Skip to main content
Erschienen in: Acta Mechanica 6/2020

24.03.2020 | Original Paper

Axisymmetric lattice Boltzmann model for simulation of ternary fluid flows

verfasst von: Reza Haghani-Hassan-Abadi, Mohammad-Hassan Rahimian

Erschienen in: Acta Mechanica | Ausgabe 6/2020

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a lattice Boltzmann model based on the phase-field Cahn–Hilliard-based approach is proposed to deal with ternary fluid flows in the axisymmetric coordinate system. The present model can handle both high density and viscosity ratios for partial and total spreading scenarios. A variety of numerical tests, including a static droplet test, a breakup of a liquid thread test, a spreading of a liquid lens test, and a droplet collision test, were performed to verify the model. It is found that the proposed model produces accurate results which agree well with the available data.
Literatur
1.
Zurück zum Zitat He, X., Doolen, G.D.: Thermodynamic foundations of kinetic theory and lattice Boltzmann models for multiphase flows. J. Stat. Phys. 107, 309–328 (2002)CrossRef He, X., Doolen, G.D.: Thermodynamic foundations of kinetic theory and lattice Boltzmann models for multiphase flows. J. Stat. Phys. 107, 309–328 (2002)CrossRef
2.
Zurück zum Zitat He, X., Luo, L.-S.: Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E 56, 6811–6817 (1997)CrossRef He, X., Luo, L.-S.: Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E 56, 6811–6817 (1997)CrossRef
3.
Zurück zum Zitat Li, Q., Luo, K., Kang, Q., He, Y., Chen, Q., Liu, Q.: Lattice Boltzmann methods for multiphase flow and phase-change heat transfer. Prog. Energy Combust. Sci. 52, 62–105 (2016)CrossRef Li, Q., Luo, K., Kang, Q., He, Y., Chen, Q., Liu, Q.: Lattice Boltzmann methods for multiphase flow and phase-change heat transfer. Prog. Energy Combust. Sci. 52, 62–105 (2016)CrossRef
4.
Zurück zum Zitat Geier, M., Fakhari, A., Lee, T.: Conservative phase-field lattice Boltzmann model for interface tracking equation. Phys. Rev. E 91, 063309 (2015)MathSciNetCrossRef Geier, M., Fakhari, A., Lee, T.: Conservative phase-field lattice Boltzmann model for interface tracking equation. Phys. Rev. E 91, 063309 (2015)MathSciNetCrossRef
5.
Zurück zum Zitat Fakhari, A., Mitchell, T., Leonardi, C., Bolster, D.: Improved locality of the phase-field lattice-Boltzmann model for immiscible fluids at high density ratios. Phys. Rev. E 00, 003300 (2017) Fakhari, A., Mitchell, T., Leonardi, C., Bolster, D.: Improved locality of the phase-field lattice-Boltzmann model for immiscible fluids at high density ratios. Phys. Rev. E 00, 003300 (2017)
6.
Zurück zum Zitat Liang, H., Shi, B.C., Chai, Z.H.: Lattice Boltzmann modeling of three-phase incompressible flows. Phys. Rev. E 93, 013308 (2016)MathSciNetCrossRef Liang, H., Shi, B.C., Chai, Z.H.: Lattice Boltzmann modeling of three-phase incompressible flows. Phys. Rev. E 93, 013308 (2016)MathSciNetCrossRef
7.
Zurück zum Zitat Liang, H., Xu, J., Chen, J., Chai, Z., Shi, B.: Lattice Boltzmann modeling of wall-bounded ternary fluid flows. Appl. Math. Model. 73, 487–513 (2019)MathSciNetCrossRef Liang, H., Xu, J., Chen, J., Chai, Z., Shi, B.: Lattice Boltzmann modeling of wall-bounded ternary fluid flows. Appl. Math. Model. 73, 487–513 (2019)MathSciNetCrossRef
8.
Zurück zum Zitat Haghani-Hassan-Abadi, R., Fakhari, A., Rahimian, M.-H.: Numerical simulation of three-component multiphase flows at high density and viscosity ratios using lattice Boltzmann methods. Phys. Rev. E 97, 033312 (2018)CrossRef Haghani-Hassan-Abadi, R., Fakhari, A., Rahimian, M.-H.: Numerical simulation of three-component multiphase flows at high density and viscosity ratios using lattice Boltzmann methods. Phys. Rev. E 97, 033312 (2018)CrossRef
9.
Zurück zum Zitat Haghani-Hassan-Abadi, R., Rahimian, M.-H.: Hybrid lattice Boltzmann finite difference model for simulation of phase change in a ternary fluid. Int. J. Heat Mass Transf. 127, 704–716 (2018)CrossRef Haghani-Hassan-Abadi, R., Rahimian, M.-H.: Hybrid lattice Boltzmann finite difference model for simulation of phase change in a ternary fluid. Int. J. Heat Mass Transf. 127, 704–716 (2018)CrossRef
10.
Zurück zum Zitat Haghani-Hassan-Abadi, R., Rahimian, M.-H.: A lattice Boltzmann method for simulation of condensation on liquid-impregnated surfaces. Int. Commun. Heat Mass Transfer 103, 7–16 (2019)CrossRef Haghani-Hassan-Abadi, R., Rahimian, M.-H.: A lattice Boltzmann method for simulation of condensation on liquid-impregnated surfaces. Int. Commun. Heat Mass Transfer 103, 7–16 (2019)CrossRef
11.
Zurück zum Zitat Haghani-Hassan-Abadi, R., Rahimian, M.-H., Fakhari, A.: Conservative phase-field lattice-Boltzmann model for ternary fluids. J. Comput. Phys. 374, 668–691 (2018)MathSciNetCrossRef Haghani-Hassan-Abadi, R., Rahimian, M.-H., Fakhari, A.: Conservative phase-field lattice-Boltzmann model for ternary fluids. J. Comput. Phys. 374, 668–691 (2018)MathSciNetCrossRef
12.
Zurück zum Zitat Premnath, K.N., Abraham, J.: Lattice Boltzmann model for axisymmetric multiphase flows. Phys. Rev. E 71, 056706 (2005)MathSciNetCrossRef Premnath, K.N., Abraham, J.: Lattice Boltzmann model for axisymmetric multiphase flows. Phys. Rev. E 71, 056706 (2005)MathSciNetCrossRef
13.
Zurück zum Zitat Sun, K., Jia, M., Wang, T.: Numerical investigation of head-on droplet collision with lattice Boltzmann method. Int. J. Heat Mass Transf. 58, 260–275 (2013)CrossRef Sun, K., Jia, M., Wang, T.: Numerical investigation of head-on droplet collision with lattice Boltzmann method. Int. J. Heat Mass Transf. 58, 260–275 (2013)CrossRef
14.
Zurück zum Zitat Liang, H., Chai, Z., Shi, B., Guo, Z., Zhang, T.: Phase-field-based lattice Boltzmann model for axisymmetric multiphase flows. Phys. Rev. E 90, 063311 (2014)CrossRef Liang, H., Chai, Z., Shi, B., Guo, Z., Zhang, T.: Phase-field-based lattice Boltzmann model for axisymmetric multiphase flows. Phys. Rev. E 90, 063311 (2014)CrossRef
15.
Zurück zum Zitat Liu, H., Wu, L., Ba, Y., Xi, G., Zhang, Y.: A lattice Boltzmann method for axisymmetric multicomponent flows with high viscosity ratio. J. Comput. Phys. 327, 873–893 (2016)MathSciNetCrossRef Liu, H., Wu, L., Ba, Y., Xi, G., Zhang, Y.: A lattice Boltzmann method for axisymmetric multicomponent flows with high viscosity ratio. J. Comput. Phys. 327, 873–893 (2016)MathSciNetCrossRef
16.
Zurück zum Zitat Liang, H., Li, Y., Chen, J., Xu, J.: Axisymmetric lattice Boltzmann model for multiphase flows with large density ratio. Int. J. Heat Mass Transf. 130, 1189–1205 (2019)CrossRef Liang, H., Li, Y., Chen, J., Xu, J.: Axisymmetric lattice Boltzmann model for multiphase flows with large density ratio. Int. J. Heat Mass Transf. 130, 1189–1205 (2019)CrossRef
17.
Zurück zum Zitat Boyer, F., Lapuerta, C.: Study of a three component Cahn-Hilliard flow model. ESAIM: Mathematical Modelling and Numerical Analysis 40, 653–687 (2006)MathSciNetCrossRef Boyer, F., Lapuerta, C.: Study of a three component Cahn-Hilliard flow model. ESAIM: Mathematical Modelling and Numerical Analysis 40, 653–687 (2006)MathSciNetCrossRef
18.
Zurück zum Zitat Lee, T., Liu, L.: Lattice Boltzmann simulations of micron-scale drop impact on dry surfaces. J. Comput. Phys. 229, 8045–8063 (2010)CrossRef Lee, T., Liu, L.: Lattice Boltzmann simulations of micron-scale drop impact on dry surfaces. J. Comput. Phys. 229, 8045–8063 (2010)CrossRef
19.
Zurück zum Zitat He, X., Chen, S., Doolen, G.D.: A novel thermal model for the lattice Boltzmann method in incompressible limit. J. Comput. Phys. 146, 282–300 (1998)MathSciNetCrossRef He, X., Chen, S., Doolen, G.D.: A novel thermal model for the lattice Boltzmann method in incompressible limit. J. Comput. Phys. 146, 282–300 (1998)MathSciNetCrossRef
20.
Zurück zum Zitat He, X., Luo, L.-S.: A priori derivation of the lattice Boltzmann equation. Phys. Rev. E 55, R6333 (1997)CrossRef He, X., Luo, L.-S.: A priori derivation of the lattice Boltzmann equation. Phys. Rev. E 55, R6333 (1997)CrossRef
21.
Zurück zum Zitat Lee, T., Fischer, P.F.: Eliminating parasitic currents in the lattice Boltzmann equation method for nonideal gases. Phys. Rev. E 74, 046709 (2006)CrossRef Lee, T., Fischer, P.F.: Eliminating parasitic currents in the lattice Boltzmann equation method for nonideal gases. Phys. Rev. E 74, 046709 (2006)CrossRef
22.
Zurück zum Zitat Plateau, M.: Experimental and theoretical statics of liquid fluids subject to molecular forces only. Smithsonian Report (1863) Plateau, M.: Experimental and theoretical statics of liquid fluids subject to molecular forces only. Smithsonian Report (1863)
24.
Zurück zum Zitat Ashgriz, N., Mashayek, F.: Temporal analysis of capillary jet breakup. J. Fluid Mech. 291, 163–190 (1995)CrossRef Ashgriz, N., Mashayek, F.: Temporal analysis of capillary jet breakup. J. Fluid Mech. 291, 163–190 (1995)CrossRef
25.
Zurück zum Zitat Tjahjadi, M., Stone, H.A., Ottino, J.M.: Satellite and subsatellite formation in capillary breakup. J. Fluid Mech. 243, 297–317 (1992)CrossRef Tjahjadi, M., Stone, H.A., Ottino, J.M.: Satellite and subsatellite formation in capillary breakup. J. Fluid Mech. 243, 297–317 (1992)CrossRef
26.
Zurück zum Zitat Lafrance, P.: Nonlinear breakup of a laminar liquid jet. Phys. Fluids 18, 428–432 (1975)CrossRef Lafrance, P.: Nonlinear breakup of a laminar liquid jet. Phys. Fluids 18, 428–432 (1975)CrossRef
27.
Zurück zum Zitat Rutland, D., Jameson, G.: Theoretical prediction of the sizes of drops formed in the breakup of capillary jets. Chem. Eng. Sci. 25, 1689–1698 (1970)CrossRef Rutland, D., Jameson, G.: Theoretical prediction of the sizes of drops formed in the breakup of capillary jets. Chem. Eng. Sci. 25, 1689–1698 (1970)CrossRef
28.
Zurück zum Zitat Weil, K.G., Rowlinson, J.S., Widom, B.: Molecular Theory of Capillarity. Clarendon Press, Oxford (1982). Berichte der Bunsengesellschaft für physikalische Chemie 88: 586–586 (1984) Weil, K.G., Rowlinson, J.S., Widom, B.: Molecular Theory of Capillarity. Clarendon Press, Oxford (1982). Berichte der Bunsengesellschaft für physikalische Chemie 88: 586–586 (1984)
29.
Zurück zum Zitat Jiang, F., Tsuji, T.: Estimation of three-phase relative permeability by simulating fluid dynamics directly on rock-microstructure images. Water Resour. Res. 53, 11–32 (2017)CrossRef Jiang, F., Tsuji, T.: Estimation of three-phase relative permeability by simulating fluid dynamics directly on rock-microstructure images. Water Resour. Res. 53, 11–32 (2017)CrossRef
30.
Zurück zum Zitat Chen, R.-H., Chen, C.-T.: Collision between immiscible drops with large surface tension difference: diesel oil and water. Exp. Fluids 41, 453–461 (2006)CrossRef Chen, R.-H., Chen, C.-T.: Collision between immiscible drops with large surface tension difference: diesel oil and water. Exp. Fluids 41, 453–461 (2006)CrossRef
31.
Zurück zum Zitat Gao, T.-C., Chen, R.-H., Pu, J.-Y., Lin, T.-H.: Collision between an ethanol drop and a water drop. Exp. Fluids 38, 731–738 (2005)CrossRef Gao, T.-C., Chen, R.-H., Pu, J.-Y., Lin, T.-H.: Collision between an ethanol drop and a water drop. Exp. Fluids 38, 731–738 (2005)CrossRef
32.
Zurück zum Zitat Planchette, C., Lorenceau, E., Brenn, G.: Liquid encapsulation by binary collisions of immiscible liquid drops. Colloids Surf. A Physicochem. Eng. Aspects 365, 89–94 (2010). (4th International Workshop) CrossRef Planchette, C., Lorenceau, E., Brenn, G.: Liquid encapsulation by binary collisions of immiscible liquid drops. Colloids Surf. A Physicochem. Eng. Aspects 365, 89–94 (2010). (4th International Workshop) CrossRef
33.
Zurück zum Zitat Roisman, I.V., Planchette, C., Lorenceau, E., Brenn, G.: Binary collisions of drops of immiscible liquids. J. Fluid Mech. 690, 512–535 (2012)CrossRef Roisman, I.V., Planchette, C., Lorenceau, E., Brenn, G.: Binary collisions of drops of immiscible liquids. J. Fluid Mech. 690, 512–535 (2012)CrossRef
34.
Zurück zum Zitat Planchette, C., Lorenceau, E., Brenn, G.: The onset of fragmentation in binary liquid drop collisions. J. Fluid Mech. 702, 5–25 (2012)CrossRef Planchette, C., Lorenceau, E., Brenn, G.: The onset of fragmentation in binary liquid drop collisions. J. Fluid Mech. 702, 5–25 (2012)CrossRef
35.
Zurück zum Zitat Wöhrwag, M., Semprebon, C., Mazloomi Moqaddam, A., Karlin, I., Kusumaatmaja, H.: Ternary free-energy entropic lattice Boltzmann model with a high density ratio. Phys. Rev. Lett. 120, 234501 (2018)CrossRef Wöhrwag, M., Semprebon, C., Mazloomi Moqaddam, A., Karlin, I., Kusumaatmaja, H.: Ternary free-energy entropic lattice Boltzmann model with a high density ratio. Phys. Rev. Lett. 120, 234501 (2018)CrossRef
36.
Zurück zum Zitat Li, G., Lian, Y., Guo, Y., Jemison, M., Sussman, M., Helms, T., Arienti, M.: Incompressible multiphase flow and encapsulation simulations using the moment-of-fluid method. Int. J. Numer. Methods Fluids 79, 456–490 (2015)MathSciNetCrossRef Li, G., Lian, Y., Guo, Y., Jemison, M., Sussman, M., Helms, T., Arienti, M.: Incompressible multiphase flow and encapsulation simulations using the moment-of-fluid method. Int. J. Numer. Methods Fluids 79, 456–490 (2015)MathSciNetCrossRef
37.
Zurück zum Zitat Qian, J., Law, C.K.: Regimes of coalescence and separation in droplet collision. J. Fluid Mech. 331, 59–80 (1997)CrossRef Qian, J., Law, C.K.: Regimes of coalescence and separation in droplet collision. J. Fluid Mech. 331, 59–80 (1997)CrossRef
Metadaten
Titel
Axisymmetric lattice Boltzmann model for simulation of ternary fluid flows
verfasst von
Reza Haghani-Hassan-Abadi
Mohammad-Hassan Rahimian
Publikationsdatum
24.03.2020
Verlag
Springer Vienna
Erschienen in
Acta Mechanica / Ausgabe 6/2020
Print ISSN: 0001-5970
Elektronische ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-020-02663-1

Weitere Artikel der Ausgabe 6/2020

Acta Mechanica 6/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.