Skip to main content
Erschienen in: Microsystem Technologies 2/2019

14.06.2018 | Technical Paper

An optimal analysis of radiated nanomaterial flow with viscous dissipation and heat source

verfasst von: S. Saleem, S. Nadeem, M. M. Rashidi, C. S. K. Raju

Erschienen in: Microsystem Technologies | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present work explores the analytical study of nanofluid flow above a stretching medium with the heat source and viscous dissipation. Additional radiative effects are also incorporated. The main physical problem is offered and changed into an arrangement of combined nonlinear differential equations with appropriate transformations. Optimal homotopy analysis method is used to attain the analytical solutions of the set of nonlinear differential equations. Important predictions of the flow phenomena are explored and deliberated by means of graphs and numerical tables. Moreover, the accurateness of the existing findings is verified by equating them with the previously available work.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ellahi R (2013) The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: analytical solutions. Appl Math Model 37:1451–1467MathSciNetCrossRefMATH Ellahi R (2013) The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: analytical solutions. Appl Math Model 37:1451–1467MathSciNetCrossRefMATH
Zurück zum Zitat Ellahi R, Riaz A (2010) Analytical solutions for MHD flow in a third-grade fluid with variable viscosity. Math Comput Model 52:1783MathSciNetCrossRefMATH Ellahi R, Riaz A (2010) Analytical solutions for MHD flow in a third-grade fluid with variable viscosity. Math Comput Model 52:1783MathSciNetCrossRefMATH
Zurück zum Zitat Ganeswara Reddy M (2014) Influence of thermal radiation, viscous dissipation and hall current on MHD convection flow over a stretched vertical flat plate. Ain Shams Eng J 5:169–175CrossRef Ganeswara Reddy M (2014) Influence of thermal radiation, viscous dissipation and hall current on MHD convection flow over a stretched vertical flat plate. Ain Shams Eng J 5:169–175CrossRef
Zurück zum Zitat Hamad MAA, Ferdows M (2012) Similarity solution of boundary layer stagnation-point flow towards a heated porous stretching sheet saturated with a nanofluid with heat absorption/generation and suction/blowing: a Lie group analysis. Commun Nonlinear Sci Numer Simul 17:132–140MathSciNetCrossRefMATH Hamad MAA, Ferdows M (2012) Similarity solution of boundary layer stagnation-point flow towards a heated porous stretching sheet saturated with a nanofluid with heat absorption/generation and suction/blowing: a Lie group analysis. Commun Nonlinear Sci Numer Simul 17:132–140MathSciNetCrossRefMATH
Zurück zum Zitat Hussain ST, Nadeem S, Ul Haq R (2014) Model based analysis of micropolar nanofluid flow over a stretching surface. Eur Phys J Plus 129:161CrossRef Hussain ST, Nadeem S, Ul Haq R (2014) Model based analysis of micropolar nanofluid flow over a stretching surface. Eur Phys J Plus 129:161CrossRef
Zurück zum Zitat Ishak A (2010) Unsteady MHD flow and heat transfer over a stretching plate. J Appl Sci 10:2127–2131CrossRef Ishak A (2010) Unsteady MHD flow and heat transfer over a stretching plate. J Appl Sci 10:2127–2131CrossRef
Zurück zum Zitat Khan WA, Pop I (2010) Boundary-layer flow of a nanofluid past a stretching sheet. Int J Heat Mass Transf 53:2477–2483CrossRefMATH Khan WA, Pop I (2010) Boundary-layer flow of a nanofluid past a stretching sheet. Int J Heat Mass Transf 53:2477–2483CrossRefMATH
Zurück zum Zitat Khan I, Ullah S, Malik MY, Hussain A (2018) Numerical analysis of MHD Carreau fluid flow over a stretching cylinder with homogenous-heterogeneous reactions. Results Phys 9:1141–1147CrossRef Khan I, Ullah S, Malik MY, Hussain A (2018) Numerical analysis of MHD Carreau fluid flow over a stretching cylinder with homogenous-heterogeneous reactions. Results Phys 9:1141–1147CrossRef
Zurück zum Zitat Kiblinski P, Phillpot SR, Choi SUS, Eastman JA (2002) Mechanism of heat flow is suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf 42:855–863CrossRefMATH Kiblinski P, Phillpot SR, Choi SUS, Eastman JA (2002) Mechanism of heat flow is suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf 42:855–863CrossRefMATH
Zurück zum Zitat Liao SJ (2008) “Beyond Perturbation”: a review on the homotopy analysis method and its applications. Adv Mech 153:1–34 Liao SJ (2008) “Beyond Perturbation”: a review on the homotopy analysis method and its applications. Adv Mech 153:1–34
Zurück zum Zitat Liao SJ (2010) An optimal Homotopy-analysis approach for strongly nonlinear differential equations. Commun Nonlinear Sci Numer Simul 15:2003–2016MathSciNetCrossRefMATH Liao SJ (2010) An optimal Homotopy-analysis approach for strongly nonlinear differential equations. Commun Nonlinear Sci Numer Simul 15:2003–2016MathSciNetCrossRefMATH
Zurück zum Zitat Makinde OD, Aziz A (2011) Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. Int J Therm Sci 50:1326–1332CrossRef Makinde OD, Aziz A (2011) Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. Int J Therm Sci 50:1326–1332CrossRef
Zurück zum Zitat Mamatha Upadhya S, Raju CSK, Saleem S, Alderremy AA, Mahesha (2018) Modified Fourier heat flux on MHD flow over stretched cylinder filled with dust, graphene and silver nanoparticles. Results Phys 9:1377–1385CrossRef Mamatha Upadhya S, Raju CSK, Saleem S, Alderremy AA, Mahesha (2018) Modified Fourier heat flux on MHD flow over stretched cylinder filled with dust, graphene and silver nanoparticles. Results Phys 9:1377–1385CrossRef
Zurück zum Zitat Nadeem S, Saleem S (2013) Analytical treatment of unsteady mixed convection MHD flow on a rotating cone in a rotating frame. J Taiwan Inst Chem Eng 44(4):596–604CrossRef Nadeem S, Saleem S (2013) Analytical treatment of unsteady mixed convection MHD flow on a rotating cone in a rotating frame. J Taiwan Inst Chem Eng 44(4):596–604CrossRef
Zurück zum Zitat Nadeem S, Saleem S (2014) Mixed convection flow of Eyring–Powell fluid along a rotating cone. Results Phys 4:54–62CrossRef Nadeem S, Saleem S (2014) Mixed convection flow of Eyring–Powell fluid along a rotating cone. Results Phys 4:54–62CrossRef
Zurück zum Zitat Nadeem S, Saleem S (2015) Analytical study of third grade fluid over a rotating vertical cone in the presence of nanoparticles. Int J Heat Mass Transf 85:1041–1048CrossRef Nadeem S, Saleem S (2015) Analytical study of third grade fluid over a rotating vertical cone in the presence of nanoparticles. Int J Heat Mass Transf 85:1041–1048CrossRef
Zurück zum Zitat Raju CSK, Naik M, Supadhya M, Saleem S (2018) Nonlinear unsteady convection on micro and nanofluids with Cattaneo–Christov heat flux. Results Phys 9:779–786CrossRef Raju CSK, Naik M, Supadhya M, Saleem S (2018) Nonlinear unsteady convection on micro and nanofluids with Cattaneo–Christov heat flux. Results Phys 9:779–786CrossRef
Zurück zum Zitat Rashidi MM, Siddiqui AM, Asadi M (2010) Application of homotopy analysis method to the unsteady squeezing flow of a second grade fluid between circular plates. Math Probl Eng 2010:706840MathSciNetMATH Rashidi MM, Siddiqui AM, Asadi M (2010) Application of homotopy analysis method to the unsteady squeezing flow of a second grade fluid between circular plates. Math Probl Eng 2010:706840MathSciNetMATH
Zurück zum Zitat Saleem S, Nadeem S (2015) Theoretical analysis of slip flow on a rotating cone with viscous dissipation effects. J Hydrodyn Ser B 27(6):616–623CrossRef Saleem S, Nadeem S (2015) Theoretical analysis of slip flow on a rotating cone with viscous dissipation effects. J Hydrodyn Ser B 27(6):616–623CrossRef
Zurück zum Zitat Sandeep N, Saleem S (2017) MHD flow and heat transfer of a dusty nano fluid over a stretching surface in porous medium. Jordan J Civil Eng 11(1):149–164 Sandeep N, Saleem S (2017) MHD flow and heat transfer of a dusty nano fluid over a stretching surface in porous medium. Jordan J Civil Eng 11(1):149–164
Zurück zum Zitat Sandeep N, Sulochana C, Raju CSK, Jayachandra Babu M, Sugunamma V (2015) Unsteady boundary layer flow of thermophoretic MHD nanofluid past a stretching sheet with space and time dependent internal heat source/sink. Appl Appl Math 10(1):312–327MATH Sandeep N, Sulochana C, Raju CSK, Jayachandra Babu M, Sugunamma V (2015) Unsteady boundary layer flow of thermophoretic MHD nanofluid past a stretching sheet with space and time dependent internal heat source/sink. Appl Appl Math 10(1):312–327MATH
Zurück zum Zitat Sheikholeslami M, Rashidi MM (2015) Ferrofluid heat transfer treatment in the presence of variable magnetic field. Eur Phys J Plus 130(6):1–12CrossRef Sheikholeslami M, Rashidi MM (2015) Ferrofluid heat transfer treatment in the presence of variable magnetic field. Eur Phys J Plus 130(6):1–12CrossRef
Zurück zum Zitat Sheikholeslami M, Bandpy MG, Ellahi R, Zeeshan A (2014) Simulation of MHD CuO–water nanofluid flow and convective heat transfer considering Lorentz forces. J Magn Magn Mater 369:69–80CrossRef Sheikholeslami M, Bandpy MG, Ellahi R, Zeeshan A (2014) Simulation of MHD CuO–water nanofluid flow and convective heat transfer considering Lorentz forces. J Magn Magn Mater 369:69–80CrossRef
Zurück zum Zitat Sheikholeslami M, Ghasemi A, Li Z, Shafee A, Saleem S (2018) Influence of CuO nanoparticles on heat transfer behavior of PCM in solidification process considering radiative source term. Int J Heat Mass Transf 126:1252–1264CrossRef Sheikholeslami M, Ghasemi A, Li Z, Shafee A, Saleem S (2018) Influence of CuO nanoparticles on heat transfer behavior of PCM in solidification process considering radiative source term. Int J Heat Mass Transf 126:1252–1264CrossRef
Zurück zum Zitat Sui J, Zhao P, Cheng Z, Zheng L, Zhang X (2017) A novel investigation of a micropolar fluid characterized by nonlinear constitutive diffusion model in boundary layer flow and heat transfer. Phys Fluid 29:023105CrossRef Sui J, Zhao P, Cheng Z, Zheng L, Zhang X (2017) A novel investigation of a micropolar fluid characterized by nonlinear constitutive diffusion model in boundary layer flow and heat transfer. Phys Fluid 29:023105CrossRef
Zurück zum Zitat Yusof ZM, Soid SK, Aziz ASA, Kechil SA (2012) Radiation effect on unsteady MHD flow over a stretching surface. World Acad Sci Eng Technol 6:12–27 Yusof ZM, Soid SK, Aziz ASA, Kechil SA (2012) Radiation effect on unsteady MHD flow over a stretching surface. World Acad Sci Eng Technol 6:12–27
Zurück zum Zitat Vajravelu K, Prasad KV, Ng C-O (2013) The effect of variable viscosity on the flow and heat transfer of a viscous Ag–water and Cu–water nanofluids. J Hydrodyn Ser B 25:1–9CrossRef Vajravelu K, Prasad KV, Ng C-O (2013) The effect of variable viscosity on the flow and heat transfer of a viscous Ag–water and Cu–water nanofluids. J Hydrodyn Ser B 25:1–9CrossRef
Zurück zum Zitat Wang X, Xu X, Choi SUS (1999) Thermal conductivity of nanoparticle fluid mixture. J Thermophys Heat Transfer 13:474–480CrossRef Wang X, Xu X, Choi SUS (1999) Thermal conductivity of nanoparticle fluid mixture. J Thermophys Heat Transfer 13:474–480CrossRef
Metadaten
Titel
An optimal analysis of radiated nanomaterial flow with viscous dissipation and heat source
verfasst von
S. Saleem
S. Nadeem
M. M. Rashidi
C. S. K. Raju
Publikationsdatum
14.06.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 2/2019
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-018-3996-x

Weitere Artikel der Ausgabe 2/2019

Microsystem Technologies 2/2019 Zur Ausgabe

Neuer Inhalt