Skip to main content
Erschienen in: Archive of Applied Mechanics 5/2020

05.02.2020 | Original

Analysis of a mode III interface crack in a piezoelectric bimaterial based on the dielectric breakdown model

verfasst von: V. Govorukha, M. Kamlah

Erschienen in: Archive of Applied Mechanics | Ausgabe 5/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A mode III electrically conductive crack between two different piezoelectric materials under the action of anti-plane mechanical and in-plane electric loadings is analyzed. The strip dielectric breakdown (DB) model, which is free from the electric field singularity, is developed for this crack. According to this model, the electric field along a DB-zone situated in continuation of a crack is assumed to be equal to the electric breakdown strength. The DB-zone lengths are found from the condition of a finite electric field at the end point of such a zone. Using special representations of field variables via sectionally analytic functions, an inhomogeneous combined Dirichlet–Riemann boundary value problem is formulated and solved analytically. Explicit expressions for the shear stress, the electric field and the crack faces’ sliding displacement jump are derived. The stress intensity factor is determined as well. The dependencies of the mentioned values on the magnitude of the external electromechanical loading are presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Suo, Z., Kuo, C.M., Barnett, D.M., Willis, J.R.: Fracture mechanics for piezoelectric ceramics. J. Mech. Phys. Solids 40(4), 739–765 (1992)MathSciNetCrossRef Suo, Z., Kuo, C.M., Barnett, D.M., Willis, J.R.: Fracture mechanics for piezoelectric ceramics. J. Mech. Phys. Solids 40(4), 739–765 (1992)MathSciNetCrossRef
2.
Zurück zum Zitat Park, S.B., Sun, C.T.: Effect of electric field on fracture of piezoelectric ceramics. Int. J. Fract. 70(3), 203–216 (1995)CrossRef Park, S.B., Sun, C.T.: Effect of electric field on fracture of piezoelectric ceramics. Int. J. Fract. 70(3), 203–216 (1995)CrossRef
3.
Zurück zum Zitat Zhang, T.Y., Gao, C.F.: Fracture behaviors of piezoelectric materials. Theor. Appl. Fract. Mech. 41(1–3), 339–379 (2004)CrossRef Zhang, T.Y., Gao, C.F.: Fracture behaviors of piezoelectric materials. Theor. Appl. Fract. Mech. 41(1–3), 339–379 (2004)CrossRef
4.
Zurück zum Zitat Gao, H.J., Barnett, D.M.: An invariance property of local energy release rates in a strip saturation model of piezoelectric fracture. Int. J. Fract. 79(2), R25–R29 (1996)CrossRef Gao, H.J., Barnett, D.M.: An invariance property of local energy release rates in a strip saturation model of piezoelectric fracture. Int. J. Fract. 79(2), R25–R29 (1996)CrossRef
5.
Zurück zum Zitat Gao, H.J., Zhang, T.Y., Tong, P.: Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic. J. Mech. Phys. Solids 45(4), 491–510 (1997)CrossRef Gao, H.J., Zhang, T.Y., Tong, P.: Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic. J. Mech. Phys. Solids 45(4), 491–510 (1997)CrossRef
6.
Zurück zum Zitat McMeeking, R.M.: Towards a fracture mechanics for brittle piezoelectric and dielectric materials. Int. J. Fract. 108(1), 25–41 (2001)CrossRef McMeeking, R.M.: Towards a fracture mechanics for brittle piezoelectric and dielectric materials. Int. J. Fract. 108(1), 25–41 (2001)CrossRef
7.
Zurück zum Zitat Zhang, T.Y.: Dielectric breakdown model for an electrical impermeable crack in a piezoelectric material. Comput. Mater. Contin. 1(1), 107–115 (2004) Zhang, T.Y.: Dielectric breakdown model for an electrical impermeable crack in a piezoelectric material. Comput. Mater. Contin. 1(1), 107–115 (2004)
8.
Zurück zum Zitat Zhang, T.Y., Zhao, M.H., Gao, C.F.: The strip dielectric breakdown model. Int. J. Fract. 132(4), 311–327 (2005)CrossRef Zhang, T.Y., Zhao, M.H., Gao, C.F.: The strip dielectric breakdown model. Int. J. Fract. 132(4), 311–327 (2005)CrossRef
9.
Zurück zum Zitat Wang, B.L., Zhang, X.H.: An electrical field based non-linear model in the fracture of piezoelectric ceramics. Int. J. Solids Struct. 41(16–17), 4337–4347 (2004)CrossRef Wang, B.L., Zhang, X.H.: An electrical field based non-linear model in the fracture of piezoelectric ceramics. Int. J. Solids Struct. 41(16–17), 4337–4347 (2004)CrossRef
10.
Zurück zum Zitat Gao, C.F., Noda, N., Zhang, T.Y.: Dielectric breakdown model for a conductive crack and electrode in piezoelectric materials. Int. J. Eng. Sci. 44(3–4), 256–272 (2006)MathSciNetCrossRef Gao, C.F., Noda, N., Zhang, T.Y.: Dielectric breakdown model for a conductive crack and electrode in piezoelectric materials. Int. J. Eng. Sci. 44(3–4), 256–272 (2006)MathSciNetCrossRef
11.
Zurück zum Zitat Fan, C.Y., Zhao, M.H., Zhou, Y.H.: Numerical solution of polarization saturation/dielectric breakdown model in 2D finite piezoelectric media. J. Mech. Phys. Solids 57(9), 1527–1544 (2009)CrossRef Fan, C.Y., Zhao, M.H., Zhou, Y.H.: Numerical solution of polarization saturation/dielectric breakdown model in 2D finite piezoelectric media. J. Mech. Phys. Solids 57(9), 1527–1544 (2009)CrossRef
12.
Zurück zum Zitat Zhao, M.H., Fan, C.Y.: Strip electric-magnetic breakdown model in a magnetoelectroelastic medium. J. Mech. Phys. Solids 56(12), 3441–3458 (2008)CrossRef Zhao, M.H., Fan, C.Y.: Strip electric-magnetic breakdown model in a magnetoelectroelastic medium. J. Mech. Phys. Solids 56(12), 3441–3458 (2008)CrossRef
13.
Zurück zum Zitat Zhang, N., Gao, C.F.: Effects of electrical breakdown on a conducting crack or electrode in electrostrictive solids. Eur. J. Mech. A/Solids 32, 62–68 (2012)MathSciNetCrossRef Zhang, N., Gao, C.F.: Effects of electrical breakdown on a conducting crack or electrode in electrostrictive solids. Eur. J. Mech. A/Solids 32, 62–68 (2012)MathSciNetCrossRef
14.
Zurück zum Zitat Zhao, M.H., Guo, Z.H., Fan, C.Y., Pan, E.: Electric and magnetic polarization saturation and breakdown models for penny shaped cracks in 3D magnetoelectroelastic media. Int. J. Solids Struct. 50(10), 1747–1754 (2013)CrossRef Zhao, M.H., Guo, Z.H., Fan, C.Y., Pan, E.: Electric and magnetic polarization saturation and breakdown models for penny shaped cracks in 3D magnetoelectroelastic media. Int. J. Solids Struct. 50(10), 1747–1754 (2013)CrossRef
15.
Zurück zum Zitat Zhao, M.H., Guo, Z.H., Fan, C.Y.: Numerical method for nonlinear models of penny-shaped cracks in three-dimensional magnetoelectroelastic media. Int. J. Fract. 183(1), 49–61 (2013)CrossRef Zhao, M.H., Guo, Z.H., Fan, C.Y.: Numerical method for nonlinear models of penny-shaped cracks in three-dimensional magnetoelectroelastic media. Int. J. Fract. 183(1), 49–61 (2013)CrossRef
16.
Zurück zum Zitat Zhao, M., Dang, H., Xu, G., Fan, C.: Dielectric breakdown model for an electrically semi-permeable penny-shaped crack in three-dimensional piezoelectric media. Acta Mech. Solida Sin. 29(5), 536–546 (2016)CrossRef Zhao, M., Dang, H., Xu, G., Fan, C.: Dielectric breakdown model for an electrically semi-permeable penny-shaped crack in three-dimensional piezoelectric media. Acta Mech. Solida Sin. 29(5), 536–546 (2016)CrossRef
17.
Zurück zum Zitat Fan, C.Y., Guo, Z.H., Dang, H.Y., Zhao, M.H.: Extended displacement discontinuity method for nonlinear analysis of penny-shaped cracks in three-dimensional piezoelectric media. Eng. Anal. Bound. Elem. 38, 8–16 (2014)MathSciNetCrossRef Fan, C.Y., Guo, Z.H., Dang, H.Y., Zhao, M.H.: Extended displacement discontinuity method for nonlinear analysis of penny-shaped cracks in three-dimensional piezoelectric media. Eng. Anal. Bound. Elem. 38, 8–16 (2014)MathSciNetCrossRef
18.
Zurück zum Zitat Shen, S., Nishioka, T., Kuang, Z.B., Liu, Z.: Nonlinear electromechanical interfacial fracture for piezoelectric materials. Mech. Mater. 32(1), 57–64 (2000)CrossRef Shen, S., Nishioka, T., Kuang, Z.B., Liu, Z.: Nonlinear electromechanical interfacial fracture for piezoelectric materials. Mech. Mater. 32(1), 57–64 (2000)CrossRef
19.
Zurück zum Zitat Govorukha, V.B., Kamlah, M.: Prefracture zone modeling for an electrically impermeable interface crack in a piezoelectric bimaterial compound. J. Mech. Mater. Struct. 3(8), 1447–1463 (2008)CrossRef Govorukha, V.B., Kamlah, M.: Prefracture zone modeling for an electrically impermeable interface crack in a piezoelectric bimaterial compound. J. Mech. Mater. Struct. 3(8), 1447–1463 (2008)CrossRef
20.
Zurück zum Zitat Loboda, V., Lapusta, Y., Sheveleva, A.: Electro-mechanical pre-fracture zones for an electrically permeable interface crack in a piezoelectric bimaterial. Int. J. Solids Struct. 44(17), 5538–5553 (2007)CrossRef Loboda, V., Lapusta, Y., Sheveleva, A.: Electro-mechanical pre-fracture zones for an electrically permeable interface crack in a piezoelectric bimaterial. Int. J. Solids Struct. 44(17), 5538–5553 (2007)CrossRef
21.
Zurück zum Zitat Loboda, V., Lapusta, Y., Govorukha, V.: Mechanical and electrical yielding for an electrically insulated crack in an interlayer between piezoelectric materials. Int. J. Eng. Sci. 46(3), 260–272 (2008)CrossRef Loboda, V., Lapusta, Y., Govorukha, V.: Mechanical and electrical yielding for an electrically insulated crack in an interlayer between piezoelectric materials. Int. J. Eng. Sci. 46(3), 260–272 (2008)CrossRef
22.
Zurück zum Zitat Loboda, V., Lapusta, Y., Sheveleva, A.: Limited permeable crack in an interlayer between piezoelectric materials with different zones of electrical saturation and mechanical yielding. Int. J. Solids Struct. 47(14–15), 1795–1806 (2010)CrossRef Loboda, V., Lapusta, Y., Sheveleva, A.: Limited permeable crack in an interlayer between piezoelectric materials with different zones of electrical saturation and mechanical yielding. Int. J. Solids Struct. 47(14–15), 1795–1806 (2010)CrossRef
23.
Zurück zum Zitat Bhargava, R.R., Jangid, K.: Strip electro-mechanical yielding model for piezoelectric plate cut along two equal collinear cracks. Appl. Math. Model. 37(22), 9101–9116 (2013)MathSciNetCrossRef Bhargava, R.R., Jangid, K.: Strip electro-mechanical yielding model for piezoelectric plate cut along two equal collinear cracks. Appl. Math. Model. 37(22), 9101–9116 (2013)MathSciNetCrossRef
24.
Zurück zum Zitat Pak, Y.E.: Linear electro-elastic fracture mechanics of piezoelectric materials. Int. J. Fract. 54(1), 79–100 (1992)CrossRef Pak, Y.E.: Linear electro-elastic fracture mechanics of piezoelectric materials. Int. J. Fract. 54(1), 79–100 (1992)CrossRef
25.
Zurück zum Zitat Govorukha, V., Sheveleva, A., Kamlah, M.: A crack along a part of an interface electrode in a piezoelectric bimaterial under anti-plane mechanical and in-plane electric loadings. Acta Mech. 230(6), 1999–2012 (2019)MathSciNetCrossRef Govorukha, V., Sheveleva, A., Kamlah, M.: A crack along a part of an interface electrode in a piezoelectric bimaterial under anti-plane mechanical and in-plane electric loadings. Acta Mech. 230(6), 1999–2012 (2019)MathSciNetCrossRef
26.
Zurück zum Zitat Nakhmein, E.L., Nuller, B.M.: The pressure of a system of stamps on an elastic half-plane under general conditions of contact adhesion and slip. J. Appl. Math. Mech. 52(2), 223–230 (1988)MathSciNetCrossRef Nakhmein, E.L., Nuller, B.M.: The pressure of a system of stamps on an elastic half-plane under general conditions of contact adhesion and slip. J. Appl. Math. Mech. 52(2), 223–230 (1988)MathSciNetCrossRef
27.
Zurück zum Zitat Govorukha, V., Kamlah, M., Loboda, V., Lapusta, Y.: An electrically permeable crack between two different piezoelectric materials. In: Wriggers, P., Eberhard, P. (eds.) Fracture Mechanics of Piezoelectric Solids with Interface Cracks. Lecture Notes in Applied and Computational Mechanics, vol. 83, pp. 59–95. Springer, Berlin (2017)CrossRef Govorukha, V., Kamlah, M., Loboda, V., Lapusta, Y.: An electrically permeable crack between two different piezoelectric materials. In: Wriggers, P., Eberhard, P. (eds.) Fracture Mechanics of Piezoelectric Solids with Interface Cracks. Lecture Notes in Applied and Computational Mechanics, vol. 83, pp. 59–95. Springer, Berlin (2017)CrossRef
28.
Zurück zum Zitat Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series and Products. Academic Press, New York (1965) Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series and Products. Academic Press, New York (1965)
29.
Zurück zum Zitat Muskhelishvili, N.I.: Some Basic Problems of Mathematical Theory of Elasticity. Noordhoff, Groningen (1953)MATH Muskhelishvili, N.I.: Some Basic Problems of Mathematical Theory of Elasticity. Noordhoff, Groningen (1953)MATH
30.
Zurück zum Zitat Gakhov, F.D.: Boundary Value Problem. Pergamon Press, Oxford (1966)MATH Gakhov, F.D.: Boundary Value Problem. Pergamon Press, Oxford (1966)MATH
31.
Zurück zum Zitat Muskhelisvili, N.I.: Singular integral equations. Noordhoff, Groningen (1953) Muskhelisvili, N.I.: Singular integral equations. Noordhoff, Groningen (1953)
32.
Zurück zum Zitat Park, S.B., Sun, C.T.: Fracture criteria for piezoelectric ceramics. J. Am. Ceram. Soc. 78(6), 1475–1480 (1995)CrossRef Park, S.B., Sun, C.T.: Fracture criteria for piezoelectric ceramics. J. Am. Ceram. Soc. 78(6), 1475–1480 (1995)CrossRef
Metadaten
Titel
Analysis of a mode III interface crack in a piezoelectric bimaterial based on the dielectric breakdown model
verfasst von
V. Govorukha
M. Kamlah
Publikationsdatum
05.02.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Archive of Applied Mechanics / Ausgabe 5/2020
Print ISSN: 0939-1533
Elektronische ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-020-01668-5

Weitere Artikel der Ausgabe 5/2020

Archive of Applied Mechanics 5/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.