Skip to main content
Erschienen in: Meccanica 4/2022

Open Access 07.05.2021

Approximation and application of the Riesz-Caputo fractional derivative of variable order with fixed memory

verfasst von: Tomasz Blaszczyk, Krzysztof Bekus, Krzysztof Szajek, Wojciech Sumelka

Erschienen in: Meccanica | Ausgabe 4/2022

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, the Riesz-Caputo fractional derivative of variable order with fixed memory is considered. The studied non-integer differential operator is approximated by means of modified basic rules of numerical integration. The three proposed methods are based on polynomial interpolation: piecewise constant, piecewise linear, and piecewise quadratic interpolation. The errors generated by the described methods and the experimental rate of convergence are reported. Finally, an application of the Riesz-Caputo fractional derivative of space-dependent order in continuum mechanics is depicted.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

In the last decades, fractional calculus has become a powerful mathematical tool to model a lot of physical processes. Because of the nature of fractional derivatives (nonlocal operators), they are especially used in describing nonlocal and multiscale phenomena. In this regard, we refer the reader works on the following topics: viscoelastic materials [6, 23, 28], heat conduction [24, 40, 54, 56], diffusion processes in complex systems [12, 30, 32], nonlocal constitutive laws [13, 19, 46], microscopic interaction forces [18, 25], nonlocal stress-strain constitutive relations [3], nonlocal beams [2, 8, 10, 41, 47]. A fairly broad overview of various aspects of fractional calculus applications can be found in the review paper by Failla and Zingales [20].
Notwithstanding this branch of mathematics is not new (the creation of fractional calculus dates back to the birth of the classical theory of differential calculus [27]) there are still remain a lot of problems that require attention. In particular, the branch of fractional calculus, that is devoted to differential equations containing simultaneously both the left and right fractional derivatives, is a research area where exists a large number of an unsolved/unexplored issues [15, 21, 29]. No exact solutions, for many of the aforementioned equations, have been found till now. For this reason, many researchers focus their attention on approximate solutions of equations containing various types of combinations of fractional derivatives. For this reason, many researchers focus their attention on approximate solutions of equations containing various types of combinations of fractional derivatives [1, 7, 11, 14, 22, 53].
On the other hand, certain types of phenomena in physics are better depicted when the order of the fractional operator is variable (it depends on the spatial or time variable) [26, 43]. Promising approaches have been presented in papers where authors studied: diffusion processes in an inhomogeneous and heterogeneous medium [16, 33, 44, 4951, 55], control theory [17, 34, 35], mechanics [4, 31, 36, 38, 39, 42]. More details of the available applications of a variable order fractional calculus in the area of scientific and engineering modelling are presented in the following review papers: [37, 52].
In this paper we focus on the Riesz-Caputo fractional operator of variable order with fixed memory and its application in a strong form of the space-fractional continuum (1D case), which is just a straightforward extension of the results presented in [45]. Such approach allows, when adopted to the mechanical applications, for clear physical interpretation and moreover gives smooth passage to classical approach as a limit case [5, 48]. We propose three methods, based on polynomial interpolation, to approximation of the studied fractional operator. All presented numerical sachems were implemented in Python using library for real and complex floating-point arithmetic with arbitrary precision (http://​mpmath.​org/​).

2 Approximation of the Riesz-Caputo fractional derivative with variable order

Let us consider the following Riesz-Caputo fractional derivative of variable order with \(\alpha\) depending on space variable
$$\begin{aligned}&^{RC}_{x-\ell }D^{\alpha (x)}_{x+\ell } f(x)=\frac{1}{2}(^C_{x-\ell }D^{\alpha (x)}_x f(x) +\nonumber \\&\quad (-1)^{n}{}^{C} _{x} D^{\alpha (x)}_{x+\ell } f(x)) \end{aligned}$$
(1)
Operators \(^C_{x-l}D^{\alpha (x)}_x\) and \(^C_{x}D^{\alpha (x)}_{x+\ell }\) are well known fractional Caputo derivatives, with fixed memory length \(\ell\) and variable order \(\alpha (x)>0\), defined as
$$\begin{aligned}&^C_{x-l}D^{\alpha (x)}_x f(x)\nonumber \\&\quad =\frac{1}{\varGamma (n-\alpha (x))}\int _{x-l}^x (x-\tau )^{n-\alpha (x)-1}f^{(n)}(\tau )d\tau \end{aligned}$$
(2)
$$\begin{aligned}&^C_{x}D^{\alpha (x)}_{x+\ell } f(x)\nonumber \\&\quad =\frac{(-1)^n}{\varGamma (n-\alpha (x))}\int _{x}^{x+\ell } (\tau -x)^{n-\alpha (x)-1}f^{(n)}(\tau )d\tau \end{aligned}$$
(3)
where \(n-1<\alpha (x)<n\).
In following, based on our previous work [9] where the numerical schemes for differential operators of constant order \(\alpha\) were developed, we elaborate the algorithms for the Riesz-Caputo derivative of variable order. For discretisation, we generate the grid of \((N+1)\) – equidistant nodes: \({x_{0}}< \ldots< {x_{i - m}}< {x_{i - m + 1}}< \ldots< {x_i}< \ldots< {x_{i + m - 1}}< {x_{i + m}}< \ldots < {x_{N}}\) where \({x_i} = {x_0} + i\varDelta x\), \(m = \ell /\varDelta x\) and \(\varDelta x = \left( {{x_N} - {x_0}} \right) /N\). Moreover, we introduce the following notation: \(f\left( {{x_i}} \right) = {f_i}\), \({f^{\left( n \right) }}\left( {{x_i}} \right) = f_i^{\left( n \right) }\), and \(\alpha \left( x_i\right) =\alpha _i\).

2.1 Method I: Approximation based on piecewise constant interpolation

$$\begin{aligned}&{\left. ^{RC}_{x-\ell }D^{\alpha (x)}_{x+\ell } f(x) \right| _{x = {x_i}}}\nonumber \\&\quad \approx ~\frac{1}{2}\left( \sum \limits _{k = i - m + 1}^i {f_k^{\left( n \right) }p_{i,k - 1}} + \sum \limits _{k = i}^{i + m - 1} {f_k^{\left( n \right) }q_{i,k}} \right) \end{aligned}$$
(4)
where
$$\begin{aligned} p_{i,k} = \frac{{{{\left( {\varDelta x} \right) }^{n - \alpha _i }}}}{{\varGamma \left( {n - \alpha _i + 1 } \right) }}\left[ {{{\left( {i - k} \right) }^{n - \alpha _i }} - {{\left( {i - k - 1} \right) }^{n - \alpha _i }}} \right] \end{aligned}$$
(5)
and
$$\begin{aligned} q_{i,k} = \frac{{{{\left( {\varDelta x} \right) }^{n - \alpha _i }}}}{{\varGamma \left( {n - \alpha _i + 1} \right) }}\left[ { {{\left( {k - i + 1} \right) }^{n - \alpha _i }} - {{\left( {k - i} \right) }^{n - \alpha _i }} } \right] \end{aligned}$$
(6)

2.2 Method II: Approximation based on piecewise linear interpolation

$$\begin{aligned}&{\left. ^{RC}_{x-\ell }D^{\alpha (x)}_{x+\ell } f(x) \right| _{x = {x_i}}}\nonumber \\&\quad \approx ~\frac{1}{2}\left( \sum \limits _{k = i - m}^i {f_k^{\left( n \right) }r_{i,k}} + \sum \limits _{k = i}^{i + m} {f_k^{\left( n \right) }s_{i,k}} \right) \end{aligned}$$
(7)
where
$$\begin{aligned}&r_{i,k} = \frac{{{{\left( {\varDelta x} \right) }^{n - \alpha _i }}}}{{\varGamma \left( {n - \alpha _i +2} \right) }} \nonumber \\&\times \left\{ {\begin{array}{*{20}{c}} {{{\left( {m - 1} \right) }^{n - \alpha _i +1}} + \left( {n - \alpha _i - m +1} \right) {m^{n - \alpha _i }}} &{} {\mathrm{{for}}\,k = i - m} \\ {{{\left( {i - k + 1} \right) }^{n - \alpha _i +1}} - 2{{\left( {i - k} \right) }^{n - \alpha _i +1}} + {{\left( {i - k - 1} \right) }^{n - \alpha _i + 1}}} &{} {\mathrm{{for}}\,k = i - m + 1 \ldots i - 1} \\ 1 &{} {\mathrm{{for}}\,k = i } \\ \end{array}} \right. \end{aligned}$$
(8)
and
$$\begin{aligned}&s_{i,k} = \frac{{ {{\left( {\varDelta x} \right) }^{n - \alpha _i }}}}{{\varGamma \left( {n - \alpha _i + 2} \right) }} \nonumber \\&\times \left\{ {\begin{array}{*{20}{c}} {{{\left( {m - 1} \right) }^{n - \alpha _i +1}} + \left( {n - \alpha _i - m + 1} \right) {m^{n - \alpha _i }}} &{} {\mathrm{{for}}\,k = i + m} \\ {{{\left( {k - i + 1} \right) }^{n - \alpha _i + 1}} - 2{{\left( {k - i} \right) }^{n - \alpha _i + 1}} + {{\left( {k - i - 1} \right) }^{n - \alpha _i +1}}} &{} {\mathrm{{for}}\,k = i + 1 \ldots i + m - 1} \\ 1 &{} {\mathrm{{for}}\,k = i } \\ \end{array}} \right. \end{aligned}$$
(9)

2.3 Method III: Approximation based on piecewise quadratic interpolation

$$\begin{aligned}&{\left. ^{RC}_{x-\ell }D^{\alpha (x)}_{x+\ell } f(x) \right| _{x = {x_i}}}\approx ~ \frac{1}{2}\left( \varDelta x\right) ^{n-\alpha _i} \nonumber \\&\times \left\{ \begin{array}{ll} \sum \limits _{k=-1}^{1} f_{i+k}^{\left( n \right) }u_k + \sum \limits _{k=i-m}^{i-1}f_k^{\left( n \right) }w_{i,k} + \sum \limits _{k=-1}^{1}f_{i-k}^{\left( n \right) }u_k + \sum \limits _{k=i+1}^{i+m}f_k^{\left( n \right) }v_{i,k} &{} \text {for odd } m\\ \sum \limits _{k=i-m}^{i} f_k^{\left( n \right) }w_{i,k} + \sum \limits _{k=i}^{i+m} f_k^{\left( n \right) }v_{i,k}&{} \text {for even } m \end{array} \right. \end{aligned}$$
(10)
where
$$\begin{aligned}&w_{i,k} = \nonumber \\&\left\{ {\begin{array}{*{20}{c}} \begin{array}{l} \frac{{{m^{n - \alpha _i + 2}} - {{(m - 2)}^{n - \alpha _i + 2}}}}{{\varGamma (n - \alpha _i + 3)}} - \frac{{3{m^{n - \alpha _i + 1}} + {{(m - 2)}^{n - \alpha _i + 1}}}}{{2\varGamma (n - \alpha _i + 2)}} \\ + \frac{{{m^{n - \alpha _i }}}}{{\varGamma (n - \alpha _i + 1)}} \\ \end{array} &{} \begin{array}{l} \\ {\hbox { for}\ k = i - m} \\ \end{array} \\ \begin{array}{l} - 2\frac{{{{(i - k + 1)}^{n - \alpha _i + 2}} - {{(i - k - 1)}^{n - \alpha _i + 2}}}}{{\varGamma (n - \alpha _i + 3)}} \\ + 2\frac{{{{(i - k + 1)}^{n - \alpha _i + 1}} + {{(i - k - 1)}^{n - \alpha _i + 1}}}}{{\varGamma (n - \alpha _i + 2)}} \\ \end{array} &{} \begin{array}{l} \\ {\hbox { for odd}\ k + i - m} \\ \end{array} \\ \begin{array}{l} \frac{{{{(i - k + 2)}^{n - \alpha _i + 2}} - {{(i - k - 2)}^{n - \alpha _i + 2}}}}{{\varGamma (n - \alpha _i + 3)}} \\ - \frac{{{{(i - k + 2)}^{n - \alpha _i + 1}} + 6{{(i - k)}^{n - \alpha _i + 1}} + {{(i - k - 2)}^{n - \alpha _i + 1}}}}{{2\varGamma (n - \alpha _i + 2)}} \\ \end{array} &{} \begin{array}{l} \\ {\hbox {for even}\ k + i - m\ \hbox {and}\ k < i - 1} \\ \end{array} \\ {\frac{{{2^{n - \alpha _i + 2}}}}{{\varGamma (n - \alpha _i + 3)}} - \frac{{{2^{n - \alpha _i + 1}}}}{{2\varGamma (n - \alpha _i + 2)}}} &{} {{\hbox {for even}\ m\ \hbox {and}\ k = i}} \\ {\frac{{{3^{n - \alpha _i + 2}} - 1}}{{\varGamma (n - \alpha _i + 3)}} - \frac{{{3^{n - \alpha _i + 1}} + 3}}{{2\varGamma (n - \alpha _i + 2)}} - \frac{1}{{\varGamma (n - \alpha _i + 1)}}} &{} {{\hbox {for odd}\ m\ \hbox {and}\ k = i - 1}} \\ \end{array}} \right. \end{aligned}$$
(11)
and
$$\begin{aligned}&v_{i,k} = \nonumber \\&\left\{ {\begin{array}{*{20}{c}} \begin{array}{l} \frac{{{m^{n - \alpha _i + 2}} - {{(m - 2)}^{n - \alpha _i + 2}}}}{{\varGamma (n - \alpha _i + 3)}} - \frac{{3{m^{n - \alpha _i + 1}} + {{(m - 2)}^{n - \alpha _i + 1}}}}{{2\varGamma (n - \alpha _i + 2)}} \\ + \frac{{{m^{n - \alpha _i }}}}{{\varGamma (n - \alpha _i + 1)}} \\ \end{array} &{} \begin{array}{l} \\ \hbox { for}\ k = i + m \\ \end{array} \\ \begin{array}{l} - 2\frac{{{{(k - i + 1)}^{n - \alpha _i + 2}} - {{(k - i - 1)}^{n - \alpha _i + 2}}}}{{\varGamma (n - \alpha _i + 3)}} \\ + 2\frac{{{{(k - i + 1)}^{n - \alpha _i + 1}} + {{(k - i - 1)}^{n - \alpha _i + 1}}}}{{\varGamma (n - \alpha _i + 2)}} \\ \end{array} &{} \begin{array}{l} \\ \hbox { for odd}\ k + i + m \\ \end{array} \\ \begin{array}{l} \frac{{{{(k - i + 2)}^{n - \alpha _i + 2}} - {{(k - i - 2)}^{n - \alpha _i + 2}}}}{{\varGamma (n - \alpha _i + 3)}} \\ - \frac{{{{(k - i + 2)}^{n - \alpha _i + 1}} + 6{{(k - i)}^{n - \alpha _i + 1}} + {{(k - i - 2)}^{n - \alpha _i + 1}}}}{{2\varGamma (n - \alpha _i + 2)}} \\ \end{array} &{} \begin{array}{l} \\ {\hbox {for even}\ k + i + m\ \hbox {and}\ k > i + 1} \\ \end{array} \\ {\frac{{{2^{n - \alpha _i + 2}}}}{{\varGamma (n - \alpha _i + 3)}} - \frac{{{2^{n - \alpha _i + 1}}}}{{2\varGamma (n - \alpha _i + 2)}}} &{} \hbox {for even}\ m\ \hbox {and}\ k = i \\ {\frac{{{3^{n - \alpha _i + 2}} - 1}}{{\varGamma (n - \alpha _i + 3)}} - \frac{{{3^{n - \alpha _i + 1}} + 3}}{{2\varGamma (n - \alpha _i + 2)}} - \frac{1}{{\varGamma (n - \alpha _i + 1)}}} &{} \hbox { for odd}\ m\ { and} \ k = i + 1 \\ \end{array}} \right. \end{aligned}$$
(12)
with
$$\begin{aligned} u_{-1}&=\frac{2(n-\alpha _i)^2+3(n-\alpha _i)}{2\varGamma (n-\alpha _i+3)} \\ u_{0}&=\frac{2+2(n-\alpha _i)}{\varGamma (n-\alpha _i+3)} \\ u_{1}&=\frac{-(n-\alpha _i)}{2\varGamma (n-\alpha _i+3)} \end{aligned}$$

3 Numerical analysis: errors and experimental rates of convergence

In this subsection, we report on a few numerical examples for checking the accuracy of the presented methods. Algebraic problems given by Eqs. (4), (7), and (10) were built using original procedures developed by the authors in Python.
Figure 1 shows graphs of approximations of the Riesz-Caputo derivative of functions \(x^2\), \(\exp x\), \(\sin x\), and \(\cos x\) for space-dependent orders \(\alpha \left( x\right) =\frac{1}{2}+\frac{x}{2}\) and \(\alpha \left( x\right) =1-\frac{x}{2}\). The calculations presented on the plots have been performed for \(N=2000\) and \(\ell = 0.2\).
In Tables 1, 2, and 3 we present the absolute errors of numerical calculations carried out using the proposed methods (Method I, Method II, and Method III) for the following functions:
  • \(f\left( x\right) =\exp \left( x\right)\) and \(\alpha \left( x\right) =\exp \left( -x\right)\) (Table 1),
  • \(f\left( x\right) =\exp \left( x\right)\) and \(\alpha \left( x\right) =\frac{1+x^2}{2}\) (Table 2),
  • \(f\left( x\right) =\exp \left( x\right)\) and \(\alpha \left( x\right) =\sin \left( x\right) +1\) (Table 3).
The reported errors have been determined by comparing numerical results with exact values (using series representation of the Riesz-Caputo derivative [9]). We take a particular value of the Riesz-Caputo operator and compare it with a value received from the series at the same specific point. In this case, for each node \(x_i\) the order of derivative has the form \(\alpha \left( x_i\right)\) and is an established number (the order \(\alpha\) is constant for each node \(x_i\)). Moreover, all tables contain the experimental rates of convergence for each proposed method.
Table 1
Errors and experimental rates of convergence for the approximation of the Riesz-Caputo derivative of function \(f\left( x\right) =\exp \left( x\right)\) for variable order \(\alpha \left( x\right) =\exp \left( -x\right)\)
x
\(\varDelta x\)
Method I
Method II
Method III
Error
Rate
Error
Rate
Error
Rate
0.2
0.01
1.50965E-05
6.41933E-08
1.08056E-14
0.005
7.57269E-06
1.00
1.65880E-08
1.95
6.87771E-16
3.97
0.0025
3.79284E-06
1.00
4.26599E-09
1.96
4.36702E-17
3.98
0.00125
1.89813E-06
1.00
1.09273E-09
1.96
2.76712E-18
3.98
0.4
0.01
2.42990E-05
7.68809E-08
9.25228E-15
0.005
1.21786E-05
1.00
1.94861E-08
1.98
5.77257E-16
4.00
0.0025
6.09687E-06
1.00
4.92442E-09
1.98
3.60283E-17
4.00
0.00125
3.05037E-06
1.00
1.24163E-09
1.99
2.24927E-18
4.00
0.8
0.01
3.66332E-05
8.55870E-08
4.72786E-15
0.005
1.83466E-05
1.00
2.14589E-08
2.00
2.92187E-16
4.02
0.0025
9.18088E-06
1.00
5.37533E-09
2.00
1.81207E-17
4.01
0.00125
4.59236E-06
1.00
1.34564E-09
2.00
1.12653E-18
4.01
1.2
0.01
4.88466E-05
9.92076E-08
1.41104E-15
0.005
2.44551E-05
1.00
2.48227E-08
2.00
8.62417E-17
4.03
0.0025
1.22355E-05
1.00
6.20887E-09
2.00
5.31507E-18
4.02
0.00125
6.11977E-06
1.00
1.55271E-09
2.00
3.29302E-19
4.01
1.6
0.01
6.54281E-05
1.23339E-07
1.56315E-15
0.005
3.27508E-05
1.00
3.08444E-08
2.00
9.89008E-17
3.98
0.0025
1.63846E-05
1.00
7.71249E-09
2.00
6.22459E-18
3.99
0.00125
8.19461E-06
1.00
1.92832E-09
2.00
3.90593E-19
3.99
1.8
0.01
7.64028E-05
1.40558E-07
3.16440E-15
0.005
3.82421E-05
1.00
3.51467E-08
2.00
1.98766E-16
3.99
0.0025
1.91312E-05
1.00
8.78768E-09
2.00
1.24576E-17
4.00
0.00125
9.56817E-06
1.00
2.19706E-09
2.00
7.79820E-19
4.00
Table 2
Errors and experimental rates of convergence for the approximation of the Riesz-Caputo derivative of function \(f\left( x\right) =\exp \left( x\right)\) for variable order \(\alpha \left( x\right) =\frac{1+x^2}{2}\)
x
\(\varDelta x\)
Method I
Method II
Method III
Error
Rate
Error
Rate
Error
Rate
0.2
0.01
2.06366E-05
5.23628E-08
3.94876E-15
0.005
1.03373E-05
1.00
1.31554E-08
1.99
2.44466E-16
4.01
0.0025
5.17346E-06
1.00
3.30045E-09
1.99
1.51746E-17
4.01
0.00125
2.58795E-06
1.00
8.27193E-10
2.00
9.43733E-19
4.01
0.4
0.01
2.52875E-05
6.95082E-08
6.46222E-15
0.005
1.26695E-05
1.00
1.75087E-08
1.99
4.00927E-16
4.01
0.0025
6.34134E-06
1.00
4.40176E-09
1.99
2.49195E-17
4.01
0.00125
3.17235E-06
1.00
1.10504E-09
1.99
1.55101E-18
4.01
0.8
0.01
2.73888E-05
1.16803E-07
1.97114E-14
0.005
1.37389E-05
1.00
3.01898E-08
1.95
1.25493E-15
3.97
0.0025
6.88124E-06
1.00
7.76567E-09
1.96
7.96998E-17
3.98
0.00125
3.44373E-06
1.00
1.98958E-09
1.96
5.05113E-18
3.98
1.2
0.01
4.47995E-05
-
8.55260E-08
6.66571E-16
0.005
2.24256E-05
1.00
2.13896E-08
2.00
4.26259E-17
3.97
0.0025
1.12193E-05
1.00
5.34859E-09
2.00
2.69926E-18
3.98
0.00125
5.61127E-06
1.00
1.33732E-09
2.00
1.69983E-19
3.99
1.6
0.01
6.83960E-05
2.66922E-07
4.14854E-14
0.005
3.43000E-05
1.00
6.85320E-08
1.96
2.62248E-15
3.98
0.0025
1.71769E-05
1.00
1.75197E-08
1.97
1.65496E-16
3.99
0.00125
8.59546E-06
1.00
4.46293E-09
1.97
1.04289E-17
3.99
1.8
0.01
7.20214E-05
1.28814E-07
4.46378E-15
0.005
3.60466E-05
1.00
3.22071E-08
2.00
2.79546E-16
4.00
0.0025
1.80323E-05
1.00
8.05228E-09
2.00
1.74906E-17
4.00
0.00125
9.01840E-06
1.00
2.01314E-09
2.00
1.09381E-18
4.00
Table 3
Errors and experimental rates of convergence for the approximation of the Riesz-Caputo derivative of function \(f\left( x\right) =\exp \left( x\right)\) for variable order \(\alpha \left( x\right) =\sin \left( x\right) +1\)
x
\(\varDelta x\)
Method I
Method II
Method III
Error
Rate
Error
Rate
Error
Rate
0.2
0.01
1.60723E-05
3.02310E-08
 
4.09406E-16
 
0.005
8.04511E-06
1.00
7.56003E-09
2.00
2.58751E-17
3.98
0.0025
4.02481E-06
1.00
1.89034E-09
2.00
1.62750E-18
3.99
0.00125
2.01297E-06
1.00
4.72631E-10
2.00
1.02088E-19
3.99
0.4
0.01
2.36586E-05
5.19790E-08
2.00026E-15
0.005
1.18469E-05
1.00
1.30181E-08
2.00
1.23408E-16
4.02
0.0025
5.92790E-06
1.00
3.25836E-09
2.00
7.64717E-18
4.01
0.00125
2.96507E-06
1.00
8.15218E-10
2.00
4.75253E-19
4.01
0.8
0.01
3.44676E-05
1.18646E-07
1.60320E-14
0.005
1.72791E-05
1.00
3.02127E-08
1.97
1.00487E-15
4.00
0.0025
8.65136E-06
1.00
7.66646E-09
1.98
6.29514E-17
4.00
0.00125
4.32873E-06
1.00
1.93990E-09
1.98
3.94203E-18
4.00
1.2
0.01
1.94921E-05
 
1.10806E-07
 
2.29987E-14
 
0.005
9.78684E-06
0.99
2.93851E-08
1.91
1.50571E-15
3.93
0.0025
4.90457E-06
1.00
7.74780E-09
1.92
9.81780E-17
3.94
0.00125
2.45530E-06
1.00
2.03271E-09
1.93
6.37888E-18
3.94
1.6
0.01
2.09175E-07
1.45639E-09
3.37524E-16
0.005
1.05104E-07
0.99
3.94470E-10
1.88
2.26121E-17
3.90
0.0025
5.26960E-08
1.00
1.06208E-10
1.89
1.50804E-18
3.91
0.00125
2.63879E-08
1.00
2.84493E-11
1.90
1.00174E-19
3.91
1.8
0.01
1.48806E-05
9.56471E-08
2.12801E-14
0.005
7.47474E-06
0.99
2.56854E-08
1.90
1.41240E-15
3.91
0.0025
3.74691E-06
1.00
6.85677E-09
1.91
9.33326E-17
3.92
0.00125
1.87607E-06
1.00
1.82109E-09
1.91
6.14370E-18
3.93
Analysing results presented in tables, one can observe that the convergence is the fastest for the piecewise quadratic interpolation (scheme 10), a little slower in case of the piecewise linear interpolation (scheme 7) and the slowest for the piecewise constant interpolation (scheme 4). Additionally, the errors generated by Method I are the biggest one, while for Method III are the smallest one.

4 Application of Riesz-Caputo derivative of variable order for the space-fractional continuum mechanics - numerical study

In this section we present the application of the Riesz-Caputo fractional derivative of variable order in continuum mechanics. We consider one-dimensional tension problem of the space-fractional continua in the following form [46]:
$$\begin{aligned} \frac{\partial }{\partial x}\left( \ell ^{\alpha (x)-1}\varGamma \left( 2-\alpha (x)\right) {}^{RC}_{x-\ell }D^{\alpha (x)}_{x+\ell } f(x) \right) +\frac{b}{E}=0 \end{aligned}$$
(13)
with Dirichlet’s boundary conditions
$$\begin{aligned} \left\{ \begin{array}{ll} f(0)=0 \\ f(l)=0.01l \end{array} \right. \end{aligned}$$
(14)
where \(\frac{b}{E}=0.1\) and \(l=1\). In Eq. (18), x denotes spatial variable, \(\ell\) is the length scale, f denotes the displacements, b is the body force, and E stands for the Young modulus.
We start from introducing the spatial discretization for the analysed one-dimensional continuum body that is presented in Fig. 2.
Discrete form of the fractional operator \(\frac{\partial }{\partial x}\left( \ell ^{\alpha (x)-1}\varGamma \left( 2-\alpha (x)\right) {}^{RC}_{x-\ell }D^{\alpha (x)}_{x+\ell } f(x) \right)\) can be described by the trapezoidal formula (Method II) as:
$$\begin{aligned}&{\left. \dfrac{\partial }{\partial x}\left( \ell ^{\alpha (x)-1}\varGamma \left( 2-\alpha (x)\right) {}^{RC}_{x-\ell }D^{\alpha (x)}_{x+\ell } f(x) \right) \right| _{x = {x_i}}}\nonumber \\&\quad \approx \dfrac{\varGamma \left( 2-\alpha _i\right) \ell ^{\alpha _{i}-1}}{2\varDelta x} \nonumber \\&\times \left( \sum \limits _{k = i - m}^i {f'_k r_{i,k}} + \sum \limits _{k = i}^{i + m} {f'_k s_{i,k}} \right. \nonumber \\&\quad \left. -\sum \limits _{k = i - m-1}^{i-1} {f'_k r_{i-1,k}} - \sum \limits _{k = i-1}^{i + m-1} {f'_k s_{i-1,k}} \right) \end{aligned}$$
(15)
Next, after applying the backward difference formula, for the first order derivative, in Eq. (15) we obtain:
$$\begin{aligned}&{\left. \dfrac{\partial }{\partial x}\left( \ell ^{\alpha (x)-1}\varGamma \left( 2-\alpha (x)\right) {}^{RC}_{x-\ell }D^{\alpha (x)}_{x+\ell } f(x) \right) \right| _{x = {x_i}}} \nonumber \\&\quad \approx \dfrac{\varGamma \left( 2-\alpha _i\right) \ell ^{\alpha _{i}-1}}{2(\varDelta x)^2} \nonumber \\&\times \left( \sum \limits _{k = i - m}^i {((f_{k+1}-f_k ) r_{i,k})} + \sum \limits _{k = i}^{i + m} {((f_{k+1}-f_k) s_{i,k})} \right. \nonumber \\&\left. - \sum \limits _{k = i - m-1}^{i-1} {((f_{k+1}-f_k) r_{i-1,k})} - \sum \limits _{k = i-1}^{i + m-1} {((f_{k+1}-f_k) s_{i-1,k})} \right) \end{aligned}$$
(16)
Finally, the following system of linear equations equations can be formulated:
$$\begin{aligned}&\left\{ \begin{array}{ll} f_0=0 \\ \sum \limits _{k = i - m}^i {((f_{k+1}-f_k ) r_{i,k})} + \sum \limits _{k = i}^{i + m} {((f_{k+1}-f_k) s_{i,k})} \\ - \sum \limits _{k = i - m-1}^{i-1} {((f_{k+1}-f_k) r_{i-1,k})} - \sum \limits _{k = i-1}^{i + m-1} {((f_{k+1}-f_k) s_{i-1,k})}=\frac{-b}{F E} \\ f_n=0.01l \end{array} \right. \end{aligned}$$
(17)
where
$$\begin{aligned} F= \dfrac{\varGamma \left( 2-\alpha _i\right) \ell ^{\alpha _{i}-1}}{2(\varDelta x)^2} \end{aligned}$$
The system (17) (containing \(N+1\) equations) has been solved for two types of function \(\alpha\), namely \(\alpha \left( x\right) =\frac{1}{2}+\frac{x}{2}\) and \(\alpha \left( x\right) =1-\frac{x}{2}\) and the following parameters: \(N=200\) and \(\ell \in \{0.01;0.1;0.2;0.4\}\). The obtained results are presented in Fig. 3.
The analysis of Fig. 3 allows us to draw the conclusion that the deformation of the space-fractional continuum body solely depends on the length scale \(\ell\) and the order \(\alpha\). Moreover, the introduction of variable order of fractional continua makes the model more flexible, thus in perspective validation of this model with experimental data should be easier.

5 Conclusions

The approximation of the Riesz-Caputo fractional derivative of variable order and with fixed memory can be elaborated using different approaches. Herein, three original methods are considered based on the polynomial interpolation: piecewise constant (Method I), piecewise linear (Method II), and piecewise quadratic (Method III) interpolation. As presented, the convergence is the fastest for Method III, a little slower in case of Method II and the slowest for Method I. Moreover, the errors generated by Method I are the biggest one, while for Method III are the smallest one. Finally, the presented schemes can be directly applied for modelling of scale effect is terms of space-fractional continuum mechanics, making its ability to mimic experimental results higher.

Acknowledgements

This work is supported by the National Science Centre, Poland under Grant No. 2017/27/B/ST8/00351

Declarations

Conflicts of interest

The authors declare that they have no conflict of interest.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Almeida R, Malinowska AB, Morgado ML, Odzijewicz T (2017) Variational methods for the solution of fractional discrete/continuous Sturm-Liouville problems. J Mech Mater Struct 12(1):3–21MathSciNetCrossRef Almeida R, Malinowska AB, Morgado ML, Odzijewicz T (2017) Variational methods for the solution of fractional discrete/continuous Sturm-Liouville problems. J Mech Mater Struct 12(1):3–21MathSciNetCrossRef
2.
Zurück zum Zitat Alotta G, Failla G, Zingales M (2014) Finite element method for a nonlocal Timoshenko beam model. Finite Elem Anal Des 89:77–92CrossRef Alotta G, Failla G, Zingales M (2014) Finite element method for a nonlocal Timoshenko beam model. Finite Elem Anal Des 89:77–92CrossRef
3.
Zurück zum Zitat Atanackovic TM, Stankovic B (2009) Generalized wave equation in nonlocal elasticity. Acta Mech 208(1–2):1–10MATHCrossRef Atanackovic TM, Stankovic B (2009) Generalized wave equation in nonlocal elasticity. Acta Mech 208(1–2):1–10MATHCrossRef
4.
Zurück zum Zitat Atanackovic TM, Pilipovic S (2011) Hamilton’s principle with variable order fractional derivatives. Fract Calc Appl Anal 14:94–109 Atanackovic TM, Pilipovic S (2011) Hamilton’s principle with variable order fractional derivatives. Fract Calc Appl Anal 14:94–109
5.
Zurück zum Zitat Aydinlik S, Kiris A, Sumelka W (2021) Nonlocal vibration analysis of microstretch plates in the framework of space-fractional mechanics-theory and validation. Eur Phys J Plus 136:169CrossRef Aydinlik S, Kiris A, Sumelka W (2021) Nonlocal vibration analysis of microstretch plates in the framework of space-fractional mechanics-theory and validation. Eur Phys J Plus 136:169CrossRef
6.
Zurück zum Zitat Bagley RL, Torvik PJ (1983) A theoretical basis for the application of fractional calculus to viscoelasticity. J Rheol 27(3):201–210MATHCrossRef Bagley RL, Torvik PJ (1983) A theoretical basis for the application of fractional calculus to viscoelasticity. J Rheol 27(3):201–210MATHCrossRef
7.
Zurück zum Zitat Blaszczyk T, Ciesielski M (2017) Numerical solution of Euler-Lagrange equation with Caputo derivatives. Adv Appl Math Mech 9(1):173–185MathSciNetMATHCrossRef Blaszczyk T, Ciesielski M (2017) Numerical solution of Euler-Lagrange equation with Caputo derivatives. Adv Appl Math Mech 9(1):173–185MathSciNetMATHCrossRef
8.
Zurück zum Zitat Blaszczyk T (2017) Analytical and numerical solution of the fractional Euler-Bernoulli beam equation. J Mech Mater Struct 12(1):23–34MathSciNetCrossRef Blaszczyk T (2017) Analytical and numerical solution of the fractional Euler-Bernoulli beam equation. J Mech Mater Struct 12(1):23–34MathSciNetCrossRef
9.
Zurück zum Zitat Blaszczyk T, Bekus K, Szajek K, Sumelka W (2021) On numerical approximation of the Riesz-Caputo operator with the fixed/short memory length. J King Saud Univ Sci 33(1):101220CrossRef Blaszczyk T, Bekus K, Szajek K, Sumelka W (2021) On numerical approximation of the Riesz-Caputo operator with the fixed/short memory length. J King Saud Univ Sci 33(1):101220CrossRef
10.
Zurück zum Zitat Blaszczyk T, Siedlecki J, Sun HG (2021) An exact solution of fractional Euler-Bernoulli equation for a beam with fixed-supported and fixed-free ends. Appl Math Comput 396:125932MathSciNetMATH Blaszczyk T, Siedlecki J, Sun HG (2021) An exact solution of fractional Euler-Bernoulli equation for a beam with fixed-supported and fixed-free ends. Appl Math Comput 396:125932MathSciNetMATH
11.
Zurück zum Zitat Bourdin L, Cresson J, Greff I, Inizan P (2013) Variational integrator for fractional Euler-Lagrange equations. Appl Numer Math 71:14–23MathSciNetMATHCrossRef Bourdin L, Cresson J, Greff I, Inizan P (2013) Variational integrator for fractional Euler-Lagrange equations. Appl Numer Math 71:14–23MathSciNetMATHCrossRef
12.
Zurück zum Zitat Caputo M (2003) Diffusion with space memory modelled with distributed order space fractional differential equations. Ann Geophys 46:223–234 Caputo M (2003) Diffusion with space memory modelled with distributed order space fractional differential equations. Ann Geophys 46:223–234
13.
Zurück zum Zitat Carpinteri A, Cornetti P, Sapora A (2014) Nonlocal elasticity: an approach based on fractional calculus. Meccanica 49(11):2551–2569MathSciNetMATHCrossRef Carpinteri A, Cornetti P, Sapora A (2014) Nonlocal elasticity: an approach based on fractional calculus. Meccanica 49(11):2551–2569MathSciNetMATHCrossRef
14.
Zurück zum Zitat Ciesielski M, Blaszczyk T (2015) Numerical solution of non-homogenous fractional oscillator equation in integral form. J Theoret Appl Mech 53(4):959–968CrossRef Ciesielski M, Blaszczyk T (2015) Numerical solution of non-homogenous fractional oscillator equation in integral form. J Theoret Appl Mech 53(4):959–968CrossRef
15.
Zurück zum Zitat Ciesielski M, Blaszczyk T (2017) The multiple composition of the left and right fractional Riemann-Liouville integrals: analytical and numerical calculations. Filomat 31(19):6087–6099MathSciNetMATHCrossRef Ciesielski M, Blaszczyk T (2017) The multiple composition of the left and right fractional Riemann-Liouville integrals: analytical and numerical calculations. Filomat 31(19):6087–6099MathSciNetMATHCrossRef
16.
17.
Zurück zum Zitat Dabiri A, Moghaddam B, Machado JT (2018) Optimal variable-order fractional PID controllers for dynamical systems. J Comput Appl Math 339:40–48MathSciNetMATHCrossRef Dabiri A, Moghaddam B, Machado JT (2018) Optimal variable-order fractional PID controllers for dynamical systems. J Comput Appl Math 339:40–48MathSciNetMATHCrossRef
18.
Zurück zum Zitat Di Paola M, Zingales M (2008) Long-range cohesive interactions of non-local continuum faced by fractional calculus. Int J Solids Struct 45(21):5642–5659MATHCrossRef Di Paola M, Zingales M (2008) Long-range cohesive interactions of non-local continuum faced by fractional calculus. Int J Solids Struct 45(21):5642–5659MATHCrossRef
20.
Zurück zum Zitat Failla G, Zingales M (2020) Advanced materials modelling via fractional calculus: challenges and perspectives. Philos Trans R Soc A 378:20200050CrossRef Failla G, Zingales M (2020) Advanced materials modelling via fractional calculus: challenges and perspectives. Philos Trans R Soc A 378:20200050CrossRef
21.
Zurück zum Zitat Klimek M (2009) On solutions of linear fractional differential equations of a variational type. The Publishing Office of the Czestochowa University of Technology, Czestochowa Klimek M (2009) On solutions of linear fractional differential equations of a variational type. The Publishing Office of the Czestochowa University of Technology, Czestochowa
22.
Zurück zum Zitat Klimek M, Ciesielski M, Blaszczyk T (2018) Exact and numerical solutions of the fractional Sturm-Liouville problem. Fract Calcul Appl Anal 21(1):45–71MathSciNetMATHCrossRef Klimek M, Ciesielski M, Blaszczyk T (2018) Exact and numerical solutions of the fractional Sturm-Liouville problem. Fract Calcul Appl Anal 21(1):45–71MathSciNetMATHCrossRef
24.
Zurück zum Zitat Kukla S, Siedlecka U (2020) Time-fractional heat conduction in a finite composite cylinder with heat source. J Appl Math Comput Mech 19(2):85–94MathSciNetCrossRef Kukla S, Siedlecka U (2020) Time-fractional heat conduction in a finite composite cylinder with heat source. J Appl Math Comput Mech 19(2):85–94MathSciNetCrossRef
26.
27.
28.
Zurück zum Zitat Mainardi F (2012) An historical perspective on fractional calculus in linear viscoelasticity. Fract Calc Appl Anal 15:712–717MathSciNetMATHCrossRef Mainardi F (2012) An historical perspective on fractional calculus in linear viscoelasticity. Fract Calc Appl Anal 15:712–717MathSciNetMATHCrossRef
29.
Zurück zum Zitat Malinowska AB, Odzijewicz T, Torres DFM (2015) Advanced methods in the fractional calculus of variations. Springer Briefs in Applied Sciences and Technology, Springer, ChamMATHCrossRef Malinowska AB, Odzijewicz T, Torres DFM (2015) Advanced methods in the fractional calculus of variations. Springer Briefs in Applied Sciences and Technology, Springer, ChamMATHCrossRef
30.
Zurück zum Zitat Meerschaert MM, Benson DA, Scheffler HP, Baeumer B (2002) Stochastic solution of space-time fractional diffusion equations. Phys Rev E 65:041103MathSciNetMATHCrossRef Meerschaert MM, Benson DA, Scheffler HP, Baeumer B (2002) Stochastic solution of space-time fractional diffusion equations. Phys Rev E 65:041103MathSciNetMATHCrossRef
31.
Zurück zum Zitat Meng R, Yin D, Drapaca CS (2019) Variable-order fractional description of compression deformation of amorphous glassy polymers. Comput Mech 64:163–171MathSciNetMATHCrossRef Meng R, Yin D, Drapaca CS (2019) Variable-order fractional description of compression deformation of amorphous glassy polymers. Comput Mech 64:163–171MathSciNetMATHCrossRef
32.
Zurück zum Zitat Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339:1–77 Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339:1–77
33.
Zurück zum Zitat Obembe AD, Hossain ME, Abu-Khamsin SA (2017) Variable-order derivative time fractional diffusion model for heterogeneous porous media. J Pet Sci Eng 152:391–405CrossRef Obembe AD, Hossain ME, Abu-Khamsin SA (2017) Variable-order derivative time fractional diffusion model for heterogeneous porous media. J Pet Sci Eng 152:391–405CrossRef
34.
Zurück zum Zitat Orosco J, Coimbra CFM (2016) On the control and stability of variable-order mechanical systems. Nonlinear Dyn 86:695–710MathSciNetCrossRef Orosco J, Coimbra CFM (2016) On the control and stability of variable-order mechanical systems. Nonlinear Dyn 86:695–710MathSciNetCrossRef
35.
Zurück zum Zitat Ostalczyk P (2010) Stability analysis of a discrete-time system with a variable-, fractional-order controller. Bull Pol Acad Sci Tech Sci 58:613–619MATH Ostalczyk P (2010) Stability analysis of a discrete-time system with a variable-, fractional-order controller. Bull Pol Acad Sci Tech Sci 58:613–619MATH
36.
Zurück zum Zitat Patnaik S, Semperlotti F (2020) Application of variable- and distributed-order fractional operators to the dynamic analysis of nonlinear oscillators. Nonlinear Dyn 100:561–580MATHCrossRef Patnaik S, Semperlotti F (2020) Application of variable- and distributed-order fractional operators to the dynamic analysis of nonlinear oscillators. Nonlinear Dyn 100:561–580MATHCrossRef
37.
Zurück zum Zitat Patnaik S, Hollkamp JP, Semperlotti F (2020) Applications of variable-order fractional operators: a review. Proc R Soc A 476:20190498MathSciNetMATHCrossRef Patnaik S, Hollkamp JP, Semperlotti F (2020) Applications of variable-order fractional operators: a review. Proc R Soc A 476:20190498MathSciNetMATHCrossRef
38.
Zurück zum Zitat Patnaik S, Patnaik S, Sidhardh F (2021) Semperlotti, Towards a unified approach to nonlocal elasticity via fractional-order mechanics. Int J Mech Sci 189:105992CrossRef Patnaik S, Patnaik S, Sidhardh F (2021) Semperlotti, Towards a unified approach to nonlocal elasticity via fractional-order mechanics. Int J Mech Sci 189:105992CrossRef
39.
Zurück zum Zitat Patnaik S, Sidhardh S, Semperlotti F (2020) A Ritz-based finite element method for a fractional-order boundary value problem of nonlocal elasticity. Int J Solids Struct 202:398–417CrossRef Patnaik S, Sidhardh S, Semperlotti F (2020) A Ritz-based finite element method for a fractional-order boundary value problem of nonlocal elasticity. Int J Solids Struct 202:398–417CrossRef
40.
Zurück zum Zitat Povstenko Y (2013) Fractional heat conduction in infinite one-dimensional composite medium. J Therm Stresses 36:351–363CrossRef Povstenko Y (2013) Fractional heat conduction in infinite one-dimensional composite medium. J Therm Stresses 36:351–363CrossRef
41.
Zurück zum Zitat Rahimi Z, Sumelka W, Yang X-J (2017) Linear and non-linear free vibration of nano beams based on a new fractional non-local theory. Eng Comput 34(5):1754–1770CrossRef Rahimi Z, Sumelka W, Yang X-J (2017) Linear and non-linear free vibration of nano beams based on a new fractional non-local theory. Eng Comput 34(5):1754–1770CrossRef
42.
Zurück zum Zitat Ramirez LE, Coimbra CF (2011) On the variable order dynamics of the nonlinear wake caused by a sedimenting particle. Physica D 240:1111–1118MathSciNetMATHCrossRef Ramirez LE, Coimbra CF (2011) On the variable order dynamics of the nonlinear wake caused by a sedimenting particle. Physica D 240:1111–1118MathSciNetMATHCrossRef
44.
Zurück zum Zitat Santamaria F, Wils S, De Schutter E, Augustine GJ (2006) Anomalous diffusion in Purkinje cell dendrites caused by spines. Neuron 52:635–648CrossRef Santamaria F, Wils S, De Schutter E, Augustine GJ (2006) Anomalous diffusion in Purkinje cell dendrites caused by spines. Neuron 52:635–648CrossRef
45.
Zurück zum Zitat Sumelka W (2014) Thermoelasticity in the Framework of the Fractional Continuum Mechanics. J Therm Stresses 37(6):678–706CrossRef Sumelka W (2014) Thermoelasticity in the Framework of the Fractional Continuum Mechanics. J Therm Stresses 37(6):678–706CrossRef
46.
Zurück zum Zitat Sumelka W, Blaszczyk T (2014) Fractional continua for linear elasticity. Arch Mech 66(3):147–172MathSciNetMATH Sumelka W, Blaszczyk T (2014) Fractional continua for linear elasticity. Arch Mech 66(3):147–172MathSciNetMATH
47.
Zurück zum Zitat Sumelka W, Blaszczyk T, Liebold C (2015) Fractional Euler-bernoulli beams: theory, numerical study and experimental validation. Eur J Mech A Solids 54:243–251MathSciNetMATHCrossRef Sumelka W, Blaszczyk T, Liebold C (2015) Fractional Euler-bernoulli beams: theory, numerical study and experimental validation. Eur J Mech A Solids 54:243–251MathSciNetMATHCrossRef
48.
Zurück zum Zitat Sumelka W (2016) On geometrical interpretation of the fractional strain concept. J Theoret Appl Mech 54(2):671–674 Sumelka W (2016) On geometrical interpretation of the fractional strain concept. J Theoret Appl Mech 54(2):671–674
49.
Zurück zum Zitat Sun HG, Chen W, Chen Y (2009) Variable-order fractional differential operators in anomalous diffusion modeling. Phys A 388:4586–4592CrossRef Sun HG, Chen W, Chen Y (2009) Variable-order fractional differential operators in anomalous diffusion modeling. Phys A 388:4586–4592CrossRef
50.
Zurück zum Zitat Sun HG, Chen W, Sheng H, Chen Y (2010) On mean square displacement behaviors of anomalous diffusions with variable and random orders. Phys Lett A 374:906–910MATHCrossRef Sun HG, Chen W, Sheng H, Chen Y (2010) On mean square displacement behaviors of anomalous diffusions with variable and random orders. Phys Lett A 374:906–910MATHCrossRef
51.
Zurück zum Zitat Sun HG, Chen W, Li C, Chen Y (2010) Fractional differential models for anomalous diffusion. Phys A 389:2719–2724CrossRef Sun HG, Chen W, Li C, Chen Y (2010) Fractional differential models for anomalous diffusion. Phys A 389:2719–2724CrossRef
52.
Zurück zum Zitat Sun HG, Chang A, Zhang Y, Chen W (2019) A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications. Fract Calc Appl Anal 22:27–59MathSciNetMATHCrossRef Sun HG, Chang A, Zhang Y, Chen W (2019) A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications. Fract Calc Appl Anal 22:27–59MathSciNetMATHCrossRef
53.
Zurück zum Zitat Szajek K, Sumelka W, Blaszczyk T, Bekus K (2020) On selected aspects of space-fractional continuum mechanics model approximation. Int J Mech Sci 167:105287CrossRef Szajek K, Sumelka W, Blaszczyk T, Bekus K (2020) On selected aspects of space-fractional continuum mechanics model approximation. Int J Mech Sci 167:105287CrossRef
54.
Zurück zum Zitat Szymanek E, Blaszczyk T, Hall MR, Dehdezi PK, Leszczynski JS (2014) Modelling and analysis of heat transfer through 1D complex granular system. Granular Matter 16(5):687–694CrossRef Szymanek E, Blaszczyk T, Hall MR, Dehdezi PK, Leszczynski JS (2014) Modelling and analysis of heat transfer through 1D complex granular system. Granular Matter 16(5):687–694CrossRef
55.
Zurück zum Zitat Wu GC, Baleanu D, Xie HP, Zeng SD (2017) Lattice fractional diffusion equation of random order. Math Methods Appl Sci 40:6054–6060MathSciNetMATHCrossRef Wu GC, Baleanu D, Xie HP, Zeng SD (2017) Lattice fractional diffusion equation of random order. Math Methods Appl Sci 40:6054–6060MathSciNetMATHCrossRef
56.
Metadaten
Titel
Approximation and application of the Riesz-Caputo fractional derivative of variable order with fixed memory
verfasst von
Tomasz Blaszczyk
Krzysztof Bekus
Krzysztof Szajek
Wojciech Sumelka
Publikationsdatum
07.05.2021
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 4/2022
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-021-01364-w

Weitere Artikel der Ausgabe 4/2022

Meccanica 4/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.