Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 3/2022

18.10.2021

Characterization of Friction Stir-Welded Polylactic Acid/Aluminum Composite Primed through Fused Filament Fabrication

verfasst von: Ranvijay Kumar, Nishant Ranjan, Vinay Kumar, Raman Kumar, Jasgurpreet Singh Chohan, Aniket Yadav, Piyush, Shubham Sharma, Chander Prakash, Sunpreet Singh, Changhe Li

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

There are many possible reasons for low weld strength in FSW of thermoplastic; low thermal conductivity, high energy losses in friction stir welding (FSW), material spill-out, involvement of high mechanical forces, etc. To counter strike the above-mentioned issues which weaken the joint's strengths, two strategies have been approached. The first approach is based upon the preparation of aluminum (Al) layers-reinforced Polylactic acid (PLA)/Al composite material which must have high thermal conductivity and crystallinity for improved heat generation in FSW. In the second approach, the FSW has been performed using a semi-consumable pin of similar materials which can compensate for the materials loss and void formation during FSW. Alternating layer composite of (PLA)/Al was manufactured by modified fused filament fabrication (FFF) 3D printing process then welded by FSW process in next steps. In this study, the FSW process was performed by using a semi-consumable pin profile of PLA with varying tool rotation speed (TRS) (800, 1100, and 1400rpm), depth of semi-consumable pin (SPD) (2, 3 and 4 mm), and transverse speed (TVS) (20, 30 and 40mm/min). FSW joints were subjected to mechanical (tensile strength, percentage elongation, and modulus of toughness), morphological (fracture by scanning electron microscopy and surface profiling), structural (Fourier-transform infrared spectroscopy, x-ray diffraction) for optimizing the FSW process parameters. Analytic hierarchy process and genetic algorithm are implemented to acquire a single set of parameters which would result in the best value of tensile properties. The suggested levels are 1400 rpm, 2 mm, and 31.79 mm/min. of TRS, SPD, and TVS, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat F. Lambiase, D. Hamed Aghajani and S. Abdolreza, Friction Stir Welding and Friction Spot Stir Welding Processes of Polymers—State of the Art, Materials, 2020, 13(10), p 2291.CrossRef F. Lambiase, D. Hamed Aghajani and S. Abdolreza, Friction Stir Welding and Friction Spot Stir Welding Processes of Polymers—State of the Art, Materials, 2020, 13(10), p 2291.CrossRef
2.
Zurück zum Zitat D. Hamed Aghajani and A. Simchi, Experimental and Thermomechanical Analysis of the Effect of Tool Pin Profile on the Friction Stir Welding of Poly (Methyl Methacrylate) Sheets, J. Manuf. Process, 2018, 34, p 412–423.CrossRef D. Hamed Aghajani and A. Simchi, Experimental and Thermomechanical Analysis of the Effect of Tool Pin Profile on the Friction Stir Welding of Poly (Methyl Methacrylate) Sheets, J. Manuf. Process, 2018, 34, p 412–423.CrossRef
3.
Zurück zum Zitat D.H. Aghajani, F. Khodabakhshi and A. Simchi, Evaluation of a Polymer-Steel Laminated Sheet Composite Structure Produced by Friction Stir Additive Manufacturing (FSAM) Technology, Polym. Test., 2020, 90, p 106690.CrossRef D.H. Aghajani, F. Khodabakhshi and A. Simchi, Evaluation of a Polymer-Steel Laminated Sheet Composite Structure Produced by Friction Stir Additive Manufacturing (FSAM) Technology, Polym. Test., 2020, 90, p 106690.CrossRef
4.
Zurück zum Zitat D.H. Aghajani and A. Simchi, Experimental and Thermomechanical Analysis of Friction Stir Welding of Poly (Methyl Methacrylate) Sheets, Sci. Technol. Weld. Join., 2018, 23(3), p 209–218.CrossRef D.H. Aghajani and A. Simchi, Experimental and Thermomechanical Analysis of Friction Stir Welding of Poly (Methyl Methacrylate) Sheets, Sci. Technol. Weld. Join., 2018, 23(3), p 209–218.CrossRef
5.
Zurück zum Zitat E. Majid and D.H. Aghajani, Experimental and Thermomechanical Study on FSW of PMMA Polymer T-Joint, Int. J. Adv. Manuf. Technol., 2018, 97(1–4), p 1445–1456. E. Majid and D.H. Aghajani, Experimental and Thermomechanical Study on FSW of PMMA Polymer T-Joint, Int. J. Adv. Manuf. Technol., 2018, 97(1–4), p 1445–1456.
6.
Zurück zum Zitat D.H. Aghajani, A. Simchi and F. Lambiase, Friction Stir Welding of Polycarbonate Lap Joints: Relationship Between Processing Parameters and Mechanical Properties, Polym. Test., 2019, 79, p 105999.CrossRef D.H. Aghajani, A. Simchi and F. Lambiase, Friction Stir Welding of Polycarbonate Lap Joints: Relationship Between Processing Parameters and Mechanical Properties, Polym. Test., 2019, 79, p 105999.CrossRef
7.
Zurück zum Zitat D.H. Aghajani, A. Eyvazian and A. Simchi, Modeling and Experimental Validation of Material Flow During FSW of Polycarbonate, Mater. Today Commun., 2020, 22, p 100796.CrossRef D.H. Aghajani, A. Eyvazian and A. Simchi, Modeling and Experimental Validation of Material Flow During FSW of Polycarbonate, Mater. Today Commun., 2020, 22, p 100796.CrossRef
8.
Zurück zum Zitat E. Arameh, A.M. Hamouda, D.H. Aghajani and M. Elyasi, Study on the Effects of Tool Tile Angle, Offset and Plunge Depth on Friction Stir Welding of Poly (Methyl Methacrylate) T-Joint, Proc. Instit. Mech. Eng., Part B: J. Eng. Manuf., 2020, 234(4), p 773–787.CrossRef E. Arameh, A.M. Hamouda, D.H. Aghajani and M. Elyasi, Study on the Effects of Tool Tile Angle, Offset and Plunge Depth on Friction Stir Welding of Poly (Methyl Methacrylate) T-Joint, Proc. Instit. Mech. Eng., Part B: J. Eng. Manuf., 2020, 234(4), p 773–787.CrossRef
9.
Zurück zum Zitat D.H. Aghajani, E. Garcia and M. Elyasi, Underwater Friction Stir Welding of PC: Experimental Study and Thermo-Mechanical Modelling, J Manuf. Process., 2021, 65, p 161–173.CrossRef D.H. Aghajani, E. Garcia and M. Elyasi, Underwater Friction Stir Welding of PC: Experimental Study and Thermo-Mechanical Modelling, J Manuf. Process., 2021, 65, p 161–173.CrossRef
10.
Zurück zum Zitat D.H. Aghajani and A. Simchi, Processing and Characterizations of Polycarbonate/Alumina Nanocomposites by Additive Powder Fed Friction Stir Processing, Thin-Walled Structures, 2020, 157, p 107086.CrossRef D.H. Aghajani and A. Simchi, Processing and Characterizations of Polycarbonate/Alumina Nanocomposites by Additive Powder Fed Friction Stir Processing, Thin-Walled Structures, 2020, 157, p 107086.CrossRef
11.
Zurück zum Zitat D.H. Aghajani and A. Simchi, Effects of Alumina Nanoparticles on the Microstructure, Strength and Wear Resistance of Poly (Methyl Methacrylate)-Based Nanocomposites Prepared by Friction Stir Processing, J. Mech. Behav. Biomed. Mater., 2018, 79, p 246–253.CrossRef D.H. Aghajani and A. Simchi, Effects of Alumina Nanoparticles on the Microstructure, Strength and Wear Resistance of Poly (Methyl Methacrylate)-Based Nanocomposites Prepared by Friction Stir Processing, J. Mech. Behav. Biomed. Mater., 2018, 79, p 246–253.CrossRef
12.
Zurück zum Zitat S.H. Masood and W.Q. Song, Development of New Metal/Polymer Materials for Rapid Tooling using Fused Deposition modelling, Mater. Des., 2004, 25(7), p 587–594.CrossRef S.H. Masood and W.Q. Song, Development of New Metal/Polymer Materials for Rapid Tooling using Fused Deposition modelling, Mater. Des., 2004, 25(7), p 587–594.CrossRef
13.
Zurück zum Zitat S.S. Sharifabad, H.A. Derazkola, M. Esfandyar, M. Elyasi and F. Khodabakhshi, Mechanical Properties of HA@ Ag/PLA Nanocomposite Structures Prepared by Extrusion-Based Additive Manufacturing, J. Mech. Behav. Biomed. Mater., 2021, 1(118), p 104455.CrossRef S.S. Sharifabad, H.A. Derazkola, M. Esfandyar, M. Elyasi and F. Khodabakhshi, Mechanical Properties of HA@ Ag/PLA Nanocomposite Structures Prepared by Extrusion-Based Additive Manufacturing, J. Mech. Behav. Biomed. Mater., 2021, 1(118), p 104455.CrossRef
14.
Zurück zum Zitat R. Kumar, R. Singh, I.P.S. Ahuja and M.S.J. Hashmi, Friction-Stir-Spot Welding of 3D printed ABS and PA6 Composites: Flexural, Thermal and Morphological Investigations, Adv. Mater. Process. Technol., 2020, 35, p 1–8. R. Kumar, R. Singh, I.P.S. Ahuja and M.S.J. Hashmi, Friction-Stir-Spot Welding of 3D printed ABS and PA6 Composites: Flexural, Thermal and Morphological Investigations, Adv. Mater. Process. Technol., 2020, 35, p 1–8.
15.
Zurück zum Zitat J. Singh, R. Singh, R. Kumar, M.M. Rahman and S. Ramakrishna, PLA-PEKK-HAp-CS Composite Scaffold Joining With Friction Stir Spot Welding, J. Thermoplastic Compos. Mater., 2019, 34, p 74–764. J. Singh, R. Singh, R. Kumar, M.M. Rahman and S. Ramakrishna, PLA-PEKK-HAp-CS Composite Scaffold Joining With Friction Stir Spot Welding, J. Thermoplastic Compos. Mater., 2019, 34, p 74–764.
16.
Zurück zum Zitat R.K. Nath, P. Maji and J.D. Barma, Joining of Advance Engineering Thermoplastic Using Novel Self-Heated FSW Tool, JOM., 2021, 28, p 1–2. R.K. Nath, P. Maji and J.D. Barma, Joining of Advance Engineering Thermoplastic Using Novel Self-Heated FSW Tool, JOM., 2021, 28, p 1–2.
17.
Zurück zum Zitat S. Singh, C. Prakash and M.K. Gupta, On Friction-Stir Welding of 3D Printed Thermoplastics. InMaterials Forming, Machining and Post Processing, Springer, Cham, 2020. S. Singh, C. Prakash and M.K. Gupta, On Friction-Stir Welding of 3D Printed Thermoplastics. InMaterials Forming, Machining and Post Processing, Springer, Cham, 2020.
18.
Zurück zum Zitat R. Singh, R. Kumar and I.P. Ahuja, Friction Welding for Functional Prototypes of PA6 and ABS with Al Powder Reinforcement, Proc. Natl. Acad. Sci., India, Sect. A, 2020, 7, p 1–9. R. Singh, R. Kumar and I.P. Ahuja, Friction Welding for Functional Prototypes of PA6 and ABS with Al Powder Reinforcement, Proc. Natl. Acad. Sci., India, Sect. A, 2020, 7, p 1–9.
19.
Zurück zum Zitat R. Kumar, R. Singh, I.P. Ahuja and A. Fortunato, Thermo-MECHANICAL Investigations for the Joining of Thermoplastic Composite Structures via Friction Stir Spot Welding, Compos. Struct., 2020, 253, p 112772.CrossRef R. Kumar, R. Singh, I.P. Ahuja and A. Fortunato, Thermo-MECHANICAL Investigations for the Joining of Thermoplastic Composite Structures via Friction Stir Spot Welding, Compos. Struct., 2020, 253, p 112772.CrossRef
20.
Zurück zum Zitat R. Kumar, R. Singh, I.P. Ahuja and M.S. Hashmi, Friction-Stir-Spot Welding of 3D Printed ABS and PA6 Composites: Flexural, Thermal and Morphological Investigations, Adv. Mater. Process. Technol., 2020, 21, p 1–8. R. Kumar, R. Singh, I.P. Ahuja and M.S. Hashmi, Friction-Stir-Spot Welding of 3D Printed ABS and PA6 Composites: Flexural, Thermal and Morphological Investigations, Adv. Mater. Process. Technol., 2020, 21, p 1–8.
21.
Zurück zum Zitat F. Lambiase, V. Grossi and A. Paoletti, Effect of Tilt Angle in FSW of Polycarbonate Sheets in Butt Configuration, Int. J. Adv. Manuf. Technol., 2020, 107(1), p 489–501.CrossRef F. Lambiase, V. Grossi and A. Paoletti, Effect of Tilt Angle in FSW of Polycarbonate Sheets in Butt Configuration, Int. J. Adv. Manuf. Technol., 2020, 107(1), p 489–501.CrossRef
22.
Zurück zum Zitat A.K. Sharma, M.R. Choudhury and K. Debnath, Experimental Investigation of Friction Stir Welding of PLA, Weld. World., 2020, 19, p 1–1. A.K. Sharma, M.R. Choudhury and K. Debnath, Experimental Investigation of Friction Stir Welding of PLA, Weld. World., 2020, 19, p 1–1.
23.
Zurück zum Zitat H. Koçak, Surface Modification of a Model Part Produced with 3D Printing from PLA Material by Means of Composite Coating, J. Mater. Eng. Perform., 2021, 31, p 1–8. H. Koçak, Surface Modification of a Model Part Produced with 3D Printing from PLA Material by Means of Composite Coating, J. Mater. Eng. Perform., 2021, 31, p 1–8.
24.
Zurück zum Zitat C. Prakash, G. Singh, S. Singh, W.L. Linda, H.Y. Zheng, S. Ramakrishna and R. Narayan, Mechanical Reliability and In Vitro Bioactivity of 3D-Printed Porous Polylactic Acid-Hydroxyapatite Scaffold, J. Mater. Eng. Perform., 2021, 4, p 1–1. C. Prakash, G. Singh, S. Singh, W.L. Linda, H.Y. Zheng, S. Ramakrishna and R. Narayan, Mechanical Reliability and In Vitro Bioactivity of 3D-Printed Porous Polylactic Acid-Hydroxyapatite Scaffold, J. Mater. Eng. Perform., 2021, 4, p 1–1.
25.
Zurück zum Zitat U.K. Komal, B.K. Kasaudhan and I. Singh, Comparative Performance Analysis of Polylactic Acid Parts Fabricated by 3D Printing and Injection Molding, J. Mater. Eng. Perform., 2021, 20, p 1–7. U.K. Komal, B.K. Kasaudhan and I. Singh, Comparative Performance Analysis of Polylactic Acid Parts Fabricated by 3D Printing and Injection Molding, J. Mater. Eng. Perform., 2021, 20, p 1–7.
26.
Zurück zum Zitat P. Kumar, D.K. Rajak, M. Abubakar, S.G. Ali and M. Hussain, 3D Printing Technology for Biomedical Practice: A Review, J. Mater. Eng. Perform., 2021, 26, p 1–4. P. Kumar, D.K. Rajak, M. Abubakar, S.G. Ali and M. Hussain, 3D Printing Technology for Biomedical Practice: A Review, J. Mater. Eng. Perform., 2021, 26, p 1–4.
27.
Zurück zum Zitat R. Kumar, J.S. Chohan, R. Kumar, A. Yadav and N. Singh, Hybrid FUSED Filament Fabrication for Manufacturing of Al Microfilm REINFORCED PLA Structures, J. Braz. Soc. Mech. Sci. Eng., 2020, 42(9), p 1–13.CrossRef R. Kumar, J.S. Chohan, R. Kumar, A. Yadav and N. Singh, Hybrid FUSED Filament Fabrication for Manufacturing of Al Microfilm REINFORCED PLA Structures, J. Braz. Soc. Mech. Sci. Eng., 2020, 42(9), p 1–13.CrossRef
28.
Zurück zum Zitat Kumar R, Chohan JS, Kumar R, Yadav A, Piyush, Kumar P. Metal spray layered hybrid additive manufacturing of PLA composite structures: Mechanical, thermal and morphological properties. Journal of Thermoplastic Composite Materials. 2020 Jun 24:0892705720932622. Kumar R, Chohan JS, Kumar R, Yadav A, Piyush, Kumar P. Metal spray layered hybrid additive manufacturing of PLA composite structures: Mechanical, thermal and morphological properties. Journal of Thermoplastic Composite Materials. 2020 Jun 24:0892705720932622.
30.
Zurück zum Zitat M. Hassan, L. Chong and N. Sultana, Wettability and Water Uptake Properties of pla and pcl/gelatin-Based Electrospun Scaffolds, ARPN J. Eng. Appl. Sci., 2006, 11, p 13604–13607. M. Hassan, L. Chong and N. Sultana, Wettability and Water Uptake Properties of pla and pcl/gelatin-Based Electrospun Scaffolds, ARPN J. Eng. Appl. Sci., 2006, 11, p 13604–13607.
31.
Zurück zum Zitat M.F. Afrose, S.H. Masood, M. Nikzad and P. Iovenitti, Effects of Build Orientations on Tensile Properties of PLA Material Processed by FDM, Adv. Mater. Res., 2014, 1044, p 31–34.CrossRef M.F. Afrose, S.H. Masood, M. Nikzad and P. Iovenitti, Effects of Build Orientations on Tensile Properties of PLA Material Processed by FDM, Adv. Mater. Res., 2014, 1044, p 31–34.CrossRef
32.
Zurück zum Zitat L. Deng, C. Xu, X. Wang and Z. Wang, Supertoughened Polylactide Binary Blend with High Heat Deflection Temperature Achieved by Thermal Annealing Above the Glass Transition Temperature, Acs Sustain. Chem. Eng., 2018, 6(1), p 480–490.CrossRef L. Deng, C. Xu, X. Wang and Z. Wang, Supertoughened Polylactide Binary Blend with High Heat Deflection Temperature Achieved by Thermal Annealing Above the Glass Transition Temperature, Acs Sustain. Chem. Eng., 2018, 6(1), p 480–490.CrossRef
33.
Zurück zum Zitat S. Iannace, L. Sorrentino and E. Di Maio, Biodegradable Biomedical Foam Scaffolds. InBiomedical Foams for Tissue Engineering Applications, Woodhead Publishing, 2014. S. Iannace, L. Sorrentino and E. Di Maio, Biodegradable Biomedical Foam Scaffolds. InBiomedical Foams for Tissue Engineering Applications, Woodhead Publishing, 2014.
34.
Zurück zum Zitat X. Tian, T. Liu, C. Yang, Q. Wang and D. Li, Interface and Performance of 3D Printed Continuous Carbon Fiber Reinforced PLA Composites, Compos. A Appl. Sci. Manuf., 2016, 1(88), p 198–205.CrossRef X. Tian, T. Liu, C. Yang, Q. Wang and D. Li, Interface and Performance of 3D Printed Continuous Carbon Fiber Reinforced PLA Composites, Compos. A Appl. Sci. Manuf., 2016, 1(88), p 198–205.CrossRef
35.
Zurück zum Zitat O. Vambol, A. Kondratiev, S. Purhina and M. Shevtsova, Determining the Parameters for a 3D-Printing Process Using the Fused Deposition Modeling in Order To Manufacture an Article With the Required Structural Parameters, Eastern-Eur. J. Enterprise Technol., 2021, 2(1), p 110. O. Vambol, A. Kondratiev, S. Purhina and M. Shevtsova, Determining the Parameters for a 3D-Printing Process Using the Fused Deposition Modeling in Order To Manufacture an Article With the Required Structural Parameters, Eastern-Eur. J. Enterprise Technol., 2021, 2(1), p 110.
36.
Zurück zum Zitat A. Haleem, V. Kumar and L. Kumar, Mathematical Modelling & Pressure Drop Analysis of Fused Deposition Modelling Feed Wire, Int. J. Eng. Technol., 2017, 9(4), p 2885–2894.CrossRef A. Haleem, V. Kumar and L. Kumar, Mathematical Modelling & Pressure Drop Analysis of Fused Deposition Modelling Feed Wire, Int. J. Eng. Technol., 2017, 9(4), p 2885–2894.CrossRef
37.
Zurück zum Zitat H.A. Derazkola and F. Khodabakhshi, Development of FED Friction-Stir (FFS) Process for Dissimilar Nanocomposite Welding between AA2024 Aluminum Alloy and Polycarbonate (PC), J. Manuf. Process., 2020, 1(54), p 262–273.CrossRef H.A. Derazkola and F. Khodabakhshi, Development of FED Friction-Stir (FFS) Process for Dissimilar Nanocomposite Welding between AA2024 Aluminum Alloy and Polycarbonate (PC), J. Manuf. Process., 2020, 1(54), p 262–273.CrossRef
38.
Zurück zum Zitat H.A. Derazkola and F. Khodabakhshi, A Novel Fed Friction-STIR (FFS) Technology for Nanocomposite Joining, Sci. Technol. Weld. Join., 2020, 25(2), p 89–100.CrossRef H.A. Derazkola and F. Khodabakhshi, A Novel Fed Friction-STIR (FFS) Technology for Nanocomposite Joining, Sci. Technol. Weld. Join., 2020, 25(2), p 89–100.CrossRef
39.
Zurück zum Zitat H.A. Derazkola and A. Simchi, A New Procedure for the Fabrication of Dissimilar Joints Through Injection of Colloidal nanoparticles During Friction Stir Processing: Proof Concept for AA6062/PMMA Joints, J. Manuf. Process., 2020, 1(49), p 335–343.CrossRef H.A. Derazkola and A. Simchi, A New Procedure for the Fabrication of Dissimilar Joints Through Injection of Colloidal nanoparticles During Friction Stir Processing: Proof Concept for AA6062/PMMA Joints, J. Manuf. Process., 2020, 1(49), p 335–343.CrossRef
40.
Zurück zum Zitat H.A. Derazkola and M. Elyasi, The Influence of Process Parameters in Friction Stir Welding of Al-Mg alloy and Polycarbonate, J. Manuf. Process., 2018, 1(35), p 88–98.CrossRef H.A. Derazkola and M. Elyasi, The Influence of Process Parameters in Friction Stir Welding of Al-Mg alloy and Polycarbonate, J. Manuf. Process., 2018, 1(35), p 88–98.CrossRef
41.
Zurück zum Zitat H.A. Derazkola, R.K. Fard and F. Khodabakhshi, Effects of Processing Parameters on the Characteristics of Dissimilar Friction-Stir-Welded Joints Between AA5058 Aluminum Alloy and PMMA Polymer, Weld. World., 2018, 62(1), p 117–130.CrossRef H.A. Derazkola, R.K. Fard and F. Khodabakhshi, Effects of Processing Parameters on the Characteristics of Dissimilar Friction-Stir-Welded Joints Between AA5058 Aluminum Alloy and PMMA Polymer, Weld. World., 2018, 62(1), p 117–130.CrossRef
42.
Zurück zum Zitat H.A. Derazkola and A. Simchi, An Investigation on the Dissimilar Friction Stir Welding of T-Joints Between AA5754 Aluminum Alloy and Poly (Methyl Methacrylate), Thin-Walled Struct., 2019, 1(135), p 376–384.CrossRef H.A. Derazkola and A. Simchi, An Investigation on the Dissimilar Friction Stir Welding of T-Joints Between AA5754 Aluminum Alloy and Poly (Methyl Methacrylate), Thin-Walled Struct., 2019, 1(135), p 376–384.CrossRef
43.
Zurück zum Zitat S.K. Sahu, D. Mishra, R.P. Mahto, V.M. Sharma, S.K. Pal, K. Pal, S. Banerjee and P. Dash, Friction Stir Welding of Polypropylene Sheet, Eng. Sci. Technol. Int J., 2018, 21(2), p 245–254. S.K. Sahu, D. Mishra, R.P. Mahto, V.M. Sharma, S.K. Pal, K. Pal, S. Banerjee and P. Dash, Friction Stir Welding of Polypropylene Sheet, Eng. Sci. Technol. Int J., 2018, 21(2), p 245–254.
44.
Zurück zum Zitat Y. Huang, X. Meng, Y. Xie, L. Wan, Z. Lv, J. Cao and J. Feng, Friction Stir Welding/Processing of Polymers and Polymer Matrix Composites, Compos. A Appl. Sci. Manuf., 2018, 1(105), p 235–257.CrossRef Y. Huang, X. Meng, Y. Xie, L. Wan, Z. Lv, J. Cao and J. Feng, Friction Stir Welding/Processing of Polymers and Polymer Matrix Composites, Compos. A Appl. Sci. Manuf., 2018, 1(105), p 235–257.CrossRef
45.
Zurück zum Zitat J. Singh, R. Singh, R. Kumar, M.M. Rahman and S. Ramakrishna, PLA-PEKK-HAp-CS Composite Scaffold JOINING with Friction Stir spot Welding, J. Thermoplast. Compos. Mater., 2021, 34(6), p 745–764.CrossRef J. Singh, R. Singh, R. Kumar, M.M. Rahman and S. Ramakrishna, PLA-PEKK-HAp-CS Composite Scaffold JOINING with Friction Stir spot Welding, J. Thermoplast. Compos. Mater., 2021, 34(6), p 745–764.CrossRef
46.
Zurück zum Zitat S. Farah, D.G. Anderson and R. Langer, Physical and Mechanical Properties of PLA, and their Functions in Widespread Applications—A COMPREHENSIVE Review, Adv. Drug Deliv. Rev., 2016, 15(107), p 367–392.CrossRef S. Farah, D.G. Anderson and R. Langer, Physical and Mechanical Properties of PLA, and their Functions in Widespread Applications—A COMPREHENSIVE Review, Adv. Drug Deliv. Rev., 2016, 15(107), p 367–392.CrossRef
47.
Zurück zum Zitat K. Balani, V. Verma, A. Agarwal and R. Narayan, Physical, Thermal, and Mechanical Properties of Polymers, Biosurf A Mater Sci Eng Perspect, 2015, 44, p 329. K. Balani, V. Verma, A. Agarwal and R. Narayan, Physical, Thermal, and Mechanical Properties of Polymers, Biosurf A Mater Sci Eng Perspect, 2015, 44, p 329.
Metadaten
Titel
Characterization of Friction Stir-Welded Polylactic Acid/Aluminum Composite Primed through Fused Filament Fabrication
verfasst von
Ranvijay Kumar
Nishant Ranjan
Vinay Kumar
Raman Kumar
Jasgurpreet Singh Chohan
Aniket Yadav
Piyush
Shubham Sharma
Chander Prakash
Sunpreet Singh
Changhe Li
Publikationsdatum
18.10.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 3/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06329-4

Weitere Artikel der Ausgabe 3/2022

Journal of Materials Engineering and Performance 3/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.