Skip to main content
Erschienen in: Journal of Computational Electronics 2/2016

02.01.2016

Nested dissection solver for transport in 3D nano-electronic devices

verfasst von: Y. Zhao, U. Hetmaniuk, S. R. Patil, J. Qi, M. P. Anantram

Erschienen in: Journal of Computational Electronics | Ausgabe 2/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The hierarchical Schur complement method (HSC) and the HSC-extension have significantly accelerated the evaluation of the retarded Green’s function, particularly the lesser Green’s function, for two-dimensional nanoscale devices. In this work, the HSC-extension is applied to determine the solution of non-equilibrium Green’s functions on three-dimensional nanoscale devices. The operation count for the HSC-extension is analyzed for a cuboid device. When a cubic device is discretized with \(N \times N \times N\) grid points, the state-of-the-art recursive Green function (RGF) algorithm takes \(\mathscr {O}(N^7)\) operations, whereas the HSC-extension only requires \(\mathscr {O}(N^6)\) operations. Operation counts and runtimes are also studied for three-dimensional nanoscale devices of practical interest: a graphene-boron nitride-graphene multilayer system, a silicon nanowire, and a DNA molecule. The numerical experiments indicate that the cost for the HSC-extension is proportional to the solution of one linear system (or one LU-factorization) and that the runtime speed-ups over RGF exceed three orders of magnitude when simulating realistic devices, such as a graphene-boron nitride-graphene multilayer system with 40,000 atoms.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
The block on the diagonal of \(\mathbf {G}^{r}\) for the rightmost layer is the corresponding block in the matrix \(\mathbf {D}^{-1}\).
 
2
In practice, the binary tree is likely to be balanced.
 
3
Any cluster with 2-pairs is partitioned according to a degenerate tree, where each parent node has only one child.
 
Literatur
1.
Zurück zum Zitat Datta, S.: The non-equilibrium Green’s function (NEGF) formalism: An elementary introduction. In: Electron Devices Meeting, 2002. IEDM’02. International (IEEE, 2002), pp. 703–706 Datta, S.: The non-equilibrium Green’s function (NEGF) formalism: An elementary introduction. In: Electron Devices Meeting, 2002. IEDM’02. International (IEEE, 2002), pp. 703–706
2.
Zurück zum Zitat Ren, Z., Venugopal, R., Goasguen, S., Datta, S., Lundstrom, M.S.: nanoMOS 2.5: a two-dimensional simulator for quantum transport in double-gate MOSFETs. IEEE Trans. Electron Devices. 50(9), 1914 (2003)CrossRef Ren, Z., Venugopal, R., Goasguen, S., Datta, S., Lundstrom, M.S.: nanoMOS 2.5: a two-dimensional simulator for quantum transport in double-gate MOSFETs. IEEE Trans. Electron Devices. 50(9), 1914 (2003)CrossRef
3.
Zurück zum Zitat Barker, J.R., Pepin, J., Finch, M., Laughton, M.: Theory of non-linear transport in quantum waveguides. Solid State Electron. 32(12), 1155 (1989)CrossRef Barker, J.R., Pepin, J., Finch, M., Laughton, M.: Theory of non-linear transport in quantum waveguides. Solid State Electron. 32(12), 1155 (1989)CrossRef
4.
Zurück zum Zitat Luisier, M., Schenk, A., Fichtner, W.: Quantum transport in two-and three-dimensional nanoscale transistors: coupled mode effects in the nonequilibrium Green’s function formalism. J. Appl. Phys. 100(4), 043713 (2006)CrossRef Luisier, M., Schenk, A., Fichtner, W.: Quantum transport in two-and three-dimensional nanoscale transistors: coupled mode effects in the nonequilibrium Green’s function formalism. J. Appl. Phys. 100(4), 043713 (2006)CrossRef
5.
Zurück zum Zitat Asenov, A., Brown, A.R., Davies, J.H., Kaya, S., Slavcheva, G.: Simulation of intrinsic parameter fluctuations in decananometer and nanometer-scale MOSFETs. IEEE Trans. Electron Devices. 50(9), 1837 (2003)CrossRef Asenov, A., Brown, A.R., Davies, J.H., Kaya, S., Slavcheva, G.: Simulation of intrinsic parameter fluctuations in decananometer and nanometer-scale MOSFETs. IEEE Trans. Electron Devices. 50(9), 1837 (2003)CrossRef
6.
Zurück zum Zitat Martinez, A., Kalna, K., Barker, J.R., Asenov, A.: A study of the interface roughness effect in Si nanowires using a full 3D NEGF approach. Physica E 37(1), 168 (2007)CrossRef Martinez, A., Kalna, K., Barker, J.R., Asenov, A.: A study of the interface roughness effect in Si nanowires using a full 3D NEGF approach. Physica E 37(1), 168 (2007)CrossRef
7.
Zurück zum Zitat Martinez, A., Barker, J.R., Asenov, A., Bescond, M., Svizhenko, A., Anantram, A.: Development of a full 3D NEGF nano-CMOS simulator. In: Simulation of Semiconductor Processes and Devices, 2006 International Conference on (IEEE, 2006), pp. 353–356 Martinez, A., Barker, J.R., Asenov, A., Bescond, M., Svizhenko, A., Anantram, A.: Development of a full 3D NEGF nano-CMOS simulator. In: Simulation of Semiconductor Processes and Devices, 2006 International Conference on (IEEE, 2006), pp. 353–356
8.
Zurück zum Zitat Martinez, A., Bescond, M., Barker, J.R., Svizhenko, A., Anantram, M.P., Millar, C., Asenov, A.: A self-consistent full 3-D real-space NEGF simulator for studying nonperturbative effects in nano-MOSFETs. IEEE Trans. Electron. Devices. 54(9), 2213 (2007)CrossRef Martinez, A., Bescond, M., Barker, J.R., Svizhenko, A., Anantram, M.P., Millar, C., Asenov, A.: A self-consistent full 3-D real-space NEGF simulator for studying nonperturbative effects in nano-MOSFETs. IEEE Trans. Electron. Devices. 54(9), 2213 (2007)CrossRef
9.
Zurück zum Zitat Martinez, A., Brown, A.R., Asenov, A., Seoane, N.: A comparison between a fully-3D real-space versus coupled mode-space NEGF in the study of variability in gate-all-around Si nanowire MOSFET. In: Simulation of Semiconductor Processes and Devices, 2009. SISPAD’09. International Conference on (IEEE, 2009), pp. 1–4 Martinez, A., Brown, A.R., Asenov, A., Seoane, N.: A comparison between a fully-3D real-space versus coupled mode-space NEGF in the study of variability in gate-all-around Si nanowire MOSFET. In: Simulation of Semiconductor Processes and Devices, 2009. SISPAD’09. International Conference on (IEEE, 2009), pp. 1–4
10.
Zurück zum Zitat Martinez, A., Seoane, N., Brown, A.R., Asenov, A.: A detailed 3D-NEGF simulation study of tunnelling in n-Si nanowire MOSFETs. In: Silicon Nanoelectronics Workshop (SNW), 2010 (IEEE, 2010), pp. 1–2 Martinez, A., Seoane, N., Brown, A.R., Asenov, A.: A detailed 3D-NEGF simulation study of tunnelling in n-Si nanowire MOSFETs. In: Silicon Nanoelectronics Workshop (SNW), 2010 (IEEE, 2010), pp. 1–2
11.
Zurück zum Zitat Anantram, M., Lundstrom, M., Nikonov, D.: Modeling of nanoscale devices. Proc. IEEE 96(9), 1511 (2008)CrossRef Anantram, M., Lundstrom, M., Nikonov, D.: Modeling of nanoscale devices. Proc. IEEE 96(9), 1511 (2008)CrossRef
12.
Zurück zum Zitat Svizhenko, A., Anantram, M., Govindam, T., Biegel, B., Venugopal, R.: Two-dimensional quantum mechanical modeling of nanotransistors. J. Appl. Phys. 91, 2343 (2002)CrossRef Svizhenko, A., Anantram, M., Govindam, T., Biegel, B., Venugopal, R.: Two-dimensional quantum mechanical modeling of nanotransistors. J. Appl. Phys. 91, 2343 (2002)CrossRef
13.
Zurück zum Zitat Lin, L., Lu, J., Ying, L., Car, R., E, W.: Fast algorithm for extracting the diagonal of the inverse matrix with application to the electronic structure analysis of metallic systems. Commun. Math. Sci. 7(3), 755 (2009)MathSciNetCrossRefMATH Lin, L., Lu, J., Ying, L., Car, R., E, W.: Fast algorithm for extracting the diagonal of the inverse matrix with application to the electronic structure analysis of metallic systems. Commun. Math. Sci. 7(3), 755 (2009)MathSciNetCrossRefMATH
14.
Zurück zum Zitat Lin, L., Yang, C., Meza, J., Lu, J., Ying, L., E, W.: SelInv - An algorithm for selected inversion of a sparse symmetric matrix. ACM Trans. Math. Softw. 37, 40 (2011) Lin, L., Yang, C., Meza, J., Lu, J., Ying, L., E, W.: SelInv - An algorithm for selected inversion of a sparse symmetric matrix. ACM Trans. Math. Softw. 37, 40 (2011)
15.
Zurück zum Zitat Li, S., Ahmed, S., Klimeck, G., Darve, E.: Computing entries of the inverse of a sparse matrix using the FIND algorithm. J. Comp. Phys. 227, 9408 (2008)MathSciNetCrossRefMATH Li, S., Ahmed, S., Klimeck, G., Darve, E.: Computing entries of the inverse of a sparse matrix using the FIND algorithm. J. Comp. Phys. 227, 9408 (2008)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Hetmaniuk, U., Zhao, Y., Anantram, M.P.: A nested dissection approach to modeling transport in nanodevices: algorithms and applications. Int. J. Numer. Methods. Eng. 95(7), 587 (2013)MathSciNetCrossRef Hetmaniuk, U., Zhao, Y., Anantram, M.P.: A nested dissection approach to modeling transport in nanodevices: algorithms and applications. Int. J. Numer. Methods. Eng. 95(7), 587 (2013)MathSciNetCrossRef
18.
Zurück zum Zitat Takahashi, K., Fagan, J., Chin, M.S.: Formation of a sparse bus impedance matrix and its application to short circuit study. In: Eighth PICA Conference (1973) Takahashi, K., Fagan, J., Chin, M.S.: Formation of a sparse bus impedance matrix and its application to short circuit study. In: Eighth PICA Conference (1973)
19.
21.
Zurück zum Zitat Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359 (1998)MathSciNetCrossRefMATH Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359 (1998)MathSciNetCrossRefMATH
22.
Zurück zum Zitat Nissen, A., Kreiss, G.: An optimized perfectly matched layer for the Schrödinger equation. Commun. Comput. Phys. 9, 147 (2011)MathSciNetMATH Nissen, A., Kreiss, G.: An optimized perfectly matched layer for the Schrödinger equation. Commun. Comput. Phys. 9, 147 (2011)MathSciNetMATH
23.
Zurück zum Zitat The MathWorks Inc.: MATLAB Release 2011b. Natick, Massachusetts, United States (2011) The MathWorks Inc.: MATLAB Release 2011b. Natick, Massachusetts, United States (2011)
24.
25.
Zurück zum Zitat Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109 (2009)CrossRef Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109 (2009)CrossRef
26.
Zurück zum Zitat Britnell, L., Gorbachev, R.V., Geim, A.K., Ponomarenko, L.A., Mishchenko, A., Greenaway, M.T., Fromhold, T.M., Novoselov, K.S., Eaves, L.: Resonant tunnelling and negative differential conductance in graphene transistors. Nat. Commun. 4, 1794 (2013)CrossRef Britnell, L., Gorbachev, R.V., Geim, A.K., Ponomarenko, L.A., Mishchenko, A., Greenaway, M.T., Fromhold, T.M., Novoselov, K.S., Eaves, L.: Resonant tunnelling and negative differential conductance in graphene transistors. Nat. Commun. 4, 1794 (2013)CrossRef
27.
Zurück zum Zitat Zhao, Y., Wan, Z., Xu, X., Patil, S.R., Hetmaniuk, U., Anantram, M.P.: Negative Differential Resistance in Boron Nitride Graphene Heterostructures: Physical Mechanisms and Size Scaling Analysis. Scientific reports 5, (2015) Zhao, Y., Wan, Z., Xu, X., Patil, S.R., Hetmaniuk, U., Anantram, M.P.: Negative Differential Resistance in Boron Nitride Graphene Heterostructures: Physical Mechanisms and Size Scaling Analysis. Scientific reports 5, (2015)
28.
Zurück zum Zitat Cui, Y., Lieber, C.M.: Functional nanoscale electronic devices assembled using Silicon nanowire building blocks. Science 291(5505), 851 (2001)CrossRef Cui, Y., Lieber, C.M.: Functional nanoscale electronic devices assembled using Silicon nanowire building blocks. Science 291(5505), 851 (2001)CrossRef
29.
Zurück zum Zitat Luisier, M., Schenk, A., Fichtner, W., Klimeck, G.: Atomistic simulation of nanowires in the \(sp^3d^5s^*\) tight-binding formalism: from boundary conditions to strain calculations. Phys. Rev. B 74(20), 205323 (2006)CrossRef Luisier, M., Schenk, A., Fichtner, W., Klimeck, G.: Atomistic simulation of nanowires in the \(sp^3d^5s^*\) tight-binding formalism: from boundary conditions to strain calculations. Phys. Rev. B 74(20), 205323 (2006)CrossRef
30.
Zurück zum Zitat Göhler, B., Hamelbeck, V., Markus, T.Z., Kettner, M., Hanne, G.F., Vager, Z., Naaman, R., Zacharias, H.: Spin selectivity in electron transmission through self-assembled monolayers of double-stranded DNA. Science 331(6019), 894 (2011)CrossRef Göhler, B., Hamelbeck, V., Markus, T.Z., Kettner, M., Hanne, G.F., Vager, Z., Naaman, R., Zacharias, H.: Spin selectivity in electron transmission through self-assembled monolayers of double-stranded DNA. Science 331(6019), 894 (2011)CrossRef
31.
Zurück zum Zitat Postma, H.W.C.: Rapid sequencing of individual DNA molecules in graphene nanogaps. Nano Lett. 10(2), 420 (2010)CrossRef Postma, H.W.C.: Rapid sequencing of individual DNA molecules in graphene nanogaps. Nano Lett. 10(2), 420 (2010)CrossRef
32.
Zurück zum Zitat Tsutsui, M., Matsubara, K., Ohshiro, T., Furuhashi, M., Taniguchi, M., Kawai, T.: Electrical detection of single methylcytosines in a DNA oligomer. J. Am. Chem. Soc. 133(23), 9124 (2011)CrossRef Tsutsui, M., Matsubara, K., Ohshiro, T., Furuhashi, M., Taniguchi, M., Kawai, T.: Electrical detection of single methylcytosines in a DNA oligomer. J. Am. Chem. Soc. 133(23), 9124 (2011)CrossRef
33.
Zurück zum Zitat Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09 Revision A.1. Gaussian Inc. Wallingford CT (2009) Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09 Revision A.1. Gaussian Inc. Wallingford CT (2009)
34.
Zurück zum Zitat Qi, J., Edirisinghe, N., Rabbani, M.G., Anantram, M.P.: Unified model for conductance through DNA with the Landauer-Büttiker formalism. Phys. Rev. B 87(8), 085404 (2013)CrossRef Qi, J., Edirisinghe, N., Rabbani, M.G., Anantram, M.P.: Unified model for conductance through DNA with the Landauer-Büttiker formalism. Phys. Rev. B 87(8), 085404 (2013)CrossRef
Metadaten
Titel
Nested dissection solver for transport in 3D nano-electronic devices
verfasst von
Y. Zhao
U. Hetmaniuk
S. R. Patil
J. Qi
M. P. Anantram
Publikationsdatum
02.01.2016
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 2/2016
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-015-0778-x

Weitere Artikel der Ausgabe 2/2016

Journal of Computational Electronics 2/2016 Zur Ausgabe

Neuer Inhalt