Skip to main content
Erschienen in: Journal of Computational Electronics 2/2016

04.04.2016

Analytical modeling of threshold voltage for symmetrical silicon nano-tube field-effect-transistors (Si-NT FETs)

verfasst von: Pramod Kumar Tiwari, Visweswara Rao Samoju, Thandva Sunkara, Sarvesh Dubey, Satyabrata Jit

Erschienen in: Journal of Computational Electronics | Ausgabe 2/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, an analytical model of the threshold voltage for short-channel symmetrical silicon nano-tube field-effect-transistors (Si-NT FETs) is presented. The three-dimensional (3D) Poisson equation in cylindrical coordinates has been solved with suitable boundary conditions to find the surface potential along the channel length. The inversion charge density \((Q_{inv} )\) has been calculated in the channel region of the device in the subthreshold regime of device operation, using the Boltzmann relationship. Subsequently, the calculated inversion charge density \((Q_{inv} )\) has been equated to a threshold charge density \((Q_{th})\) in order to find the threshold voltage \((V_{th})\) expression. The effect of physical device parameters, including the tube thickness, on the threshold voltage and drain induced barrier lowering (DIBL) of the device has been discussed. The model results have been verified with the simulation data obtained by the device simulation software ATLAS.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Fahad, H.M., Hussain, M.M.: Are nanotube architectures more advantageous than nanowire architectures for field effect transistors? Sci. Rep. (2012). doi:10.1038/srep00475 Fahad, H.M., Hussain, M.M.: Are nanotube architectures more advantageous than nanowire architectures for field effect transistors? Sci. Rep. (2012). doi:10.​1038/​srep00475
2.
Zurück zum Zitat Tekleab, D.: Device performance of silicon nanotube field effect transistors. IEEE Electron Device Lett. 35, 506–508 (2014)CrossRef Tekleab, D.: Device performance of silicon nanotube field effect transistors. IEEE Electron Device Lett. 35, 506–508 (2014)CrossRef
3.
Zurück zum Zitat Fahad, H.M., Smith, C.E., Rojas, J.P., Hussain, M.M.: Silicon nanotube field effect transistor with core-shell gate stacks for enhanced high-performance operation and area scaling benefits. Nano Lett. 11, 4393–4399 (2011)CrossRef Fahad, H.M., Smith, C.E., Rojas, J.P., Hussain, M.M.: Silicon nanotube field effect transistor with core-shell gate stacks for enhanced high-performance operation and area scaling benefits. Nano Lett. 11, 4393–4399 (2011)CrossRef
4.
Zurück zum Zitat Tekleab, D., Tran, H.H., Slight, J.W., Chidambarrao, D.: Silicon nanotube MOSFET. Pub. No. US20120217468 A1 (2012) Tekleab, D., Tran, H.H., Slight, J.W., Chidambarrao, D.: Silicon nanotube MOSFET. Pub. No. US20120217468 A1 (2012)
5.
Zurück zum Zitat Kumar, M.J., Orouji, A.A., Dhakad, H.: New dual-material SG nanoscale MOSFET: analytical threshold-voltage model. IEEE Trans. Electron Devices 53, 920–923 (2006)CrossRef Kumar, M.J., Orouji, A.A., Dhakad, H.: New dual-material SG nanoscale MOSFET: analytical threshold-voltage model. IEEE Trans. Electron Devices 53, 920–923 (2006)CrossRef
6.
Zurück zum Zitat Dubey, S., Santra, A., Saramekala, G.K., Kumar, M., Tiwari, P.K.: An analytical threshold voltage model for triple-material cylindrical gate-all-around (TM-CGAA) MOSFETs. IEEE Trans. Nanotechnol. 12, 766–773 (2013)CrossRef Dubey, S., Santra, A., Saramekala, G.K., Kumar, M., Tiwari, P.K.: An analytical threshold voltage model for triple-material cylindrical gate-all-around (TM-CGAA) MOSFETs. IEEE Trans. Nanotechnol. 12, 766–773 (2013)CrossRef
7.
Zurück zum Zitat Young, K.K.: Short-channel effect in fully depleted SO1 MOSFETs. IEEE Trans. Electron Devices 36, 399–402 (1989)CrossRef Young, K.K.: Short-channel effect in fully depleted SO1 MOSFETs. IEEE Trans. Electron Devices 36, 399–402 (1989)CrossRef
8.
Zurück zum Zitat Hamid, H.A.E., Iniguez, B., Guitart, J.R.: Analytical model of the threshold voltage and subthreshold swing of undoped cylindrical gate-all-around-based MOSFETs. IEEE Trans. Electron Devices 54, 572–579 (2007)CrossRef Hamid, H.A.E., Iniguez, B., Guitart, J.R.: Analytical model of the threshold voltage and subthreshold swing of undoped cylindrical gate-all-around-based MOSFETs. IEEE Trans. Electron Devices 54, 572–579 (2007)CrossRef
9.
Zurück zum Zitat Tiwari, P.K., Dubey, S., Singh, M., Jit, S.: A two-dimensional analytical model for threshold voltage of short-channel triple-material double-gate metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 108, 074508 (2010)CrossRef Tiwari, P.K., Dubey, S., Singh, M., Jit, S.: A two-dimensional analytical model for threshold voltage of short-channel triple-material double-gate metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 108, 074508 (2010)CrossRef
10.
Zurück zum Zitat Chen, Q., Harrell II, E.M., Meindl, J.D.: A physical short-channel threshold voltage model for undoped symmetric double-gateMOSFETs. IEEE Trans. Electron Devices 50, 1631–1637 (2003)CrossRef Chen, Q., Harrell II, E.M., Meindl, J.D.: A physical short-channel threshold voltage model for undoped symmetric double-gateMOSFETs. IEEE Trans. Electron Devices 50, 1631–1637 (2003)CrossRef
11.
Zurück zum Zitat Omura, Y., Horiguchi, S., Tabe, M., Kishi, K.: Quantum-mechanical effects on the threshold voltage of ultrathin-SOI NMOSFETs. IEEE Electron Device Lett. 14, 569–571 (1993)CrossRef Omura, Y., Horiguchi, S., Tabe, M., Kishi, K.: Quantum-mechanical effects on the threshold voltage of ultrathin-SOI NMOSFETs. IEEE Electron Device Lett. 14, 569–571 (1993)CrossRef
12.
Zurück zum Zitat ATLAS User’s Manual: Device Simulation Software. SilvacoInternational, Santa Clara (2008) ATLAS User’s Manual: Device Simulation Software. SilvacoInternational, Santa Clara (2008)
13.
Zurück zum Zitat Tsormpatzoglou, A., Dimitriadis, C.A., Clerc, R., Pananakakis, G., Ghibaudo, G.: Threshold voltage model for short-channel undoped symmetrical double-gate MOSFETs. IEEE Trans. Electron Devices 55, 2512–2516 (2008)CrossRef Tsormpatzoglou, A., Dimitriadis, C.A., Clerc, R., Pananakakis, G., Ghibaudo, G.: Threshold voltage model for short-channel undoped symmetrical double-gate MOSFETs. IEEE Trans. Electron Devices 55, 2512–2516 (2008)CrossRef
Metadaten
Titel
Analytical modeling of threshold voltage for symmetrical silicon nano-tube field-effect-transistors (Si-NT FETs)
verfasst von
Pramod Kumar Tiwari
Visweswara Rao Samoju
Thandva Sunkara
Sarvesh Dubey
Satyabrata Jit
Publikationsdatum
04.04.2016
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 2/2016
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-016-0819-0

Weitere Artikel der Ausgabe 2/2016

Journal of Computational Electronics 2/2016 Zur Ausgabe

Neuer Inhalt