Skip to main content
Erschienen in: Journal of Computational Electronics 2/2016

01.03.2016

Investigation and comparison of bare-dihydrogenated junction rectifiers of graphene and silicene nanoribbons

verfasst von: Serhan Yamacli

Erschienen in: Journal of Computational Electronics | Ausgabe 2/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Although silicon and similar bulk materials are widely used in today’s integrated circuits, the transition to lower dimensional structures such as two-dimensional graphene, one-dimensional graphene nanoribbons (GNRs) and silicene nanoribbons (SiNRs) seems inescapable due to the increment of inelastic scattering and related performance degrading effects in bulk circuit components. In this context, GNRs and SiNRs provide advantages such as low area consumption and the adjustment of their electronic behaviours by edge states and widths. On the other hand, rectifiers together with their static and dynamic behaviours constitute the basics of the electronics technology. In this paper, rectifier characteristics of bare-dihydrogenated junctions of GNR and SiNR structures are investigated and compared utilizing first-principles approach. Density functional theory in combination with non-equilibrium Green’s function formalism are used to obtain current–voltage characteristics, transmission eigenstates and dynamic electron densities of the considered GNR and SiNR rectifiers and then these quantities are processed to obtain the dynamical resistance, junction capacitance and time constants of these structures, which is essential for graphene and silicene based electronics design. The paper is concluded with the discussion of the large-signal and small-signal performances of the considered GNR and SiNR rectifiers for commercial integrated circuit applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Samal, S.K., Peng, Y., Pathak, M., Lim, S.K.: Ultralow power circuit design with subthreshold/near-threshold 3-D IC technologies. IEEE Trans. Compon. Packag. Manuf. Technol. 5(7), 980–990 (2015)CrossRef Samal, S.K., Peng, Y., Pathak, M., Lim, S.K.: Ultralow power circuit design with subthreshold/near-threshold 3-D IC technologies. IEEE Trans. Compon. Packag. Manuf. Technol. 5(7), 980–990 (2015)CrossRef
2.
Zurück zum Zitat Strawn, G., Strawn, C.: Moore’s law at fifty. IEEE IT Professional 17(6), 69–72 (2015)CrossRef Strawn, G., Strawn, C.: Moore’s law at fifty. IEEE IT Professional 17(6), 69–72 (2015)CrossRef
3.
Zurück zum Zitat Coffey, K.R., Barmak, K., Sun, T., Warren, A.P., Yao, B.: Grain boundary and surface scattering in interconnect metals. In: IEEE International Interconnect Technology Conference, pp. 1–3 (2013) Coffey, K.R., Barmak, K., Sun, T., Warren, A.P., Yao, B.: Grain boundary and surface scattering in interconnect metals. In: IEEE International Interconnect Technology Conference, pp. 1–3 (2013)
4.
Zurück zum Zitat Olcan, D.I., Petrovich, D.S.: Kolundzica B.M., Comparison of scattering from 2-D and 3-D structures with frequency-dependent materials in time and frequency domains. In: IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems, pp: 1–5 (2013) Olcan, D.I., Petrovich, D.S.: Kolundzica B.M., Comparison of scattering from 2-D and 3-D structures with frequency-dependent materials in time and frequency domains. In: IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems, pp: 1–5 (2013)
5.
Zurück zum Zitat Shen, H., Shi, Y., Wang, X.: Synthesis, charge transport and device applications of graphene nanoribbons. Synth. Met. 210, 109–122 (2015)CrossRef Shen, H., Shi, Y., Wang, X.: Synthesis, charge transport and device applications of graphene nanoribbons. Synth. Met. 210, 109–122 (2015)CrossRef
6.
Zurück zum Zitat Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005)CrossRef Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005)CrossRef
7.
Zurück zum Zitat Jiang, J.-W., Wang, J.-S., Li, B.: Young’s modulus of graphene: a molecular dynamics study. Phys. Rev. B 80, 113405 (2009)CrossRef Jiang, J.-W., Wang, J.-S., Li, B.: Young’s modulus of graphene: a molecular dynamics study. Phys. Rev. B 80, 113405 (2009)CrossRef
8.
Zurück zum Zitat Obrazstsov, A.N.: Chemical vapour deposition: making graphene on a large scale. Nat. Nanotechnol. 4, 212–213 (2009)CrossRef Obrazstsov, A.N.: Chemical vapour deposition: making graphene on a large scale. Nat. Nanotechnol. 4, 212–213 (2009)CrossRef
9.
Zurück zum Zitat Allen, J.A., Tung, V.C., Kaner, R.B.: Honeycomb carbon: a review of graphene. Chem. Rev. 110(1), 132–145 (2009)CrossRef Allen, J.A., Tung, V.C., Kaner, R.B.: Honeycomb carbon: a review of graphene. Chem. Rev. 110(1), 132–145 (2009)CrossRef
10.
Zurück zum Zitat Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., Stromer, H.L.: Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146(10), 351–355 (2008)CrossRef Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., Stromer, H.L.: Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146(10), 351–355 (2008)CrossRef
11.
Zurück zum Zitat Chen, Z., Lin, Y.-M., Rooks, M.J., Avouris, Ph: Graphene nano-ribbon electronics. Physica E 40(2), 228–232 (2007)CrossRef Chen, Z., Lin, Y.-M., Rooks, M.J., Avouris, Ph: Graphene nano-ribbon electronics. Physica E 40(2), 228–232 (2007)CrossRef
12.
Zurück zum Zitat Yamacli, S.: Extraction of the voltage-dependent quantum capacitance and kinetic inductance of GNRFETs: a first-principles study. J. Comput. Electron. 14(1), 249–256 (2015)CrossRef Yamacli, S.: Extraction of the voltage-dependent quantum capacitance and kinetic inductance of GNRFETs: a first-principles study. J. Comput. Electron. 14(1), 249–256 (2015)CrossRef
13.
Zurück zum Zitat Xue, G., Tang, Q., Tong, Y., Liu, Y.: Size-controlled ambipolar graphene nanoribbon transistors by an all-dry mask method. Synth. Met. 205, 6–10 (2015)CrossRef Xue, G., Tang, Q., Tong, Y., Liu, Y.: Size-controlled ambipolar graphene nanoribbon transistors by an all-dry mask method. Synth. Met. 205, 6–10 (2015)CrossRef
14.
Zurück zum Zitat Jang, S.L., Li, S.H.: Gate coupled and zener diode triggering silicon-controlled rectifiers for electrostatic discharge protection circuits. Solid State Electron. 46(2), 263–267 (2002)CrossRef Jang, S.L., Li, S.H.: Gate coupled and zener diode triggering silicon-controlled rectifiers for electrostatic discharge protection circuits. Solid State Electron. 46(2), 263–267 (2002)CrossRef
15.
Zurück zum Zitat Foster, M.P., Stone, D.A.: Describing function model of series resonant inverter with current limiting diode-clamp. Electron. Lett. 47(25), 1363–1364 (2011)CrossRef Foster, M.P., Stone, D.A.: Describing function model of series resonant inverter with current limiting diode-clamp. Electron. Lett. 47(25), 1363–1364 (2011)CrossRef
16.
Zurück zum Zitat Kimura, Y., Kiso, T., Higaki, T., Sun, Y.: Maemoto T., Sasa S., Inoue M., Rectification effects in ZnO-based transparent self-switching nano-diodes. In: IEEE International Meeting for Future of Electron Devices, pp. 1–2 (2012) Kimura, Y., Kiso, T., Higaki, T., Sun, Y.: Maemoto T., Sasa S., Inoue M., Rectification effects in ZnO-based transparent self-switching nano-diodes. In: IEEE International Meeting for Future of Electron Devices, pp. 1–2 (2012)
17.
Zurück zum Zitat Micheli, G., Leblebici, Y., Gijs, J., Voros, J.: Nanosystems Design and Technology. Springer, New York (2009)CrossRef Micheli, G., Leblebici, Y., Gijs, J., Voros, J.: Nanosystems Design and Technology. Springer, New York (2009)CrossRef
18.
Zurück zum Zitat Appenzeller, J., Lin, Y.-M., Konch, J., Avouris, Ph: Band-to-band tunneling in carbon nanotube field-effect transistors. Phys. Rev. Lett. 93, 196805 (2004)CrossRef Appenzeller, J., Lin, Y.-M., Konch, J., Avouris, Ph: Band-to-band tunneling in carbon nanotube field-effect transistors. Phys. Rev. Lett. 93, 196805 (2004)CrossRef
19.
Zurück zum Zitat Ilatikhameneh, H., Tan, Y., Novakovic, B., Klimeck, G., Rahman, R., Appenzeller, J.: Tunnel field-effect transistors in 2-D transition metal dichalcogenide materials. IEEE J. Explor. Solid State Comput. Devices Circuits 1, 12–18 (2015)CrossRef Ilatikhameneh, H., Tan, Y., Novakovic, B., Klimeck, G., Rahman, R., Appenzeller, J.: Tunnel field-effect transistors in 2-D transition metal dichalcogenide materials. IEEE J. Explor. Solid State Comput. Devices Circuits 1, 12–18 (2015)CrossRef
20.
Zurück zum Zitat Fiori, G., Bonaccorso, F., Iannaccone, G., Palacios, T., Neumaier, D., Seabaugh, A., Banerjee, S.K., Colombo, L.: Electronics based on 2-D materials. Nat. Nanotechnol. 9, 768–779 (2014)CrossRef Fiori, G., Bonaccorso, F., Iannaccone, G., Palacios, T., Neumaier, D., Seabaugh, A., Banerjee, S.K., Colombo, L.: Electronics based on 2-D materials. Nat. Nanotechnol. 9, 768–779 (2014)CrossRef
21.
Zurück zum Zitat Szabo A., Koester S.J., Luisier M.: Metal-dichalcogenide hetero-TFETs: are they a viable option for low power electronics? In: IEEE 72nd Annual Device Research Conference (DRC), pp. 19–20 (2014) Szabo A., Koester S.J., Luisier M.: Metal-dichalcogenide hetero-TFETs: are they a viable option for low power electronics? In: IEEE 72nd Annual Device Research Conference (DRC), pp. 19–20 (2014)
22.
Zurück zum Zitat Ilatikhameneh, H., Ameen, T.A., Klimeck, G., Appenzeller, J., Rahman, R.: Deielctric engineered tunnel field effect transistor. IEEE Electron Device Lett. 36(10), 1097–1100 (2015)CrossRef Ilatikhameneh, H., Ameen, T.A., Klimeck, G., Appenzeller, J., Rahman, R.: Deielctric engineered tunnel field effect transistor. IEEE Electron Device Lett. 36(10), 1097–1100 (2015)CrossRef
23.
Zurück zum Zitat Ilatikhameneh, H., Rahman, R., Appenzeller, J., Klimeck, G.: Electrically doped WTe\(_{2}\) transistors. In: IEEE International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pp: 270–272 (2015) Ilatikhameneh, H., Rahman, R., Appenzeller, J., Klimeck, G.: Electrically doped WTe\(_{2}\) transistors. In: IEEE International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pp: 270–272 (2015)
24.
Zurück zum Zitat Fiori, G., Neumaier, D., Szafranek, B.N., Lannaccone, G.: Bilayer graphene transistors for analog electronics. IEEE Trans. Electron Devices 61(3), 729–733 (2014)CrossRef Fiori, G., Neumaier, D., Szafranek, B.N., Lannaccone, G.: Bilayer graphene transistors for analog electronics. IEEE Trans. Electron Devices 61(3), 729–733 (2014)CrossRef
25.
Zurück zum Zitat Chen, N.L.: Electronic properties of armchair graphene nanoribbons with BN-doping. Solid State Commun. 191, 56–65 (2014)CrossRef Chen, N.L.: Electronic properties of armchair graphene nanoribbons with BN-doping. Solid State Commun. 191, 56–65 (2014)CrossRef
26.
Zurück zum Zitat Zou, D.-Q., Song, Y., Xie, Z., Li, Z.-L., Wang, C.-K.: Large rectification ratio induced by nitrogen (boron) doping in graphene nanoribbon electrodes for OPE junctions. Phys. Lett. A 379, 1842–1846 (2015)CrossRef Zou, D.-Q., Song, Y., Xie, Z., Li, Z.-L., Wang, C.-K.: Large rectification ratio induced by nitrogen (boron) doping in graphene nanoribbon electrodes for OPE junctions. Phys. Lett. A 379, 1842–1846 (2015)CrossRef
27.
Zurück zum Zitat Wang, L.-H., Zhang, Z.-H., Ding, B.-J., Guo, Y.: Size dependence rectification performances induced by boron and nitrogen co-doping in rhombic graphene nanoribbons. Phys. Lett. A 378, 904–908 (2014)CrossRefMATH Wang, L.-H., Zhang, Z.-H., Ding, B.-J., Guo, Y.: Size dependence rectification performances induced by boron and nitrogen co-doping in rhombic graphene nanoribbons. Phys. Lett. A 378, 904–908 (2014)CrossRefMATH
28.
Zurück zum Zitat Stander N.: Transport measurements on graphene p-n junctions. Ph.D. Thesis, Stanford University (2010) Stander N.: Transport measurements on graphene p-n junctions. Ph.D. Thesis, Stanford University (2010)
29.
Zurück zum Zitat An, Y., Wang, K., Yang, Z., Liu, Z., Jia, G., Jiao, Z., Wang, T., Xu, G.: Negative differential resistance and rectification effects in step-like graphene nanoribbons. Org. Electron. 17, 262–269 (2015)CrossRef An, Y., Wang, K., Yang, Z., Liu, Z., Jia, G., Jiao, Z., Wang, T., Xu, G.: Negative differential resistance and rectification effects in step-like graphene nanoribbons. Org. Electron. 17, 262–269 (2015)CrossRef
30.
Zurück zum Zitat Zhai, X., Jin, G.: Bipolar spin diode based on a bent graphene nanoribbon. Solid State Commun. 152, 2109–2112 (2012)CrossRef Zhai, X., Jin, G.: Bipolar spin diode based on a bent graphene nanoribbon. Solid State Commun. 152, 2109–2112 (2012)CrossRef
31.
Zurück zum Zitat Al-Dirini, F., Hossain, F.M., Nirmalathas, A., Skafidas, E.: Alll-graphene planar double barrier resonant tunnelling diodes. J. Electron Devices Soc. 2(5), 118–122 (2014)CrossRef Al-Dirini, F., Hossain, F.M., Nirmalathas, A., Skafidas, E.: Alll-graphene planar double barrier resonant tunnelling diodes. J. Electron Devices Soc. 2(5), 118–122 (2014)CrossRef
32.
Zurück zum Zitat Kargar, A.: Analytical modeling of graphene nanoribbon Schottky diodes using asymmetric contacts. J. Comput. Theor. Nanosci. 8, 1–6 (2011)CrossRef Kargar, A.: Analytical modeling of graphene nanoribbon Schottky diodes using asymmetric contacts. J. Comput. Theor. Nanosci. 8, 1–6 (2011)CrossRef
33.
Zurück zum Zitat Kang, J., Wu, F., Li, S.-S., Xia, J.-B., Li, J.: Antiferromagnetic coupling and spin filtering in asymmetrically hydrogenated graphene nanoribbon homojunction. Appl. Phys. Lett. 100, 153102 (2012)CrossRef Kang, J., Wu, F., Li, S.-S., Xia, J.-B., Li, J.: Antiferromagnetic coupling and spin filtering in asymmetrically hydrogenated graphene nanoribbon homojunction. Appl. Phys. Lett. 100, 153102 (2012)CrossRef
34.
Zurück zum Zitat Zeng, J., Chen, K.-Q., He, J., Zhang, X.-J., Sun, C.Q.: Edge hydrogenation-induced spin-filtering and rectifying behaviors in the graphene nanoribbon heterojunctions. J. Phys. Chem. C 115, 25072–25076 (2011)CrossRef Zeng, J., Chen, K.-Q., He, J., Zhang, X.-J., Sun, C.Q.: Edge hydrogenation-induced spin-filtering and rectifying behaviors in the graphene nanoribbon heterojunctions. J. Phys. Chem. C 115, 25072–25076 (2011)CrossRef
35.
Zurück zum Zitat Liu, J., Zhang, Z.H., Deng, X.Q., Fan, Z.Q., Tang, G.P.: Electronic structures and transport properties of armchair graphene nanoribbons by ordered doping. Organ. Electron. 18, 135–142 (2015)CrossRef Liu, J., Zhang, Z.H., Deng, X.Q., Fan, Z.Q., Tang, G.P.: Electronic structures and transport properties of armchair graphene nanoribbons by ordered doping. Organ. Electron. 18, 135–142 (2015)CrossRef
36.
Zurück zum Zitat Li, J., Zhang, Z.H., Zhang, J.J., Deng, X.Q.: Rectifying regularity for a combined nanostructure of two trigonal graphenes with different edge modifications. Organ. Electron. 13, 2257–2263 (2012)CrossRef Li, J., Zhang, Z.H., Zhang, J.J., Deng, X.Q.: Rectifying regularity for a combined nanostructure of two trigonal graphenes with different edge modifications. Organ. Electron. 13, 2257–2263 (2012)CrossRef
37.
Zurück zum Zitat Ling, Y.-C., Ning, F., Zhou, Y.-H., Chen, K.-Q.: Rectifying behavior and negative differential resistance in triangular graphene p-n junctions induced by vertex B-N mixture doping. Organ. Electron. 19, 92–97 (2015)CrossRef Ling, Y.-C., Ning, F., Zhou, Y.-H., Chen, K.-Q.: Rectifying behavior and negative differential resistance in triangular graphene p-n junctions induced by vertex B-N mixture doping. Organ. Electron. 19, 92–97 (2015)CrossRef
38.
Zurück zum Zitat Zhao, P., Liu, D.S., Li, S.J., Chen, G.: Modulation of rectification and negative differential resistance in graphene nanoribbon by nitrogen doping. Phys. Lett. A 377, 1134–1138 (2013)CrossRef Zhao, P., Liu, D.S., Li, S.J., Chen, G.: Modulation of rectification and negative differential resistance in graphene nanoribbon by nitrogen doping. Phys. Lett. A 377, 1134–1138 (2013)CrossRef
39.
Zurück zum Zitat Peng, J., Zhou, Y.-H., Chen, K.-Q.: Influence of boundary types on rectifying behaviors in hexagonal boron-nitride/graphene nanoribbon heterojunctions. Organ. Electron. 27, 137–142 (2015)CrossRef Peng, J., Zhou, Y.-H., Chen, K.-Q.: Influence of boundary types on rectifying behaviors in hexagonal boron-nitride/graphene nanoribbon heterojunctions. Organ. Electron. 27, 137–142 (2015)CrossRef
40.
Zurück zum Zitat Li, J., Zhang, Z.H., Qui, M., Yuan, C., Deng, X.Q., Fan, Z.Q., Tang, G.P., Liang, B.: High-performance current rectification in a molecular device with doped graphene electrodes. Carbon 80, 575–582 (2014)CrossRef Li, J., Zhang, Z.H., Qui, M., Yuan, C., Deng, X.Q., Fan, Z.Q., Tang, G.P., Liang, B.: High-performance current rectification in a molecular device with doped graphene electrodes. Carbon 80, 575–582 (2014)CrossRef
41.
Zurück zum Zitat Singh, A.K., Auton, G., Hill, E., Song, A.: Graphene based ballistic rectifiers. Carbon 84, 124–129 (2015)CrossRef Singh, A.K., Auton, G., Hill, E., Song, A.: Graphene based ballistic rectifiers. Carbon 84, 124–129 (2015)CrossRef
42.
Zurück zum Zitat Cao, C., Long, M.-Q., Zhang, X.-J., Mao, X.-C.: Giant magnetoresistance and spin-filtering effects in zigzag graphene and hexagonal boron nitride based heterojunction. Phys. Lett. A 379, 1527–1531 (2015)CrossRef Cao, C., Long, M.-Q., Zhang, X.-J., Mao, X.-C.: Giant magnetoresistance and spin-filtering effects in zigzag graphene and hexagonal boron nitride based heterojunction. Phys. Lett. A 379, 1527–1531 (2015)CrossRef
43.
Zurück zum Zitat Cao, C., Chen, N.-L., Long, M.-Q., Xu, H.: Rectifying performance in zigzag graphene nanoribbon heterojunctions with different edge hydrogenations. Phys. Lett. A 377, 1905–1910 (2013)CrossRef Cao, C., Chen, N.-L., Long, M.-Q., Xu, H.: Rectifying performance in zigzag graphene nanoribbon heterojunctions with different edge hydrogenations. Phys. Lett. A 377, 1905–1910 (2013)CrossRef
44.
Zurück zum Zitat Deng, X.Q., Zhang, Z.H., Tang, G.P., Fan, Z.Q., Yang, C.H.: Spin filter effects in zigzag-edge graphene nanoribbons with symmetric and asymmetric edge hydrogenations. Carbon 66, 646–653 (2014)CrossRef Deng, X.Q., Zhang, Z.H., Tang, G.P., Fan, Z.Q., Yang, C.H.: Spin filter effects in zigzag-edge graphene nanoribbons with symmetric and asymmetric edge hydrogenations. Carbon 66, 646–653 (2014)CrossRef
45.
Zurück zum Zitat Kang, J., Wu, F., Li, J.: Doping induced spin filtering effect in zigzag graphene nanoribbons with asymmetric edge hydrogenation. Appl. Phys. Lett. 98, 083109 (2011)CrossRef Kang, J., Wu, F., Li, J.: Doping induced spin filtering effect in zigzag graphene nanoribbons with asymmetric edge hydrogenation. Appl. Phys. Lett. 98, 083109 (2011)CrossRef
46.
Zurück zum Zitat Cao, C., Chen, L., Huang, W., Xu, H.: Electronic transport of zigzag graphene nanoribbons with edge hydrogenation and oxidation. Open Chem. Phys. J. 4, 1–7 (2012)CrossRef Cao, C., Chen, L., Huang, W., Xu, H.: Electronic transport of zigzag graphene nanoribbons with edge hydrogenation and oxidation. Open Chem. Phys. J. 4, 1–7 (2012)CrossRef
47.
Zurück zum Zitat Deng, X.Q., Zhang, Z.H., Yang, C.H., Zhu, H.L., Liang, B.: The design of spin filter junction in zigzag graphene nanoribbons with asymmetric edge hydrogenation. Org. Electron. 14(12), 3240–3248 (2013)CrossRef Deng, X.Q., Zhang, Z.H., Yang, C.H., Zhu, H.L., Liang, B.: The design of spin filter junction in zigzag graphene nanoribbons with asymmetric edge hydrogenation. Org. Electron. 14(12), 3240–3248 (2013)CrossRef
48.
Zurück zum Zitat Son, Y.-L., Zhang, Y., Zhang, J.-M., Lu, D.-B.: Effects of the edge shape and the width on the structural and electronic properties of silicene nanoribbons. Appl. Surf. Sci. 256(21), 6313–6317 (2010)CrossRef Son, Y.-L., Zhang, Y., Zhang, J.-M., Lu, D.-B.: Effects of the edge shape and the width on the structural and electronic properties of silicene nanoribbons. Appl. Surf. Sci. 256(21), 6313–6317 (2010)CrossRef
49.
Zurück zum Zitat Trivedi, S., Anurag, S., Rajnish, K.: Electronic and transport properties of silicene nanoribbons. J. Comput. Theor. Nanosci. 11(3), 789–794 (2014)CrossRef Trivedi, S., Anurag, S., Rajnish, K.: Electronic and transport properties of silicene nanoribbons. J. Comput. Theor. Nanosci. 11(3), 789–794 (2014)CrossRef
50.
Zurück zum Zitat Kara, A., Enriquez, H., Seitsonen, A.P., Voon, L.C., Vizzini, S., Aufray, B., Aughaddou, H.: A review on silicene-new candidate for electronics. Surf. Sci. Rep. 67(1), 1–8 (2012)CrossRef Kara, A., Enriquez, H., Seitsonen, A.P., Voon, L.C., Vizzini, S., Aufray, B., Aughaddou, H.: A review on silicene-new candidate for electronics. Surf. Sci. Rep. 67(1), 1–8 (2012)CrossRef
51.
Zurück zum Zitat Ni, Z., Liu, Q., Tang, K., Zheng, J., Zhou, J., Qin, R., Gao, Z., Yu, D., Lu, J.: Tunable bandgap in silicene and germanene. Nano Lett. 12, 113–118 (2012)CrossRef Ni, Z., Liu, Q., Tang, K., Zheng, J., Zhou, J., Qin, R., Gao, Z., Yu, D., Lu, J.: Tunable bandgap in silicene and germanene. Nano Lett. 12, 113–118 (2012)CrossRef
52.
Zurück zum Zitat Zhou, B., Zhou, B., Zeng, Y., Zhou, G., Duan, M.: Tunable electronic and transport properties for ultranarrow armchair-edge silicene nanoribbons under spin-orbit coupling and perpendicular electric field. Phys. Lett. A 380(1–2), 282–287 (2016)MathSciNetCrossRef Zhou, B., Zhou, B., Zeng, Y., Zhou, G., Duan, M.: Tunable electronic and transport properties for ultranarrow armchair-edge silicene nanoribbons under spin-orbit coupling and perpendicular electric field. Phys. Lett. A 380(1–2), 282–287 (2016)MathSciNetCrossRef
53.
Zurück zum Zitat Li, H., Wang, L., Liu, Q., Zheng, J., Mei, W.-N., Gao, Z., Shi, J., Lu, J.: High performance silicene nanoribbon field effect transistors with current saturation. Eur. Phys. J. B 85, 1–6 (2012)CrossRef Li, H., Wang, L., Liu, Q., Zheng, J., Mei, W.-N., Gao, Z., Shi, J., Lu, J.: High performance silicene nanoribbon field effect transistors with current saturation. Eur. Phys. J. B 85, 1–6 (2012)CrossRef
54.
Zurück zum Zitat Zhang, D., Long, M., Zhang, X., Cao, C., Xu, H., Li, M., Chan, K.: Bipolar spin-filtering, rectifying and giant magnetoresistance effects in zigzag silicene nanoribbons with asymmetric edge hydrogenation. Chem. Phys. Lett. 616, 178–183 (2014)CrossRef Zhang, D., Long, M., Zhang, X., Cao, C., Xu, H., Li, M., Chan, K.: Bipolar spin-filtering, rectifying and giant magnetoresistance effects in zigzag silicene nanoribbons with asymmetric edge hydrogenation. Chem. Phys. Lett. 616, 178–183 (2014)CrossRef
55.
Zurück zum Zitat Yamacli, S.: First principles study of the voltage-dependent conductance properties of n-type and p-type graphene-metal contacts. Comput. Mater. Sci. 81, 607–611 (2014)CrossRef Yamacli, S.: First principles study of the voltage-dependent conductance properties of n-type and p-type graphene-metal contacts. Comput. Mater. Sci. 81, 607–611 (2014)CrossRef
56.
Zurück zum Zitat Huang, Y., Zhang, Z., Ma, F., Chu, P.K., Dong, C., Wei, X.: First-principles calculation of the band structure, electronic states, and optical properties of Cr-doped ZnS double-wall nanotubes. Comput. Mater. Sci. 101, 1–7 (2015)CrossRef Huang, Y., Zhang, Z., Ma, F., Chu, P.K., Dong, C., Wei, X.: First-principles calculation of the band structure, electronic states, and optical properties of Cr-doped ZnS double-wall nanotubes. Comput. Mater. Sci. 101, 1–7 (2015)CrossRef
57.
Zurück zum Zitat Srivastava, A., Tyagi, N., Ahuja, R.: First-principles study of structural and electronic properties of gallium based nanowires. Solid State Sci. 23, 35–41 (2013)CrossRef Srivastava, A., Tyagi, N., Ahuja, R.: First-principles study of structural and electronic properties of gallium based nanowires. Solid State Sci. 23, 35–41 (2013)CrossRef
58.
Zurück zum Zitat Min, Y., Fang, H.J., Zhong, C.G., Dong, Z.C., Chen, C.P., Yao, K.L.: Disconnect armchair carbon nanotube as rectifier predicted by first-principles study. Comput. Mater. Sci. 81, 418–422 (2014)CrossRef Min, Y., Fang, H.J., Zhong, C.G., Dong, Z.C., Chen, C.P., Yao, K.L.: Disconnect armchair carbon nanotube as rectifier predicted by first-principles study. Comput. Mater. Sci. 81, 418–422 (2014)CrossRef
59.
Zurück zum Zitat Min, Y., Fang, H.J., Zhong, C.G., Dong, Z.C., Zhao, Z.Y., Zhou, P.X., Yao, K.L.: Bias changing molecule-lead couple and inducing low bias negative differential resistance for electrons acceptor predicted by first-principles study. Phys. Lett. A 379(40–41), 2637–2640 (2015)CrossRef Min, Y., Fang, H.J., Zhong, C.G., Dong, Z.C., Zhao, Z.Y., Zhou, P.X., Yao, K.L.: Bias changing molecule-lead couple and inducing low bias negative differential resistance for electrons acceptor predicted by first-principles study. Phys. Lett. A 379(40–41), 2637–2640 (2015)CrossRef
60.
Zurück zum Zitat Atomistix Toolkit version 2014.1, Quantumwise A/S, Cophenagen, Denmark Atomistix Toolkit version 2014.1, Quantumwise A/S, Cophenagen, Denmark
61.
Zurück zum Zitat Brandbyge, M., Mozos, J.-L., Ordejon, P., Taylor, J., Stokbro, K.: Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65, 165401 (2002)CrossRef Brandbyge, M., Mozos, J.-L., Ordejon, P., Taylor, J., Stokbro, K.: Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65, 165401 (2002)CrossRef
62.
Zurück zum Zitat Soler, J.M., Artacho, E., Gale, J.D., Garcia, A., Junquera, J., Ordejon, P., Sanchez-Portal, D.: The Siesta method for ab initio order-N materials simulation. J. Phys. 14, 2745 (2002) Soler, J.M., Artacho, E., Gale, J.D., Garcia, A., Junquera, J., Ordejon, P., Sanchez-Portal, D.: The Siesta method for ab initio order-N materials simulation. J. Phys. 14, 2745 (2002)
63.
Zurück zum Zitat Abadir, G.B., Walus, K., Pulfrey, D.L.: Basis set choice for DFT/NEGF simulations of carbon nanotubes. J. Comput. Electron. 8, 1–9 (2009)CrossRef Abadir, G.B., Walus, K., Pulfrey, D.L.: Basis set choice for DFT/NEGF simulations of carbon nanotubes. J. Comput. Electron. 8, 1–9 (2009)CrossRef
64.
Zurück zum Zitat Zhang, X.-L., Liu, L.-F., Liu, W.-M.: Quantum anomalous Hall effect and tunable topological states in 3d transition metals doped silicene. Sci. Rep. 33, 2908 (2013) Zhang, X.-L., Liu, L.-F., Liu, W.-M.: Quantum anomalous Hall effect and tunable topological states in 3d transition metals doped silicene. Sci. Rep. 33, 2908 (2013)
65.
Zurück zum Zitat Jia, T.T., Zheng, M.-M., Fan, X.-Y., Su, Y., Li, S.-J., Liu, H.-Y., Chen, G., Kawazoe, Y.: Band gap on/off switching of silicene superlattice. J. Phys. Chem. C 119(35), 20747–20754 (2015)CrossRef Jia, T.T., Zheng, M.-M., Fan, X.-Y., Su, Y., Li, S.-J., Liu, H.-Y., Chen, G., Kawazoe, Y.: Band gap on/off switching of silicene superlattice. J. Phys. Chem. C 119(35), 20747–20754 (2015)CrossRef
66.
Zurück zum Zitat Datta, S.: Quantum Transport: Atom to Transistor. Cambridge University Press, Cambridge (2013) Datta, S.: Quantum Transport: Atom to Transistor. Cambridge University Press, Cambridge (2013)
67.
Zurück zum Zitat Yamacli, S.: Algebraic current-voltage and voltage dependent resistance expressions for ballistic nano conductors and their low voltage nonlinearity. Nano Micro Lett. 5(3), 169–173 (2013)CrossRef Yamacli, S.: Algebraic current-voltage and voltage dependent resistance expressions for ballistic nano conductors and their low voltage nonlinearity. Nano Micro Lett. 5(3), 169–173 (2013)CrossRef
69.
Zurück zum Zitat Sakuma, K., Koizumi, H.: Influence of junction capacitance of switching devices on Class E rectifier. In: IEEE International Symposium on Circuits and Systems, pp. 1965–1968 (2009) Sakuma, K., Koizumi, H.: Influence of junction capacitance of switching devices on Class E rectifier. In: IEEE International Symposium on Circuits and Systems, pp. 1965–1968 (2009)
Metadaten
Titel
Investigation and comparison of bare-dihydrogenated junction rectifiers of graphene and silicene nanoribbons
verfasst von
Serhan Yamacli
Publikationsdatum
01.03.2016
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 2/2016
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-016-0805-6

Weitere Artikel der Ausgabe 2/2016

Journal of Computational Electronics 2/2016 Zur Ausgabe

Neuer Inhalt