Skip to main content
Erschienen in: Colloid and Polymer Science 2/2017

20.01.2017 | Original Contribution

Blowing agent free generation of nanoporous poly(methylmethacrylate) materials

verfasst von: Lena Grassberger, Karin Koch, Roland Oberhoffer, Alexander Müller, Helge F.M. Klemmer, Reinhard Strey

Erschienen in: Colloid and Polymer Science | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this article, we demonstrate a newly developed technique for generation of nanoporous polymer materials. Generally, the production processes of polymeric nanostructured materials require high pressure due to the handling of gaseous blowing agents. Our new approach allows to generate nanoporous polymer materials without blowing agent at ambient conditions. Starting from a crosslinked polymer gel swollen with a mixture of at least two specially selected solvents leads to a nanoporous material by sequential evaporation. We varied the pore size of the generated structures between 80 and 800 nm so that the effect of the pore size on the gaseous thermal conductivity could be analyzed. Decreasing the pore size of the materials, the gaseous thermal conductivity could be reduced considerably. Thus, we developed a blowing agent free technique which allows the generation of nanoporous polymer materials—Knudsen materials—at an ambient pressure.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Knudsen M (1909) Eine Revision der Gleichgewichtsbedingung der Gase - Thermische Molekularströmung. Ann Phys 336:205–229CrossRef Knudsen M (1909) Eine Revision der Gleichgewichtsbedingung der Gase - Thermische Molekularströmung. Ann Phys 336:205–229CrossRef
3.
Zurück zum Zitat Kennard EH (1938) Kinetic theory of gases with an introduction to statistical mechanics. Mc Graw Hill, New York Kennard EH (1938) Kinetic theory of gases with an introduction to statistical mechanics. Mc Graw Hill, New York
6.
Zurück zum Zitat Jelle BP, Gustavsen A, Baetens R (2012) Innovative high performance thermal building insulation materials - Todays state-of-the-art and beyond tomorrow. Proceedings of the Building Enclosure Science & Technology 2 Jelle BP, Gustavsen A, Baetens R (2012) Innovative high performance thermal building insulation materials - Todays state-of-the-art and beyond tomorrow. Proceedings of the Building Enclosure Science & Technology 2
9.
Zurück zum Zitat Berge A, Johansson P (2012) Literature review of high performance thermal insulation. Building Physics 2:40 Berge A, Johansson P (2012) Literature review of high performance thermal insulation. Building Physics 2:40
10.
Zurück zum Zitat Kistler S (1931) Coherent expanded aerogels and jellies. Nature 127:741CrossRef Kistler S (1931) Coherent expanded aerogels and jellies. Nature 127:741CrossRef
11.
18.
Zurück zum Zitat Mu D, Liu ZS, Huang C, Djilali N (2008) Determination of the effective diffusion coefficient in porous media including Knudsen effects. Microfluid Nanofluid 4:257–260CrossRef Mu D, Liu ZS, Huang C, Djilali N (2008) Determination of the effective diffusion coefficient in porous media including Knudsen effects. Microfluid Nanofluid 4:257–260CrossRef
21.
Zurück zum Zitat Lee OJ, Lee KH, Yim TJ, Yoo KP (2002) Determination of mesopore size of aerogels from thermal conductivity measurements. J Non-Cryst Solids 298:287–292CrossRef Lee OJ, Lee KH, Yim TJ, Yoo KP (2002) Determination of mesopore size of aerogels from thermal conductivity measurements. J Non-Cryst Solids 298:287–292CrossRef
23.
Zurück zum Zitat Kaiser W (2007) Kunststoffe für Ingenieure. Hanser Verlag, ISBN:3446430474 Kaiser W (2007) Kunststoffe für Ingenieure. Hanser Verlag, ISBN:3446430474
24.
Zurück zum Zitat Rossmy G (1968) Foaming process for polyurethane in the presence of pore regulators Rossmy G (1968) Foaming process for polyurethane in the presence of pore regulators
25.
Zurück zum Zitat Rossmy GR, Kollmeier HJ, Lidy W, et al. (1977) Cell-opening in one-shot flexible polyether based polyurethane foams. The Role of Silicone Surfactant and its Foundation in the Chemistry of Foam Formation. Journal of Cellular Plastics 13:26–35. doi:10.1177/0021955X7701300102 CrossRef Rossmy GR, Kollmeier HJ, Lidy W, et al. (1977) Cell-opening in one-shot flexible polyether based polyurethane foams. The Role of Silicone Surfactant and its Foundation in the Chemistry of Foam Formation. Journal of Cellular Plastics 13:26–35. doi:10.​1177/​0021955X77013001​02 CrossRef
26.
Zurück zum Zitat Saechtling H (1995) Kunststoff Taschenbuch. Carl Hanser Verlag, ISBN:978–3446403529 Saechtling H (1995) Kunststoff Taschenbuch. Carl Hanser Verlag, ISBN:978–3446403529
27.
Zurück zum Zitat Uhlig K (2001) Polyurethan Taschenbuch. Carl Hanser Verlag, ISBN: 3–446–40307-8 Uhlig K (2001) Polyurethan Taschenbuch. Carl Hanser Verlag, ISBN: 3–446–40307-8
28.
Zurück zum Zitat Park CB, Behravesh AH, Venter RD (1998) Low density microcellular foam processing in extrusion using CO2. Polym Eng Sci 38:1812–1823CrossRef Park CB, Behravesh AH, Venter RD (1998) Low density microcellular foam processing in extrusion using CO2. Polym Eng Sci 38:1812–1823CrossRef
29.
Zurück zum Zitat Baldwin DF (1996) An extrusion system for the processing of microcellular polymer sheets: shaping and cell growth control. Polym Eng Sci 36:1425–1435. doi:10.1002/pen.10537 CrossRef Baldwin DF (1996) An extrusion system for the processing of microcellular polymer sheets: shaping and cell growth control. Polym Eng Sci 36:1425–1435. doi:10.​1002/​pen.​10537 CrossRef
30.
Zurück zum Zitat Baldwin DF, George T, Woodru W, et al. (1998) Microcellular sheet extrusion system process design models for shaping and cell growth control. Polym Eng Sci 38:674–688CrossRef Baldwin DF, George T, Woodru W, et al. (1998) Microcellular sheet extrusion system process design models for shaping and cell growth control. Polym Eng Sci 38:674–688CrossRef
31.
Zurück zum Zitat Kiran E (2010) Foaming strategies for bioabsorbable polymers in supercritical fluid mixtures. Part II. Foaming of poly(caprolactone-co-lactide) in carbon dioxide and carbon dioxide + acetone fluid mixtures and formation of tubular foams via solution extrusion. J Supercrit Fluids 54:308–319. doi:10.1016/j.supflu.2010.05.004 CrossRef Kiran E (2010) Foaming strategies for bioabsorbable polymers in supercritical fluid mixtures. Part II. Foaming of poly(caprolactone-co-lactide) in carbon dioxide and carbon dioxide + acetone fluid mixtures and formation of tubular foams via solution extrusion. J Supercrit Fluids 54:308–319. doi:10.​1016/​j.​supflu.​2010.​05.​004 CrossRef
32.
Zurück zum Zitat Kiran E (2010) Foaming strategies for bioabsorbable polymers in supercritical fluid mixtures. Part I. Miscibility and foaming of poly(L-lactic acid) in carbon dioxide + acetone binary fluid mixtures. J Supercrit Fluids 54:296–307CrossRef Kiran E (2010) Foaming strategies for bioabsorbable polymers in supercritical fluid mixtures. Part I. Miscibility and foaming of poly(L-lactic acid) in carbon dioxide + acetone binary fluid mixtures. J Supercrit Fluids 54:296–307CrossRef
34.
Zurück zum Zitat Handa YP, Zhang Z (2000) A new technique for measuring retrograde Vitrification in polymer–gas systems and for making Ultramicrocellular. J Polym Sci B Polym Phys 38:716–725CrossRef Handa YP, Zhang Z (2000) A new technique for measuring retrograde Vitrification in polymer–gas systems and for making Ultramicrocellular. J Polym Sci B Polym Phys 38:716–725CrossRef
35.
Zurück zum Zitat Colton JS, Suh NP (1987) Nucleation of microcellular foam: theory and practice. Polym Eng Sci 27:500–503CrossRef Colton JS, Suh NP (1987) Nucleation of microcellular foam: theory and practice. Polym Eng Sci 27:500–503CrossRef
37.
Zurück zum Zitat Goel SK, Beckman EJ (1994) Generation of microcellular polymeric foams using supercritical carbon dioxide. II: Cell growth and skin formation Polymer Engineering & Science 34:1148–1156. doi:10.1002/pen.760341408 Goel SK, Beckman EJ (1994) Generation of microcellular polymeric foams using supercritical carbon dioxide. II: Cell growth and skin formation Polymer Engineering & Science 34:1148–1156. doi:10.​1002/​pen.​760341408
38.
Zurück zum Zitat Satish K, Eric J, Goel SK, Beckman EJ (1994) Generation of microcellular polymeric foams using supercritical carbon dioxid. II: cell growth and skin formation. Polym Eng Sci 34:1148–1156CrossRef Satish K, Eric J, Goel SK, Beckman EJ (1994) Generation of microcellular polymeric foams using supercritical carbon dioxid. II: cell growth and skin formation. Polym Eng Sci 34:1148–1156CrossRef
39.
Zurück zum Zitat Martini-Vvedensky JE, Suh NP, Waldman FA (1982) Microcellular closed cell foams and their method of manufacture Martini-Vvedensky JE, Suh NP, Waldman FA (1982) Microcellular closed cell foams and their method of manufacture
40.
Zurück zum Zitat Krause B (2001) Polymer nanofoams. PrintPartners Ipskamp B.V., ISBN:9036516471, Twente Krause B (2001) Polymer nanofoams. PrintPartners Ipskamp B.V., ISBN:9036516471, Twente
41.
Zurück zum Zitat Krause B, Sijbesma HJP, Mu P (2001) Bicontinuous nanoporous polymers by carbon dioxide foaming. Macromolecules 34:8792–8801CrossRef Krause B, Sijbesma HJP, Mu P (2001) Bicontinuous nanoporous polymers by carbon dioxide foaming. Macromolecules 34:8792–8801CrossRef
42.
Zurück zum Zitat Krause B, Mettinkhof R, Van Der Vegt NFA, Wessling M (2001) Microcellular foaming of amorphous high-Tg polymers using carbon dioxide. Macromolecules 34:874–884CrossRef Krause B, Mettinkhof R, Van Der Vegt NFA, Wessling M (2001) Microcellular foaming of amorphous high-Tg polymers using carbon dioxide. Macromolecules 34:874–884CrossRef
43.
Zurück zum Zitat Krause B, Diekmann K, van der Vegt NF a, Wessling M (2002) Open nanoporous morphologies from polymeric blends by carbon dioxide foaming. Macromolecules 35:1738–1745. doi:10.1021/ma011672s CrossRef Krause B, Diekmann K, van der Vegt NF a, Wessling M (2002) Open nanoporous morphologies from polymeric blends by carbon dioxide foaming. Macromolecules 35:1738–1745. doi:10.​1021/​ma011672s CrossRef
44.
Zurück zum Zitat Siripurapu S, Coughlan J a, Spontak RJ, Khan S a (2004) Surface-constrained foaming of polymer thin films with supercritical carbon dioxide. Macromolecules 37:9872–9879. doi:10.1021/ma0484983 CrossRef Siripurapu S, Coughlan J a, Spontak RJ, Khan S a (2004) Surface-constrained foaming of polymer thin films with supercritical carbon dioxide. Macromolecules 37:9872–9879. doi:10.​1021/​ma0484983 CrossRef
45.
Zurück zum Zitat Zhang H, Cooper AI (2002) Synthesis of Monodisperse emulsion-Templated polymer beads by oil-in-water-in-oil (O/W/O) sedimentation polymerization. Chem Mater 14:4017–4020CrossRef Zhang H, Cooper AI (2002) Synthesis of Monodisperse emulsion-Templated polymer beads by oil-in-water-in-oil (O/W/O) sedimentation polymerization. Chem Mater 14:4017–4020CrossRef
46.
Zurück zum Zitat Butler R, Hopkinson I, Cooper I (2003) Synthesis of porous emulsion-templated polymers using high internal phase CO2-in-water emulsions. Journal of the American Chemical Society 14473–14481 Butler R, Hopkinson I, Cooper I (2003) Synthesis of porous emulsion-templated polymers using high internal phase CO2-in-water emulsions. Journal of the American Chemical Society 14473–14481
47.
Zurück zum Zitat Butler R, Davies CM, Cooper I (2001) Emulsion Templating using high internal phase supercritical fluid emulsions. Adv Mater 13:1459–1463CrossRef Butler R, Davies CM, Cooper I (2001) Emulsion Templating using high internal phase supercritical fluid emulsions. Adv Mater 13:1459–1463CrossRef
49.
Zurück zum Zitat Strey R, Sottmann T, Schwan M (2008) Aufgeschäumtes Material und Herstellungsverfahren für das aufgeschäumte Material. doi: No. DE10260815B4 Strey R, Sottmann T, Schwan M (2008) Aufgeschäumtes Material und Herstellungsverfahren für das aufgeschäumte Material. doi: No. DE10260815B4
50.
Zurück zum Zitat Schwan M, Kramer L, Sottmann T, Strey R (2010) Phase behaviour of propane- and SCCO2-microemulsions and their prominent role for the recently proposed foaming procedure POSME (Principle of Supercritical Microemulsion Expansion). Phys Chem Chem Phys 12:6247–6252CrossRef Schwan M, Kramer L, Sottmann T, Strey R (2010) Phase behaviour of propane- and SCCO2-microemulsions and their prominent role for the recently proposed foaming procedure POSME (Principle of Supercritical Microemulsion Expansion). Phys Chem Chem Phys 12:6247–6252CrossRef
51.
Zurück zum Zitat Strey R, Müller A (2010) Erzeugung nanodisperser Einschlüsse in einer hochviskosen Matrix. DE102010053064A1 Strey R, Müller A (2010) Erzeugung nanodisperser Einschlüsse in einer hochviskosen Matrix. DE102010053064A1
52.
Zurück zum Zitat Müller A (2013) Preperation of polymer nano-foams: templates, challenges, and kinetics. (PhD-Thesis, University of Cologne), Cuvillier Verlag, ISBN:978–3–95404-566-2, Cologne Müller A (2013) Preperation of polymer nano-foams: templates, challenges, and kinetics. (PhD-Thesis, University of Cologne), Cuvillier Verlag, ISBN:978–3–95404-566-2, Cologne
53.
Zurück zum Zitat Strey R, Oberhoffer R, Müller A (2015) Herstellung von porösen Materialien durch Expansion von Polymergelen. DE102013223391A1 Strey R, Oberhoffer R, Müller A (2015) Herstellung von porösen Materialien durch Expansion von Polymergelen. DE102013223391A1
54.
Zurück zum Zitat Oberhoffer R (2015) Nachhaltige Erzeugung von mikro- und nanoporösen Materialien mit nahekritischem CO2. (PhD-Thesis, University of Cologne), Cuvillier Verlag, ISBN:978–3–7369-9044-9 Oberhoffer R (2015) Nachhaltige Erzeugung von mikro- und nanoporösen Materialien mit nahekritischem CO2. (PhD-Thesis, University of Cologne), Cuvillier Verlag, ISBN:978–3–7369-9044-9
55.
Zurück zum Zitat Daoud M, Bouchaud E, Jannink G (1986) Swelling of polymer gels. Macromolecules 19:1955–1960CrossRef Daoud M, Bouchaud E, Jannink G (1986) Swelling of polymer gels. Macromolecules 19:1955–1960CrossRef
57.
Zurück zum Zitat Flory P, Rehner J (1943) Statistical machanics of cross-linked polymer networks. II. Swelling. J Chem Phys 11:521–526CrossRef Flory P, Rehner J (1943) Statistical machanics of cross-linked polymer networks. II. Swelling. J Chem Phys 11:521–526CrossRef
58.
Zurück zum Zitat Tipler PA, Mosca G (2015) Physik für Wissenschaftler und Ingenieure, 7. Edition. Wagner, J., Springer, ISBN:978–3–642-54165-0 Tipler PA, Mosca G (2015) Physik für Wissenschaftler und Ingenieure, 7. Edition. Wagner, J., Springer, ISBN:978–3–642-54165-0
Metadaten
Titel
Blowing agent free generation of nanoporous poly(methylmethacrylate) materials
verfasst von
Lena Grassberger
Karin Koch
Roland Oberhoffer
Alexander Müller
Helge F.M. Klemmer
Reinhard Strey
Publikationsdatum
20.01.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Colloid and Polymer Science / Ausgabe 2/2017
Print ISSN: 0303-402X
Elektronische ISSN: 1435-1536
DOI
https://doi.org/10.1007/s00396-017-4012-1

Weitere Artikel der Ausgabe 2/2017

Colloid and Polymer Science 2/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.