Skip to main content
Erschienen in: Cognitive Neurodynamics 2/2020

20.11.2019 | Research Article

Bipolar oscillations between positive and negative mood states in a computational model of Basal Ganglia

verfasst von: Pragathi Priyadharsini Balasubramani, V. Srinivasa Chakravarthy

Erschienen in: Cognitive Neurodynamics | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Bipolar disorder is characterized by mood swings—oscillations between manic and depressive states. The swings (oscillations) mark the length of an episode in a patient’s mood cycle (period), and can vary from hours to years. The proposed modeling study uses decision making framework to investigate the role of basal ganglia network in generating bipolar oscillations. In this model, the basal ganglia system performs a two-arm bandit task in which one of the arms (action responses) leads to a positive outcome, while the other leads to a negative outcome. We explore the dynamics of key reward and risk related parameters in the system while the model agent receives various outcomes. Particularly, we study the system using a model that represents the fast dynamics of decision making, and a module to capture the slow dynamics that describe the variation of some meta-parameters of fast dynamics over long time scales. The model is cast at three levels of abstraction: (1) a two-dimensional dynamical system model, that is a simple two variable model capable of showing bistability for rewarding and punitive outcomes; (2) a phenomenological basal ganglia model, to extend the implications from the reduced model to a cortico-basal ganglia setup; (3) a detailed network model of basal ganglia, that incorporates detailed cellular level models for a more realistic understanding. In healthy conditions, the model chooses positive action and avoids negative one, whereas under bipolar conditions, the model exhibits slow oscillations in its choice of positive or negative outcomes, reminiscent of bipolar oscillations. Phase-plane analyses on the simple reduced dynamical system with two variables reveal the essential parameters that generate pathological ‘bipolar-like’ oscillations. Phenomenological and network models of the basal ganglia extend that logic, and interpret bipolar oscillations in terms of the activity of dopaminergic and serotonergic projections on the cortico-basal ganglia network dynamics. The network’s dysfunction, specifically in terms of reward and risk sensitivity, is shown to be responsible for the pathological bipolar oscillations. The study proposes a computational model that explores the effects of impaired serotonergic neuromodulation on the dynamics of the cortico basal ganglia network, and relates this impairment to abstract mood states (manic and depressive episodes) and oscillations of bipolar disorder.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12(10):366–375CrossRefPubMed Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12(10):366–375CrossRefPubMed
Zurück zum Zitat Allen AT, Maher KN, Wani KA, Betts KE, Chase DL (2011) Coexpressed D1- and D2-like dopamine receptors antagonistically modulate acetylcholine release in Caenorhabditis elegans. Genetics 188(3):579–590CrossRefPubMedPubMedCentral Allen AT, Maher KN, Wani KA, Betts KE, Chase DL (2011) Coexpressed D1- and D2-like dopamine receptors antagonistically modulate acetylcholine release in Caenorhabditis elegans. Genetics 188(3):579–590CrossRefPubMedPubMedCentral
Zurück zum Zitat Alloy LB, Abramson LY (2010) The role of the behavioral approach system (BAS) in bipolar spectrum disorders. Curr Dir Psychol Sci 19(3):189–194CrossRefPubMedPubMedCentral Alloy LB, Abramson LY (2010) The role of the behavioral approach system (BAS) in bipolar spectrum disorders. Curr Dir Psychol Sci 19(3):189–194CrossRefPubMedPubMedCentral
Zurück zum Zitat Alloy LB, Nusslock R, Boland EM (2015) The development and course of bipolar spectrum disorders: an integrated reward and circadian rhythm dysregulation model. Annu Rev Clin Psychol 11:213CrossRefPubMedPubMedCentral Alloy LB, Nusslock R, Boland EM (2015) The development and course of bipolar spectrum disorders: an integrated reward and circadian rhythm dysregulation model. Annu Rev Clin Psychol 11:213CrossRefPubMedPubMedCentral
Zurück zum Zitat Balasubramani PP, Chakravarthy S, Ravindran B, Moustafa AA (2014) An extended reinforcement learning model of basal ganglia to understand the contributions of serotonin and dopamine in risk-based decision making, reward prediction, and punishment learning. Front Comput Neurosci 8:47CrossRefPubMedPubMedCentral Balasubramani PP, Chakravarthy S, Ravindran B, Moustafa AA (2014) An extended reinforcement learning model of basal ganglia to understand the contributions of serotonin and dopamine in risk-based decision making, reward prediction, and punishment learning. Front Comput Neurosci 8:47CrossRefPubMedPubMedCentral
Zurück zum Zitat Balasubramani PP, Chakravarthy S, Ravindran B, Moustafa AA (2015a) A network model of basal ganglia for understanding the roles of dopamine and serotonin in reward–punishment–risk based decision making. Front Comput Neurosci 9:76CrossRefPubMedPubMedCentral Balasubramani PP, Chakravarthy S, Ravindran B, Moustafa AA (2015a) A network model of basal ganglia for understanding the roles of dopamine and serotonin in reward–punishment–risk based decision making. Front Comput Neurosci 9:76CrossRefPubMedPubMedCentral
Zurück zum Zitat Balasubramani PP, Chakravarthy VS, Ali M, Ravindran B, Moustafa AA (2015b) Identifying the basal ganglia network model markers for medication-induced impulsivity in Parkinson’s Disease patients. PLoS ONE 10(6):e0127542CrossRefPubMedPubMedCentral Balasubramani PP, Chakravarthy VS, Ali M, Ravindran B, Moustafa AA (2015b) Identifying the basal ganglia network model markers for medication-induced impulsivity in Parkinson’s Disease patients. PLoS ONE 10(6):e0127542CrossRefPubMedPubMedCentral
Zurück zum Zitat Balasubramani PP, Chakravarthy VS, Wong-Lin K, Wang DH, Cohen JY, Nakamura K, Moustafa AA (2017) Neural circuit models of the serotonergic system. In: Computational models of brain and behavior, pp 389–400 Balasubramani PP, Chakravarthy VS, Wong-Lin K, Wang DH, Cohen JY, Nakamura K, Moustafa AA (2017) Neural circuit models of the serotonergic system. In: Computational models of brain and behavior, pp 389–400
Zurück zum Zitat Balasubramani PP, Chakravarthy VS, Ravindran B, Moustafa AA (2018) Modeling Serotonin’s contributions to basal ganglia dynamics. In: Computational neuroscience models of the basal ganglia. Springer, pp 215–243 Balasubramani PP, Chakravarthy VS, Ravindran B, Moustafa AA (2018) Modeling Serotonin’s contributions to basal ganglia dynamics. In: Computational neuroscience models of the basal ganglia. Springer, pp 215–243
Zurück zum Zitat Berk M, Dodd S, Kauer-Sant’Anna M, Malhi G, Bourin M, Kapczinski F, Norman T (2007) Dopamine dysregulation syndrome: implications for a dopamine hypothesis of bipolar disorder. Acta Psychiatr Scand 116(s434):41–49CrossRef Berk M, Dodd S, Kauer-Sant’Anna M, Malhi G, Bourin M, Kapczinski F, Norman T (2007) Dopamine dysregulation syndrome: implications for a dopamine hypothesis of bipolar disorder. Acta Psychiatr Scand 116(s434):41–49CrossRef
Zurück zum Zitat Bertran-Gonzalez J, Hervé D, Girault J-A, Valjent E (2010) What is the degree of segregation between striatonigral and striatopallidal projections? Front Neuroanat 4:136CrossRefPubMedPubMedCentral Bertran-Gonzalez J, Hervé D, Girault J-A, Valjent E (2010) What is the degree of segregation between striatonigral and striatopallidal projections? Front Neuroanat 4:136CrossRefPubMedPubMedCentral
Zurück zum Zitat Bonsall MB, Wallace-Hadrill SM, Geddes JR, Goodwin GM, Holmes EA (2012) Nonlinear time-series approaches in characterizing mood stability and mood instability in bipolar disorder. Proc R Soc Lond B Biol Sci 279(1730):916–924CrossRef Bonsall MB, Wallace-Hadrill SM, Geddes JR, Goodwin GM, Holmes EA (2012) Nonlinear time-series approaches in characterizing mood stability and mood instability in bipolar disorder. Proc R Soc Lond B Biol Sci 279(1730):916–924CrossRef
Zurück zum Zitat Bonsall MB, Geddes JR, Goodwin GM, Holmes EA (2015) Bipolar disorder dynamics: affective instabilities, relaxation oscillations and noise. J R Soc Interface 12(112):20150670CrossRefPubMedPubMedCentral Bonsall MB, Geddes JR, Goodwin GM, Holmes EA (2015) Bipolar disorder dynamics: affective instabilities, relaxation oscillations and noise. J R Soc Interface 12(112):20150670CrossRefPubMedPubMedCentral
Zurück zum Zitat Bronstein YL, Cummings JL (2001) Neurochemistry of frontal-subcortical circuits. In: Lichter DG, Cummings JL (Eds) Frontal-subcortical circuits in psychiatric and neurological disorders. Guilford Press, New York, pp 59–91 Bronstein YL, Cummings JL (2001) Neurochemistry of frontal-subcortical circuits. In: Lichter DG, Cummings JL (Eds) Frontal-subcortical circuits in psychiatric and neurological disorders. Guilford Press, New York, pp 59–91
Zurück zum Zitat Calabresi P, Maj R, Pisani A, Mercuri NB, Bernardi G (1992) Long-term synaptic depression in the striatum: physiological and pharmacological characterization. J Neurosci 12(11):4224–4233CrossRefPubMedPubMedCentral Calabresi P, Maj R, Pisani A, Mercuri NB, Bernardi G (1992) Long-term synaptic depression in the striatum: physiological and pharmacological characterization. J Neurosci 12(11):4224–4233CrossRefPubMedPubMedCentral
Zurück zum Zitat Calabresi P, Picconi B, Tozzi A, Ghiglieri V, Di Filippo M (2014) Direct and indirect pathways of basal ganglia: a critical reappraisal. Nat Neurosci 17(8):1022–1030CrossRefPubMed Calabresi P, Picconi B, Tozzi A, Ghiglieri V, Di Filippo M (2014) Direct and indirect pathways of basal ganglia: a critical reappraisal. Nat Neurosci 17(8):1022–1030CrossRefPubMed
Zurück zum Zitat Chakravarthy VS, Balasubramani PP (2013) Basal ganglia system as an engine for exploration. In: Jaeger D, Jung R (eds) Encyclopedia of computational neuroscience. Springer, Berlin Chakravarthy VS, Balasubramani PP (2013) Basal ganglia system as an engine for exploration. In: Jaeger D, Jung R (eds) Encyclopedia of computational neuroscience. Springer, Berlin
Zurück zum Zitat Chakravarthy VS, Balasubramani PP (2014) Basal ganglia system as an engine for exploration. Springer, BerlinCrossRef Chakravarthy VS, Balasubramani PP (2014) Basal ganglia system as an engine for exploration. Springer, BerlinCrossRef
Zurück zum Zitat Challis C, Beck SG, Berton O (2014) Optogenetic modulation of descending prefrontocortical inputs to the dorsal raphe bidirectionally bias socio affective choices after social defeat. Front behav neurosci 8:43CrossRefPubMedPubMedCentral Challis C, Beck SG, Berton O (2014) Optogenetic modulation of descending prefrontocortical inputs to the dorsal raphe bidirectionally bias socio affective choices after social defeat. Front behav neurosci 8:43CrossRefPubMedPubMedCentral
Zurück zum Zitat Chandler RA, Wakeley J, Goodwin GM, Rogers RD (2009) Altered risk-aversion and risk-seeking behavior in bipolar disorder. Biol Psychiatry 66(9):840–846CrossRefPubMed Chandler RA, Wakeley J, Goodwin GM, Rogers RD (2009) Altered risk-aversion and risk-seeking behavior in bipolar disorder. Biol Psychiatry 66(9):840–846CrossRefPubMed
Zurück zum Zitat Chang J, Chen L, Luo F, Shi L-H, Woodward D (2002) Neuronal responses in the frontal cortico-basal ganglia system during delayed matching-to-sample task: ensemble recording in freely moving rats. Exp Brain Res 142(1):67–80CrossRefPubMed Chang J, Chen L, Luo F, Shi L-H, Woodward D (2002) Neuronal responses in the frontal cortico-basal ganglia system during delayed matching-to-sample task: ensemble recording in freely moving rats. Exp Brain Res 142(1):67–80CrossRefPubMed
Zurück zum Zitat Collins AG, Frank MJ (2014) Opponent actor learning (OpAL): modeling interactive effects of striatal dopamine on reinforcement learning and choice incentive. Psychol Rev 121(3):337CrossRefPubMed Collins AG, Frank MJ (2014) Opponent actor learning (OpAL): modeling interactive effects of striatal dopamine on reinforcement learning and choice incentive. Psychol Rev 121(3):337CrossRefPubMed
Zurück zum Zitat Confalonieri S (2015) The casus irreducibilis in Cardano’s Ars Magna and De Regula Aliza. Arch Hist Exact Sci 69(3):257–289CrossRef Confalonieri S (2015) The casus irreducibilis in Cardano’s Ars Magna and De Regula Aliza. Arch Hist Exact Sci 69(3):257–289CrossRef
Zurück zum Zitat Cools R, Nakamura K, Daw ND (2011) Serotonin and dopamine: unifying affective, activational, and decision functions. Neuropsychopharmacology 36(1):98–113CrossRefPubMed Cools R, Nakamura K, Daw ND (2011) Serotonin and dopamine: unifying affective, activational, and decision functions. Neuropsychopharmacology 36(1):98–113CrossRefPubMed
Zurück zum Zitat Cummings JL (1993) Frontal-subcortical circuits and human behavior. Arch Neurol 50(8):873–880CrossRefPubMed Cummings JL (1993) Frontal-subcortical circuits and human behavior. Arch Neurol 50(8):873–880CrossRefPubMed
Zurück zum Zitat Delgado PL, Miller HL, Salomon RM, Licinio J, Krystal JH, Moreno FA, Charney DS (1999) Tryptophan-depletion challenge in depressed patients treated with desipramine or fluoxetine: implications for the role of serotonin in the mechanism of antidepressant action. Biol Psychiatry 46(2):212–220CrossRefPubMed Delgado PL, Miller HL, Salomon RM, Licinio J, Krystal JH, Moreno FA, Charney DS (1999) Tryptophan-depletion challenge in depressed patients treated with desipramine or fluoxetine: implications for the role of serotonin in the mechanism of antidepressant action. Biol Psychiatry 46(2):212–220CrossRefPubMed
Zurück zum Zitat DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13(7):281–285CrossRefPubMed DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13(7):281–285CrossRefPubMed
Zurück zum Zitat Dremencov E, Newman ME, Kinor N, Blatman-Jan G, Schindler CJ, Overstreet DH, Yadid G (2005) Hyperfunctionality of serotonin-2C receptor-mediated inhibition of accumbal dopamine release in an animal model of depression is reversed by antidepressant treatment. Neuropharmacology 48(1):34–42CrossRefPubMed Dremencov E, Newman ME, Kinor N, Blatman-Jan G, Schindler CJ, Overstreet DH, Yadid G (2005) Hyperfunctionality of serotonin-2C receptor-mediated inhibition of accumbal dopamine release in an animal model of depression is reversed by antidepressant treatment. Neuropharmacology 48(1):34–42CrossRefPubMed
Zurück zum Zitat Eberle-Wang K, Mikeladze Z, Uryu K, Chesselet MF (1997) Pattern of expression of the serotonin2C receptor messenger RNA in the basal ganglia of adult rats. J Comp Neurology 384(2):233–247CrossRef Eberle-Wang K, Mikeladze Z, Uryu K, Chesselet MF (1997) Pattern of expression of the serotonin2C receptor messenger RNA in the basal ganglia of adult rats. J Comp Neurology 384(2):233–247CrossRef
Zurück zum Zitat Eldar E, Rutledge RB, Dolan RJ, Niv Y (2016) Mood as representation of momentum. Trends Cognit Sci 20(1):15–24CrossRef Eldar E, Rutledge RB, Dolan RJ, Niv Y (2016) Mood as representation of momentum. Trends Cognit Sci 20(1):15–24CrossRef
Zurück zum Zitat Frank MJ, Claus ED (2006) Anatomy of a decision: striato-orbitofrontal interactions in reinforcement learning, decision making, and reversal. Psychol Rev 113(2):300CrossRefPubMed Frank MJ, Claus ED (2006) Anatomy of a decision: striato-orbitofrontal interactions in reinforcement learning, decision making, and reversal. Psychol Rev 113(2):300CrossRefPubMed
Zurück zum Zitat Gagnon D, Petryszyn S, Sanchez M, Bories C, Beaulieu J, De Koninck Y, Parent M (2017) Striatal neurons expressing D1 and D2 receptors are morphologically distinct and differently affected by dopamine denervation in mice. Sci Rep 7:41432CrossRefPubMedPubMedCentral Gagnon D, Petryszyn S, Sanchez M, Bories C, Beaulieu J, De Koninck Y, Parent M (2017) Striatal neurons expressing D1 and D2 receptors are morphologically distinct and differently affected by dopamine denervation in mice. Sci Rep 7:41432CrossRefPubMedPubMedCentral
Zurück zum Zitat Geddes JR, Miklowitz DJ (2013) Treatment of bipolar disorder. The Lancet 381(9878):1672–1682CrossRef Geddes JR, Miklowitz DJ (2013) Treatment of bipolar disorder. The Lancet 381(9878):1672–1682CrossRef
Zurück zum Zitat Grossberg S (1984) Some normal and abnormal behavioral syndromes due to transmitter gating of opponent processes. Biol Psychiatry 19:1075–1118PubMed Grossberg S (1984) Some normal and abnormal behavioral syndromes due to transmitter gating of opponent processes. Biol Psychiatry 19:1075–1118PubMed
Zurück zum Zitat Harvey AG (2008) Sleep and circadian rhythms in bipolar disorder: seeking synchrony, harmony, and regulation. Am J Psychiatry 165(7):820–829CrossRefPubMed Harvey AG (2008) Sleep and circadian rhythms in bipolar disorder: seeking synchrony, harmony, and regulation. Am J Psychiatry 165(7):820–829CrossRefPubMed
Zurück zum Zitat Hausdorff JM, Cudkowicz ME, Firtion R, Wei JY, Goldberger AL (1998) Gait variability and basal ganglia disorders: stride-to-stride variations of gait cycle timing in Parkinson’s disease and Huntington’s disease. Mov Disord 13(3):428–437CrossRefPubMed Hausdorff JM, Cudkowicz ME, Firtion R, Wei JY, Goldberger AL (1998) Gait variability and basal ganglia disorders: stride-to-stride variations of gait cycle timing in Parkinson’s disease and Huntington’s disease. Mov Disord 13(3):428–437CrossRefPubMed
Zurück zum Zitat Hilty DM, Leamon MH, Lim RF, Kelly RH, Hales RE (2006) A review of bipolar disorder in adults. Psychiatry 3:43–55PubMed Hilty DM, Leamon MH, Lim RF, Kelly RH, Hales RE (2006) A review of bipolar disorder in adults. Psychiatry 3:43–55PubMed
Zurück zum Zitat Hirshfeld-Becker DR, Biederman J, Calltharp S, Rosenbaum ED, Faraone SV, Rosenbaum JF (2003) Behavioral inhibition and disinhibition as hypothesized precursors to psychopathology: implications for pediatric bipolar disorder. Biol Psychiatry 53(11):985–999CrossRefPubMed Hirshfeld-Becker DR, Biederman J, Calltharp S, Rosenbaum ED, Faraone SV, Rosenbaum JF (2003) Behavioral inhibition and disinhibition as hypothesized precursors to psychopathology: implications for pediatric bipolar disorder. Biol Psychiatry 53(11):985–999CrossRefPubMed
Zurück zum Zitat Hou D, Wang C, Chen Y, Wang W, Du J (2017) Long-range temporal correlations of broadband EEG oscillations for depressed subjects following different hemispheric cerebral infarction. Cogn Neurodyn 11(6):529–538CrossRefPubMedPubMedCentral Hou D, Wang C, Chen Y, Wang W, Du J (2017) Long-range temporal correlations of broadband EEG oscillations for depressed subjects following different hemispheric cerebral infarction. Cogn Neurodyn 11(6):529–538CrossRefPubMedPubMedCentral
Zurück zum Zitat Houk JC, Adams JL, Barto AG (1995) A model of how the basal ganglia generate and use neural signals that predict reinforcement. Models of information processing in the basal ganglia, 249–270 Houk JC, Adams JL, Barto AG (1995) A model of how the basal ganglia generate and use neural signals that predict reinforcement. Models of information processing in the basal ganglia, 249–270
Zurück zum Zitat Hu B, Guo Y, Zou X, Dong J, Pan L, Yu M, Tang W (2018) Controlling mechanism of absence seizures by deep brain stimulus applied on subthalamic nucleus. Cogn Neurodyn 12(1):103–119CrossRefPubMed Hu B, Guo Y, Zou X, Dong J, Pan L, Yu M, Tang W (2018) Controlling mechanism of absence seizures by deep brain stimulus applied on subthalamic nucleus. Cogn Neurodyn 12(1):103–119CrossRefPubMed
Zurück zum Zitat Hu B, Diao X, Guo H, Deng S, Shi Y, Deng Y, Zong L (2019) The beta oscillation conditions in a simplified basal ganglia network. Cogn Neurodyn 13(2):201–217CrossRefPubMed Hu B, Diao X, Guo H, Deng S, Shi Y, Deng Y, Zong L (2019) The beta oscillation conditions in a simplified basal ganglia network. Cogn Neurodyn 13(2):201–217CrossRefPubMed
Zurück zum Zitat Humphries MD, Lepora N, Wood R, Gurney K (2009) Capturing dopaminergic modulation and bimodal membrane behaviour of striatal medium spiny neurons in accurate, reduced models. Front Comput Neurosci 3:26CrossRefPubMedPubMedCentral Humphries MD, Lepora N, Wood R, Gurney K (2009) Capturing dopaminergic modulation and bimodal membrane behaviour of striatal medium spiny neurons in accurate, reduced models. Front Comput Neurosci 3:26CrossRefPubMedPubMedCentral
Zurück zum Zitat Huys QJ, Daw ND, Dayan P (2015) Depression: a decision-theoretic analysis. Annu Rev Neurosci 38:1–23CrossRefPubMed Huys QJ, Daw ND, Dayan P (2015) Depression: a decision-theoretic analysis. Annu Rev Neurosci 38:1–23CrossRefPubMed
Zurück zum Zitat Ingber L (2012) Computational algorithms derived from multiple scales of neocortical processing. Cogn Comput 4(1):38–50CrossRef Ingber L (2012) Computational algorithms derived from multiple scales of neocortical processing. Cogn Comput 4(1):38–50CrossRef
Zurück zum Zitat Izhikevich EM (2007) Dynamical systems in neuroscience. MIT Press, Cambridge Izhikevich EM (2007) Dynamical systems in neuroscience. MIT Press, Cambridge
Zurück zum Zitat Izhikevich EM, FitzHugh R (2006) Fitzhugh-nagumo model. Scholarpedia 1(9):1349CrossRef Izhikevich EM, FitzHugh R (2006) Fitzhugh-nagumo model. Scholarpedia 1(9):1349CrossRef
Zurück zum Zitat Jakab RL, Hazrati LN, Goldman-Rakic P (1996) Distribution and neurochemical character of substance P receptor (SPR)-immunoreactive striatal neurons of the macaque monkey: accumulation of SP fibers and SPR neurons and dendrites in “striocapsules” encircling striosomes. J Comp Neurol 369(1):137–149CrossRefPubMed Jakab RL, Hazrati LN, Goldman-Rakic P (1996) Distribution and neurochemical character of substance P receptor (SPR)-immunoreactive striatal neurons of the macaque monkey: accumulation of SP fibers and SPR neurons and dendrites in “striocapsules” encircling striosomes. J Comp Neurol 369(1):137–149CrossRefPubMed
Zurück zum Zitat Jiang LH, Ashby CR Jr, Kasser RJ, Wang RY (1990) The effect of intraventricular administration of the 5-HT3 receptor agonist 2-methylserotonin on the release of dopamine in the nucleus accumbens: an in vivo chronocoulometric study. Brain Res 513(1):156–160CrossRefPubMed Jiang LH, Ashby CR Jr, Kasser RJ, Wang RY (1990) The effect of intraventricular administration of the 5-HT3 receptor agonist 2-methylserotonin on the release of dopamine in the nucleus accumbens: an in vivo chronocoulometric study. Brain Res 513(1):156–160CrossRefPubMed
Zurück zum Zitat Joel D, Niv Y, Ruppin E (2002) Actor-critic models of the basal ganglia: new anatomical and computational perspectives. Neural Netw 15(4–6):535–547CrossRefPubMed Joel D, Niv Y, Ruppin E (2002) Actor-critic models of the basal ganglia: new anatomical and computational perspectives. Neural Netw 15(4–6):535–547CrossRefPubMed
Zurück zum Zitat Kahneman D, Tversky A (1979) Prospect theory: an analysis of decision under risk. Econometrica 47:263–292CrossRef Kahneman D, Tversky A (1979) Prospect theory: an analysis of decision under risk. Econometrica 47:263–292CrossRef
Zurück zum Zitat Kim S-Y, Lim W (2019) Burst synchronization in a scale-free neuronal network with inhibitory spike-timing-dependent plasticity. Cogn Neurodyn 13(1):53–73CrossRefPubMed Kim S-Y, Lim W (2019) Burst synchronization in a scale-free neuronal network with inhibitory spike-timing-dependent plasticity. Cogn Neurodyn 13(1):53–73CrossRefPubMed
Zurück zum Zitat Kranz G, Kasper S, Lanzenberger R (2010) Reward and the serotonergic system. Neuroscience 166(4):1023–1035CrossRefPubMed Kranz G, Kasper S, Lanzenberger R (2010) Reward and the serotonergic system. Neuroscience 166(4):1023–1035CrossRefPubMed
Zurück zum Zitat Kreitzer AC (2009) Physiology and pharmacology of striatal neurons. Annu Rev Neurosci 32:127–147CrossRefPubMed Kreitzer AC (2009) Physiology and pharmacology of striatal neurons. Annu Rev Neurosci 32:127–147CrossRefPubMed
Zurück zum Zitat Lauwereyns J, Watanabe K, Coe B, Hikosaka O (2002) A neural correlate of response bias in monkey caudate nucleus. Nature 418(6896):413–417CrossRefPubMed Lauwereyns J, Watanabe K, Coe B, Hikosaka O (2002) A neural correlate of response bias in monkey caudate nucleus. Nature 418(6896):413–417CrossRefPubMed
Zurück zum Zitat Lawrence NS, Williams AM, Surguladze S, Giampietro V, Brammer MJ, Andrew C, Phillips ML (2004) Subcortical and ventral prefrontal cortical neural responses to facial expressions distinguish patients with bipolar disorder and major depression. Biol Psychiatry 55(6):578–587CrossRefPubMed Lawrence NS, Williams AM, Surguladze S, Giampietro V, Brammer MJ, Andrew C, Phillips ML (2004) Subcortical and ventral prefrontal cortical neural responses to facial expressions distinguish patients with bipolar disorder and major depression. Biol Psychiatry 55(6):578–587CrossRefPubMed
Zurück zum Zitat Lennox B, Jacob R, Calder A, Lupson V, Bullmore E (2004) Behavioural and neurocognitive responses to sad facial affect are attenuated in patients with mania. Psychol Med 34(5):795–802CrossRefPubMed Lennox B, Jacob R, Calder A, Lupson V, Bullmore E (2004) Behavioural and neurocognitive responses to sad facial affect are attenuated in patients with mania. Psychol Med 34(5):795–802CrossRefPubMed
Zurück zum Zitat Leppänen JM (2006) Emotional information processing in mood disorders: a review of behavioral and neuroimaging findings. Curr Opin Psychiatry 19(1):34–39CrossRefPubMed Leppänen JM (2006) Emotional information processing in mood disorders: a review of behavioral and neuroimaging findings. Curr Opin Psychiatry 19(1):34–39CrossRefPubMed
Zurück zum Zitat Lichter DG, Cummings JL (2001) Frontal-subcortical circuits in psychiatric and neurological disorders. Guilford Press, New York Lichter DG, Cummings JL (2001) Frontal-subcortical circuits in psychiatric and neurological disorders. Guilford Press, New York
Zurück zum Zitat Liu X, Hairston J, Schrier M, Fan J (2011) Common and distinct networks underlying reward valence and processing stages: a meta-analysis of functional neuroimaging studies. Neurosci Biobehav Rev 35(5):1219–1236CrossRefPubMed Liu X, Hairston J, Schrier M, Fan J (2011) Common and distinct networks underlying reward valence and processing stages: a meta-analysis of functional neuroimaging studies. Neurosci Biobehav Rev 35(5):1219–1236CrossRefPubMed
Zurück zum Zitat McNab F, Klingberg T (2008) Prefrontal cortex and basal ganglia control access to working memory. Nat Neurosci 11(1):103CrossRefPubMed McNab F, Klingberg T (2008) Prefrontal cortex and basal ganglia control access to working memory. Nat Neurosci 11(1):103CrossRefPubMed
Zurück zum Zitat Miguelez C, Morera-Herreras T, Torrecilla M, Ruiz-Ortega JA, Ugedo L (2014) Interaction between the 5-HT system and the basal ganglia: functional implication and therapeutic perspective in Parkinson’s disease. Front Neural Circuits 8:21CrossRefPubMedPubMedCentral Miguelez C, Morera-Herreras T, Torrecilla M, Ruiz-Ortega JA, Ugedo L (2014) Interaction between the 5-HT system and the basal ganglia: functional implication and therapeutic perspective in Parkinson’s disease. Front Neural Circuits 8:21CrossRefPubMedPubMedCentral
Zurück zum Zitat Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50(4):381CrossRefPubMed Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50(4):381CrossRefPubMed
Zurück zum Zitat Morita K, Morishima M, Sakai K, Kawaguchi Y (2012) Reinforcement learning: computing the temporal difference of values via distinct corticostriatal pathways. Trends Neurosci 35(8):457–467CrossRefPubMed Morita K, Morishima M, Sakai K, Kawaguchi Y (2012) Reinforcement learning: computing the temporal difference of values via distinct corticostriatal pathways. Trends Neurosci 35(8):457–467CrossRefPubMed
Zurück zum Zitat Moyer JT, Wolf JA, Finkel LH (2007) Effects of dopaminergic modulation on the integrative properties of the ventral striatal medium spiny neuron. J Neurophysiol 98(6):3731–3748CrossRefPubMed Moyer JT, Wolf JA, Finkel LH (2007) Effects of dopaminergic modulation on the integrative properties of the ventral striatal medium spiny neuron. J Neurophysiol 98(6):3731–3748CrossRefPubMed
Zurück zum Zitat Nadjar A, Brotchie JM, Guigoni C, Li Q, Zhou S-B, Wang G-J, Bezard E (2006) Phenotype of striatofugal medium spiny neurons in parkinsonian and dyskinetic nonhuman primates: a call for a reappraisal of the functional organization of the basal ganglia. J Neurosci 26(34):8653–8661CrossRefPubMedPubMedCentral Nadjar A, Brotchie JM, Guigoni C, Li Q, Zhou S-B, Wang G-J, Bezard E (2006) Phenotype of striatofugal medium spiny neurons in parkinsonian and dyskinetic nonhuman primates: a call for a reappraisal of the functional organization of the basal ganglia. J Neurosci 26(34):8653–8661CrossRefPubMedPubMedCentral
Zurück zum Zitat Nakamura K, Wong-Lin K (2014) Functions and computational principles of serotonergic and related systems at multiple scales. Front Integr Neurosci 8:23PubMedPubMedCentral Nakamura K, Wong-Lin K (2014) Functions and computational principles of serotonergic and related systems at multiple scales. Front Integr Neurosci 8:23PubMedPubMedCentral
Zurück zum Zitat Nakamura T, Kiyono K, Wendt H, Abry P, Yamamoto Y (2016) Multiscale analysis of intensive longitudinal biomedical signals and its clinical applications. Proc IEEE 104(2):242–261CrossRef Nakamura T, Kiyono K, Wendt H, Abry P, Yamamoto Y (2016) Multiscale analysis of intensive longitudinal biomedical signals and its clinical applications. Proc IEEE 104(2):242–261CrossRef
Zurück zum Zitat Nambu A, Tokuno H, Takada M (2002) Functional significance of the cortico–subthalamo–pallidal ‘hyperdirect’ pathway. Neurosci Res 43(2):111–117CrossRefPubMed Nambu A, Tokuno H, Takada M (2002) Functional significance of the cortico–subthalamo–pallidal ‘hyperdirect’ pathway. Neurosci Res 43(2):111–117CrossRefPubMed
Zurück zum Zitat Odgers CL, Mulvey EP, Skeem JL, Gardner W, Lidz CW, Schubert C (2009) Capturing the ebb and flow of psychiatric symptoms with dynamical systems models. Am J Psychiatry 166(5):575–582CrossRef Odgers CL, Mulvey EP, Skeem JL, Gardner W, Lidz CW, Schubert C (2009) Capturing the ebb and flow of psychiatric symptoms with dynamical systems models. Am J Psychiatry 166(5):575–582CrossRef
Zurück zum Zitat Phillips ML, Ladouceur CD, Drevets WC (2008) A neural model of voluntary and automatic emotion regulation: implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Mol Psychiatry 13(9):833–857CrossRef Phillips ML, Ladouceur CD, Drevets WC (2008) A neural model of voluntary and automatic emotion regulation: implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Mol Psychiatry 13(9):833–857CrossRef
Zurück zum Zitat Price LH, Charney DS, Delgado PL, Heninger GR (1990) Lithium and serotonin function: implications for the serotonin hypothesis of depression. Psychopharmacology 100(1):3–12CrossRefPubMed Price LH, Charney DS, Delgado PL, Heninger GR (1990) Lithium and serotonin function: implications for the serotonin hypothesis of depression. Psychopharmacology 100(1):3–12CrossRefPubMed
Zurück zum Zitat Redgrave P, Prescott TJ, Gurney K (1999) The basal ganglia: a vertebrate solution to the selection problem? Neuroscience 89(4):1009–1023CrossRefPubMed Redgrave P, Prescott TJ, Gurney K (1999) The basal ganglia: a vertebrate solution to the selection problem? Neuroscience 89(4):1009–1023CrossRefPubMed
Zurück zum Zitat Rush AJ, Bernstein IH, Trivedi MH, Carmody TJ, Wisniewski S, Mundt JC, Nierenberg AA (2006) An evaluation of the quick inventory of depressive symptomatology and the Hamilton rating scale for depression: a sequenced treatment alternatives to relieve depression trial report. Biol Psychiatry 59(6):493–501CrossRefPubMed Rush AJ, Bernstein IH, Trivedi MH, Carmody TJ, Wisniewski S, Mundt JC, Nierenberg AA (2006) An evaluation of the quick inventory of depressive symptomatology and the Hamilton rating scale for depression: a sequenced treatment alternatives to relieve depression trial report. Biol Psychiatry 59(6):493–501CrossRefPubMed
Zurück zum Zitat Sarvestani IK, Lindahl M, Hellgren-Kotaleski J, Ekeberg Ö (2011) The arbitration–extension hypothesis: a hierarchical interpretation of the functional organization of the basal ganglia. Front Syst Neurosci 5:13CrossRef Sarvestani IK, Lindahl M, Hellgren-Kotaleski J, Ekeberg Ö (2011) The arbitration–extension hypothesis: a hierarchical interpretation of the functional organization of the basal ganglia. Front Syst Neurosci 5:13CrossRef
Zurück zum Zitat Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275(5306):1593–1599CrossRefPubMed Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275(5306):1593–1599CrossRefPubMed
Zurück zum Zitat Servan-Schreiber D, Printz H, Cohen JD (1990) A network model of catecholamine effects: gain, signal-to-noise ratio, and behavior. Science 249(4971):892–895CrossRefPubMed Servan-Schreiber D, Printz H, Cohen JD (1990) A network model of catecholamine effects: gain, signal-to-noise ratio, and behavior. Science 249(4971):892–895CrossRefPubMed
Zurück zum Zitat Seymour B, Daw ND, Roiser JP, Dayan P, Dolan R (2012) Serotonin selectively modulates reward value in human decision-making. J Neurosci 32(17):5833–5842CrossRefPubMedPubMedCentral Seymour B, Daw ND, Roiser JP, Dayan P, Dolan R (2012) Serotonin selectively modulates reward value in human decision-making. J Neurosci 32(17):5833–5842CrossRefPubMedPubMedCentral
Zurück zum Zitat Silverstone T (1985) Dopamine in manic depressive illness: a pharmacological synthesis. J Affect Disord 8(3):225–231CrossRefPubMed Silverstone T (1985) Dopamine in manic depressive illness: a pharmacological synthesis. J Affect Disord 8(3):225–231CrossRefPubMed
Zurück zum Zitat Sun R (2009) Motivational representations within a computational cognitive architecture. Cogn Comput 1(1):91–103CrossRef Sun R (2009) Motivational representations within a computational cognitive architecture. Cogn Comput 1(1):91–103CrossRef
Zurück zum Zitat Sun R (2017) Anatomy of the mind: a quick overview. Cogn Comput 9(1):1–4CrossRef Sun R (2017) Anatomy of the mind: a quick overview. Cogn Comput 9(1):1–4CrossRef
Zurück zum Zitat Suppes T, Dennehy EB, Gibbons EW (2000) The longitudinal course of bipolar disorder. J Clin Psychiatry 61(suppl 9):23–30PubMed Suppes T, Dennehy EB, Gibbons EW (2000) The longitudinal course of bipolar disorder. J Clin Psychiatry 61(suppl 9):23–30PubMed
Zurück zum Zitat Surmeier DJ, Song WJ, Yan Z (1996) Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. J Neurosci 16(20):6579–6591CrossRefPubMedPubMedCentral Surmeier DJ, Song WJ, Yan Z (1996) Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. J Neurosci 16(20):6579–6591CrossRefPubMedPubMedCentral
Zurück zum Zitat Sutton RS, Barto AG (1998a) Reinforcement learning: an introduction. MIT Press, Cambridge Sutton RS, Barto AG (1998a) Reinforcement learning: an introduction. MIT Press, Cambridge
Zurück zum Zitat Sutton RS, Barto AG (1998b) Reinforcement learning: an introduction. Adaptive computations and machine learning. MIT Press, Bradford Sutton RS, Barto AG (1998b) Reinforcement learning: an introduction. Adaptive computations and machine learning. MIT Press, Bradford
Zurück zum Zitat Tanaka SC, Doya K, Okada G, Ueda K, Okamoto Y, Yamawaki S (2004) Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops. Nat Neurosci 7(8):887–893CrossRefPubMed Tanaka SC, Doya K, Okada G, Ueda K, Okamoto Y, Yamawaki S (2004) Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops. Nat Neurosci 7(8):887–893CrossRefPubMed
Zurück zum Zitat Tanaka SC, Samejima K, Okada G, Ueda K, Okamoto Y, Yamawaki S, Doya K (2006) Brain mechanism of reward prediction under predictable and unpredictable environmental dynamics. Neural Netw 19(8):1233–1241CrossRefPubMed Tanaka SC, Samejima K, Okada G, Ueda K, Okamoto Y, Yamawaki S, Doya K (2006) Brain mechanism of reward prediction under predictable and unpredictable environmental dynamics. Neural Netw 19(8):1233–1241CrossRefPubMed
Zurück zum Zitat Thakore JH, Keane VO, Dinan TG (1996) d-Fenfluramine-induced prolactin responses in mania: evidence for serotonergic subsensitivity. Am J Psychiatry 153(11):1460CrossRefPubMed Thakore JH, Keane VO, Dinan TG (1996) d-Fenfluramine-induced prolactin responses in mania: evidence for serotonergic subsensitivity. Am J Psychiatry 153(11):1460CrossRefPubMed
Zurück zum Zitat Thurley K, Senn W, Lüscher H-R (2008) Dopamine increases the gain of the input-output response of rat prefrontal pyramidal neurons. J Neurophysiol 99(6):2985–2997CrossRefPubMed Thurley K, Senn W, Lüscher H-R (2008) Dopamine increases the gain of the input-output response of rat prefrontal pyramidal neurons. J Neurophysiol 99(6):2985–2997CrossRefPubMed
Zurück zum Zitat Urošević S, Abramson LY, Harmon-Jones E, Alloy LB (2008) Dysregulation of the behavioral approach system (BAS) in bipolar spectrum disorders: review of theory and evidence. Clin Psychol Rev 28(7):1188–1205CrossRefPubMedPubMedCentral Urošević S, Abramson LY, Harmon-Jones E, Alloy LB (2008) Dysregulation of the behavioral approach system (BAS) in bipolar spectrum disorders: review of theory and evidence. Clin Psychol Rev 28(7):1188–1205CrossRefPubMedPubMedCentral
Zurück zum Zitat Wang W, Jiang Y, Cai E, Li B, Zhao Y, Zhu H, Gao Y (2019) L-menthol exhibits antidepressive-like effects mediated by the modification of 5-HTergic, GABAergic and DAergic systems. Cogn Neurodyn 13(2):191–200CrossRefPubMed Wang W, Jiang Y, Cai E, Li B, Zhao Y, Zhu H, Gao Y (2019) L-menthol exhibits antidepressive-like effects mediated by the modification of 5-HTergic, GABAergic and DAergic systems. Cogn Neurodyn 13(2):191–200CrossRefPubMed
Zurück zum Zitat Ward RP, Dorsa DM (1996) Colocalization of serotonin receptor subtypes 5-HT2A, 5-HT2C, and 5-HT6 with neuropeptides in rat striatum. J Comp Neurol 370(3):405–414CrossRefPubMed Ward RP, Dorsa DM (1996) Colocalization of serotonin receptor subtypes 5-HT2A, 5-HT2C, and 5-HT6 with neuropeptides in rat striatum. J Comp Neurol 370(3):405–414CrossRefPubMed
Zurück zum Zitat Weinberger M, Hutchison WD, Dostrovsky JO (2009) Pathological subthalamic nucleus oscillations in PD: can they be the cause of bradykinesia and akinesia? Exp Neurol 219(1):58–61CrossRefPubMed Weinberger M, Hutchison WD, Dostrovsky JO (2009) Pathological subthalamic nucleus oscillations in PD: can they be the cause of bradykinesia and akinesia? Exp Neurol 219(1):58–61CrossRefPubMed
Zurück zum Zitat Willshaw D, Li Z (2002) Subthalamic–pallidal interactions are critical in determining normal and abnormal functioning of the basal ganglia. Proc R Soc Lond B 269(1491):545–551CrossRef Willshaw D, Li Z (2002) Subthalamic–pallidal interactions are critical in determining normal and abnormal functioning of the basal ganglia. Proc R Soc Lond B 269(1491):545–551CrossRef
Zurück zum Zitat Wood K (1985) The neurochemistry of mania: the effect of lithium on catecholamines, indoleamines and calcium mobilization. J Affect Disord 8(3):215–223CrossRefPubMed Wood K (1985) The neurochemistry of mania: the effect of lithium on catecholamines, indoleamines and calcium mobilization. J Affect Disord 8(3):215–223CrossRefPubMed
Zurück zum Zitat Xie T, Li Q, Luo X, Tian L, Wang Z, Tan S et al (2019) Plasma total antioxidant status and cognitive impairments in first-episode drug-naïve patients with schizophrenia. Cogn Neurodyn 13(4):357–365CrossRef Xie T, Li Q, Luo X, Tian L, Wang Z, Tan S et al (2019) Plasma total antioxidant status and cognitive impairments in first-episode drug-naïve patients with schizophrenia. Cogn Neurodyn 13(4):357–365CrossRef
Zurück zum Zitat Yatham LN (1996) Prolactin and cortisol responses to fenfluramine challenge in mania. Biol Psychiatry 39(4):285–288CrossRefPubMed Yatham LN (1996) Prolactin and cortisol responses to fenfluramine challenge in mania. Biol Psychiatry 39(4):285–288CrossRefPubMed
Zurück zum Zitat Yatham LN, Zis AP, Lam RW, Tam E, Shiah I-S (1997) Sumatriptan-induced growth hormone release in patients with major depression, mania, and normal controls. Neuropsychopharmacology 17(4):258CrossRefPubMed Yatham LN, Zis AP, Lam RW, Tam E, Shiah I-S (1997) Sumatriptan-induced growth hormone release in patients with major depression, mania, and normal controls. Neuropsychopharmacology 17(4):258CrossRefPubMed
Metadaten
Titel
Bipolar oscillations between positive and negative mood states in a computational model of Basal Ganglia
verfasst von
Pragathi Priyadharsini Balasubramani
V. Srinivasa Chakravarthy
Publikationsdatum
20.11.2019
Verlag
Springer Netherlands
Erschienen in
Cognitive Neurodynamics / Ausgabe 2/2020
Print ISSN: 1871-4080
Elektronische ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-019-09564-7

Weitere Artikel der Ausgabe 2/2020

Cognitive Neurodynamics 2/2020 Zur Ausgabe

Neuer Inhalt