applications, 36(6), 1531–1539.CrossRef Guo, B., Zhang, D., Wang, Z., Yu, Z., & Zhou, X. (2013). Opportunistic IoT: Exploring the harmonious interaction between human and the internet of things. Journal of Network and Computer Applications, 36(6), 1531–1539.CrossRef
4.
Zurück zum Zitat Sicari, S., Rizzardi, A., Grieco, L. A., & Coen-Porisini, A. (2015). Security, privacy and trust in internet of things: The road ahead. Computer Networks, 76, 146–164.CrossRef Sicari, S., Rizzardi, A., Grieco, L. A., & Coen-Porisini, A. (2015). Security, privacy and trust in internet of things: The road ahead. Computer Networks, 76, 146–164.CrossRef
5.
Zurück zum Zitat Shah, S. B., Chen, Z., Yin, F., Khan, I. U., & Ahmad, N. (2018). Energy and interoperable aware routing for throughput optimization in clustered IoT-wireless sensor networks. Future Generation Computer Systems, 81, 372–381.CrossRef Shah, S. B., Chen, Z., Yin, F., Khan, I. U., & Ahmad, N. (2018). Energy and interoperable aware routing for throughput optimization in clustered IoT-wireless sensor networks. Future Generation Computer Systems, 81, 372–381.CrossRef
6.
Zurück zum Zitat Wu, Y., Zhao, Y., Riguidel, M., Wang, G., & Yi, P. (2015). Security and trust management in opportunistic networks: A survey. Security and Communication Networks, 8(9), 1812–1827.CrossRef Wu, Y., Zhao, Y., Riguidel, M., Wang, G., & Yi, P. (2015). Security and trust management in opportunistic networks: A survey. Security and Communication Networks, 8(9), 1812–1827.CrossRef
7.
Zurück zum Zitat Lin, X.-J., Sun, L., & Qu, H. (2018). An efficient RSA-based certificateless public key encryption scheme. Discrete Applied Mathematics, 241, 39–47.MathSciNetCrossRef Lin, X.-J., Sun, L., & Qu, H. (2018). An efficient RSA-based certificateless public key encryption scheme. Discrete Applied Mathematics, 241, 39–47.MathSciNetCrossRef
8.
Zurück zum Zitat Dhurandher, S. K., Borah, S. J., Woungang, I., Bansal, A., & Gupta, A. (2018). A location prediction-based routing scheme for opportunistic networks in an IoT scenario. Journal of Parallel and Distributed Computing, 118, 369–378.CrossRef Dhurandher, S. K., Borah, S. J., Woungang, I., Bansal, A., & Gupta, A. (2018). A location prediction-based routing scheme for opportunistic networks in an IoT scenario. Journal of Parallel and Distributed Computing, 118, 369–378.CrossRef
9.
Zurück zum Zitat Pham, T. N. D., & Yeo, C. K. (2016). Detecting colluding blackhole and greyhole attacks in delay tolerant networks. IEEE Transactions on Mobile Computing, 15(5), 1116–1129.CrossRef Pham, T. N. D., & Yeo, C. K. (2016). Detecting colluding blackhole and greyhole attacks in delay tolerant networks. IEEE Transactions on Mobile Computing, 15(5), 1116–1129.CrossRef
10.
Zurück zum Zitat Wang, X., Ning, Z., Zhou, M., Hu, X., Wang, L., Hu, B., et al. (2018). A privacy-preserving message forwarding framework for opportunistic cloud of things. IEEE Internet of Things Journal, 5(6), 5281–5295.CrossRef Wang, X., Ning, Z., Zhou, M., Hu, X., Wang, L., Hu, B., et al. (2018). A privacy-preserving message forwarding framework for opportunistic cloud of things. IEEE Internet of Things Journal, 5(6), 5281–5295.CrossRef
11.
Zurück zum Zitat Krishna, M. B., & Lorenz, P. (2017). Delay aware secure hashing for opportunistic message forwarding in internet of things. In Globecom workshops (GC Wkshps) (pp. 1–6). IEEE. Krishna, M. B., & Lorenz, P. (2017). Delay aware secure hashing for opportunistic message forwarding in internet of things. In Globecom workshops (GC Wkshps) (pp. 1–6). IEEE.
12.
Zurück zum Zitat Dhurandher, S. K., Kumar, A., & Obaidat, M. S. (2017). Cryptography-based misbehavior detection and trust control mechanism for opportunistic network systems. IEEE Systems Journal, 12(4), 3191–3202.CrossRef Dhurandher, S. K., Kumar, A., & Obaidat, M. S. (2017). Cryptography-based misbehavior detection and trust control mechanism for opportunistic network systems. IEEE Systems Journal, 12(4), 3191–3202.CrossRef
14.
Zurück zum Zitat Chen, R., Guo, J., & Bao, F. (2016). Trust management for SOA-based iot and its application to service composition. IEEE Transactions on Services Computing, 9(3), 482–495.CrossRef Chen, R., Guo, J., & Bao, F. (2016). Trust management for SOA-based iot and its application to service composition. IEEE Transactions on Services Computing, 9(3), 482–495.CrossRef
15.
Zurück zum Zitat Dhurandher, S. K., Woungang, I., Arora, J., & Gupta, H. (2016). History-based secure routing protocol to detect blackhole and greyhole attacks in opportunistic networks. Recent Advances in Communications and Networking Technology (Formerly Recent Patents on Telecommunication), 5(2), 73–89. Dhurandher, S. K., Woungang, I., Arora, J., & Gupta, H. (2016). History-based secure routing protocol to detect blackhole and greyhole attacks in opportunistic networks. Recent Advances in Communications and Networking Technology (Formerly Recent Patents on Telecommunication), 5(2), 73–89.
19.
Zurück zum Zitat Jeon, I.-K., & Lee, K.-W. (2016). A dynamic Markov chain prediction model for delay-tolerant networks. International Journal of Distributed Sensor Networks, 12(9), 1550147716666662.CrossRef Jeon, I.-K., & Lee, K.-W. (2016). A dynamic Markov chain prediction model for delay-tolerant networks. International Journal of Distributed Sensor Networks, 12(9), 1550147716666662.CrossRef
20.
Zurück zum Zitat Keränen, A., Ott, J., & Kärkkäinen, T. (2009). The one simulator for DTN protocol evaluation. In Proceedings of the 2nd international conference on simulation tools and techniques, ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering (pp. 1–10). https://doi.org/10.4108/ICST.SIMUTOOLS2009.5674. Keränen, A., Ott, J., & Kärkkäinen, T. (2009). The one simulator for DTN protocol evaluation. In Proceedings of the 2nd international conference on simulation tools and techniques, ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering (pp. 1–10). https://​doi.​org/​10.​4108/​ICST.​SIMUTOOLS2009.​5674.
Metadaten
Titel
An Efficient and Secure Data Forwarding Mechanism for Opportunistic IoT
verfasst von
Nisha Kandhoul
Sanjay K. Dhurandher
Publikationsdatum
02.01.2021
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 1/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-08010-w

Weitere Artikel der Ausgabe 1/2021

Wireless Personal Communications 1/2021 Zur Ausgabe

Neuer Inhalt