Skip to main content

2017 | OriginalPaper | Buchkapitel

3. Chemical Approaches to Prepare Antimicrobial Polymers

verfasst von : Juan Rodríguez-Hernández

Erschienen in: Polymers against Microorganisms

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Until the early 1980s, low-molecular weight substances were mainly employed for their antimicrobial activity. However, the discovery of antimicrobial peptides (AMPs) carried out by dramatically changed this situation. This group demonstrated that macromolecular peptides were able to kill Gram-positive bacteria, Gram-negative bacteria, and fungi. AMPs have been extensively developed and today an Antimicrobial Peptide Database (APD). Based on this finding and around the same time antimicrobial polymers known under the name “polymer disinfectants” started to be investigated. As a result, studies on syntheses of polymeric biocides have been started to develop a new utilization field of polymer materials from 1980s. In particular, synthetic polymers have been widely investigated as a new molecular platform to create antimicrobial agents that are active against drug-resistant bacteria.
As will be depicted throughout this chapter, a variety of synthetic polymers with different chemical structures have been utilized to prepare antimicrobial polymers, and some polymers with high efficacy have been reported. In addition, a thorough analysis of the chemical characteristics of antimicrobial polymers and the different strategies to prepare them will be provided.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Steiner H, et al. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature. 1981;292(5820):246–8.CrossRef Steiner H, et al. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature. 1981;292(5820):246–8.CrossRef
2.
Zurück zum Zitat Wang Z, Wang G. APD: the antimicrobial peptide database. Nucleic Acids Res. 2004;32 suppl 1:D590–2.CrossRef Wang Z, Wang G. APD: the antimicrobial peptide database. Nucleic Acids Res. 2004;32 suppl 1:D590–2.CrossRef
3.
Zurück zum Zitat Palermo EF, Kuroda K. Structural determinants of antimicrobial activity in polymers which mimic host defense peptides. Appl Microbiol Biotechnol. 2010;87(5):1605–15.CrossRef Palermo EF, Kuroda K. Structural determinants of antimicrobial activity in polymers which mimic host defense peptides. Appl Microbiol Biotechnol. 2010;87(5):1605–15.CrossRef
4.
Zurück zum Zitat Engler AC, et al. Emerging trends in macromolecular antimicrobials to fight multi-drug-resistant infections. Nano Today. 2012;7(3):201–22.CrossRef Engler AC, et al. Emerging trends in macromolecular antimicrobials to fight multi-drug-resistant infections. Nano Today. 2012;7(3):201–22.CrossRef
5.
Zurück zum Zitat Kuroda K, Caputo GA. Antimicrobial polymers as synthetic mimics of host-defense peptides. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013;5(1):49–66.CrossRef Kuroda K, Caputo GA. Antimicrobial polymers as synthetic mimics of host-defense peptides. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013;5(1):49–66.CrossRef
6.
Zurück zum Zitat Li P, et al. Antimicrobial macromolecules: synthesis methods and future applications. RSC Adv. 2012;2(10):4031–44.CrossRef Li P, et al. Antimicrobial macromolecules: synthesis methods and future applications. RSC Adv. 2012;2(10):4031–44.CrossRef
7.
Zurück zum Zitat Muñoz-Bonilla A, Fernández-García M. Polymeric materials with antimicrobial activity. Prog Polym Sci. 2012;37(2):281–339.CrossRef Muñoz-Bonilla A, Fernández-García M. Polymeric materials with antimicrobial activity. Prog Polym Sci. 2012;37(2):281–339.CrossRef
8.
Zurück zum Zitat Thoma LM, Boles BR, Kuroda K. Cationic methacrylate polymers as topical antimicrobial agents against Staphylococcus aureus nasal colonization. Biomacromolecules. 2014;15(8):2933–43.CrossRef Thoma LM, Boles BR, Kuroda K. Cationic methacrylate polymers as topical antimicrobial agents against Staphylococcus aureus nasal colonization. Biomacromolecules. 2014;15(8):2933–43.CrossRef
9.
Zurück zum Zitat King A, et al. High antimicrobial effectiveness with low hemolytic and cytotoxic activity for PEG/quaternary copolyoxetanes. Biomacromolecules. 2014;15(2):456–67.CrossRef King A, et al. High antimicrobial effectiveness with low hemolytic and cytotoxic activity for PEG/quaternary copolyoxetanes. Biomacromolecules. 2014;15(2):456–67.CrossRef
10.
Zurück zum Zitat Liu R, et al. Tuning the biological activity profile of antibacterial polymers via subunit substitution pattern. J Am Chem Soc. 2014;136(11):4410–8.CrossRef Liu R, et al. Tuning the biological activity profile of antibacterial polymers via subunit substitution pattern. J Am Chem Soc. 2014;136(11):4410–8.CrossRef
11.
Zurück zum Zitat Liu R, et al. Structure–activity relationships among antifungal nylon-3 polymers: identification of materials active against drug-resistant strains of Candida albicans. J Am Chem Soc. 2014;136(11):4333–42.CrossRef Liu R, et al. Structure–activity relationships among antifungal nylon-3 polymers: identification of materials active against drug-resistant strains of Candida albicans. J Am Chem Soc. 2014;136(11):4333–42.CrossRef
12.
Zurück zum Zitat Stratton TR, Applegate BM, Youngblood JP. Effect of steric hindrance on the properties of antibacterial and biocompatible copolymers. Biomacromolecules. 2011;12(1):50–6.CrossRef Stratton TR, Applegate BM, Youngblood JP. Effect of steric hindrance on the properties of antibacterial and biocompatible copolymers. Biomacromolecules. 2011;12(1):50–6.CrossRef
13.
Zurück zum Zitat Thaker HD, et al. Role of amphiphilicity in the design of synthetic mimics of antimicrobial peptides with gram-negative activity. ACS Med Chem Lett. 2013;4(5):481–5.CrossRef Thaker HD, et al. Role of amphiphilicity in the design of synthetic mimics of antimicrobial peptides with gram-negative activity. ACS Med Chem Lett. 2013;4(5):481–5.CrossRef
14.
Zurück zum Zitat Matsuzaki K. Control of cell selectivity of antimicrobial peptides. Biochim Biophys Acta Biomembr. 2009;1788(8):1687–92.CrossRef Matsuzaki K. Control of cell selectivity of antimicrobial peptides. Biochim Biophys Acta Biomembr. 2009;1788(8):1687–92.CrossRef
15.
Zurück zum Zitat Kenawy E-R, Worley SD, Broughton R. The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromolecules. 2007;8(5):1359–84.CrossRef Kenawy E-R, Worley SD, Broughton R. The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromolecules. 2007;8(5):1359–84.CrossRef
16.
Zurück zum Zitat Timofeeva L, Kleshcheva N. Antimicrobial polymers: mechanism of action, factors of activity, and applications. Appl Microbiol Biotechnol. 2011;89(3):475–92.CrossRef Timofeeva L, Kleshcheva N. Antimicrobial polymers: mechanism of action, factors of activity, and applications. Appl Microbiol Biotechnol. 2011;89(3):475–92.CrossRef
17.
Zurück zum Zitat Siedenbiedel F, Tiller JC. Antimicrobial polymers in solution and on surfaces: overview and functional principles. Polymers. 2012;4(1):46–71.CrossRef Siedenbiedel F, Tiller JC. Antimicrobial polymers in solution and on surfaces: overview and functional principles. Polymers. 2012;4(1):46–71.CrossRef
18.
Zurück zum Zitat Tiller JC, et al. Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci U S A. 2001;98(11):5981–5.CrossRef Tiller JC, et al. Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci U S A. 2001;98(11):5981–5.CrossRef
19.
Zurück zum Zitat Tiller JC, et al. Polymer surfaces derivatized with poly(vinyl-N-hexylpyridinium) kill airborne and waterborne bacteria. Biotechnol Bioeng. 2002;79(4):465–71.CrossRef Tiller JC, et al. Polymer surfaces derivatized with poly(vinyl-N-hexylpyridinium) kill airborne and waterborne bacteria. Biotechnol Bioeng. 2002;79(4):465–71.CrossRef
20.
Zurück zum Zitat Park ES, et al. Antibacterial activities of polystyrene-block-poly(4-vinyl pyridine) and poly(styrene-random-4-vinyl pyridine). Eur Polym J. 2004;40(12):2819–22.CrossRef Park ES, et al. Antibacterial activities of polystyrene-block-poly(4-vinyl pyridine) and poly(styrene-random-4-vinyl pyridine). Eur Polym J. 2004;40(12):2819–22.CrossRef
21.
Zurück zum Zitat Li G, Shen J. A study of pyridinium‐type functional polymers. IV. Behavioral features of the antibacterial activity of insoluble pyridinium‐type polymers. J Appl Polym Sci. 2000;78(3):676–84.CrossRef Li G, Shen J. A study of pyridinium‐type functional polymers. IV. Behavioral features of the antibacterial activity of insoluble pyridinium‐type polymers. J Appl Polym Sci. 2000;78(3):676–84.CrossRef
22.
Zurück zum Zitat Anderson EB, Long TE. Imidazole-and imidazolium-containing polymers for biology and material science applications. Polymer. 2010;51(12):2447–54.CrossRef Anderson EB, Long TE. Imidazole-and imidazolium-containing polymers for biology and material science applications. Polymer. 2010;51(12):2447–54.CrossRef
23.
Zurück zum Zitat Soykan C, Coşkun R, Delibaş A. Microbial screening of copolymers of N‐vinylimidazole with phenacyl methacrylate: synthesis and monomer reactivity ratios. J Macromol Sci A. 2005;42(12):1603–19.CrossRef Soykan C, Coşkun R, Delibaş A. Microbial screening of copolymers of N‐vinylimidazole with phenacyl methacrylate: synthesis and monomer reactivity ratios. J Macromol Sci A. 2005;42(12):1603–19.CrossRef
24.
Zurück zum Zitat Gottenbos B, et al. Antimicrobial effects of positively charged surfaces on adhering gram-positive and gram-negative bacteria. J Antimicrob Chemother. 2001;48(1):7–13.CrossRef Gottenbos B, et al. Antimicrobial effects of positively charged surfaces on adhering gram-positive and gram-negative bacteria. J Antimicrob Chemother. 2001;48(1):7–13.CrossRef
25.
Zurück zum Zitat Gottenbos B, et al. Positively charged biomaterials exert antimicrobial effects on gram-negative bacilli in rats. Biomaterials. 2003;24(16):2707–10.CrossRef Gottenbos B, et al. Positively charged biomaterials exert antimicrobial effects on gram-negative bacilli in rats. Biomaterials. 2003;24(16):2707–10.CrossRef
26.
Zurück zum Zitat Li G, Shen J, Zhu Y. A study of pyridinium‐type functional polymers. III. Preparation and characterization of insoluble pyridinium‐type polymers. J Appl Polym Sci. 2000;78(3):668–75.CrossRef Li G, Shen J, Zhu Y. A study of pyridinium‐type functional polymers. III. Preparation and characterization of insoluble pyridinium‐type polymers. J Appl Polym Sci. 2000;78(3):668–75.CrossRef
27.
Zurück zum Zitat Lu L, et al. Biocidal activity of a light-absorbing fluorescent conjugated polyelectrolyte. Langmuir. 2005;21(22):10154–9.CrossRef Lu L, et al. Biocidal activity of a light-absorbing fluorescent conjugated polyelectrolyte. Langmuir. 2005;21(22):10154–9.CrossRef
28.
Zurück zum Zitat Chemburu S, et al. Light-induced biocidal action of conjugated polyelectrolytes supported on colloids. Langmuir. 2008;24(19):11053–62.CrossRef Chemburu S, et al. Light-induced biocidal action of conjugated polyelectrolytes supported on colloids. Langmuir. 2008;24(19):11053–62.CrossRef
29.
Zurück zum Zitat Corbitt TS, et al. Conjugated polyelectrolyte capsules: light-activated antimicrobial micro “Roach Motels”. ACS Appl Mater Interfaces. 2008;1(1):48–52.CrossRef Corbitt TS, et al. Conjugated polyelectrolyte capsules: light-activated antimicrobial micro “Roach Motels”. ACS Appl Mater Interfaces. 2008;1(1):48–52.CrossRef
30.
Zurück zum Zitat Wang Y, et al. Membrane perturbation activity of cationic phenylene ethynylene oligomers and polymers: selectivity against model bacterial and mammalian membranes. Langmuir. 2010;26(15):12509–14.CrossRef Wang Y, et al. Membrane perturbation activity of cationic phenylene ethynylene oligomers and polymers: selectivity against model bacterial and mammalian membranes. Langmuir. 2010;26(15):12509–14.CrossRef
31.
Zurück zum Zitat Corbitt TS, et al. Light and dark biocidal activity of cationic poly (arylene ethynylene) conjugated polyelectrolytes. Photochem Photobiol Sci. 2009;8(7):998–1005.CrossRef Corbitt TS, et al. Light and dark biocidal activity of cationic poly (arylene ethynylene) conjugated polyelectrolytes. Photochem Photobiol Sci. 2009;8(7):998–1005.CrossRef
32.
Zurück zum Zitat Xing C, et al. Conjugated polymer/porphyrin complexes for efficient energy transfer and improving light-activated antibacterial activity. J Am Chem Soc. 2009;131(36):13117–24.CrossRef Xing C, et al. Conjugated polymer/porphyrin complexes for efficient energy transfer and improving light-activated antibacterial activity. J Am Chem Soc. 2009;131(36):13117–24.CrossRef
33.
Zurück zum Zitat Sauvet G, et al. Amphiphilic block and statistical siloxane copolymers with antimicrobial activity. J Polym Sci A Polym Chem. 2003;41(19):2939–48.CrossRef Sauvet G, et al. Amphiphilic block and statistical siloxane copolymers with antimicrobial activity. J Polym Sci A Polym Chem. 2003;41(19):2939–48.CrossRef
34.
Zurück zum Zitat Mizerska U, et al. Polysiloxane cationic biocides with imidazolium salt (ImS) groups, synthesis and antibacterial properties. Eur Polym J. 2009;45(3):779–87.CrossRef Mizerska U, et al. Polysiloxane cationic biocides with imidazolium salt (ImS) groups, synthesis and antibacterial properties. Eur Polym J. 2009;45(3):779–87.CrossRef
35.
Zurück zum Zitat Gao B, Zhang X, Zhu Y. Studies on the preparation and antibacterial properties of quaternized polyethyleneimine. J Biomater Sci Polym Ed. 2007;18(5):531–44.CrossRef Gao B, Zhang X, Zhu Y. Studies on the preparation and antibacterial properties of quaternized polyethyleneimine. J Biomater Sci Polym Ed. 2007;18(5):531–44.CrossRef
36.
Zurück zum Zitat Pasquier N, et al. Amphiphilic branched polymers as antimicrobial agents. Macromol Biosci. 2008;8(10):903–15.CrossRef Pasquier N, et al. Amphiphilic branched polymers as antimicrobial agents. Macromol Biosci. 2008;8(10):903–15.CrossRef
37.
Zurück zum Zitat Pasquier N, et al. From multifunctionalized poly (ethylene imine)s toward antimicrobial coatings. Biomacromolecules. 2007;8(9):2874–82.CrossRef Pasquier N, et al. From multifunctionalized poly (ethylene imine)s toward antimicrobial coatings. Biomacromolecules. 2007;8(9):2874–82.CrossRef
38.
Zurück zum Zitat Abid C, et al. Synthesis and characterization of quaternary ammonium PEGDA dendritic copolymer networks for water disinfection. J Appl Polym Sci. 2010;116(3):1640–9. Abid C, et al. Synthesis and characterization of quaternary ammonium PEGDA dendritic copolymer networks for water disinfection. J Appl Polym Sci. 2010;116(3):1640–9.
39.
Zurück zum Zitat Chen CZ, et al. Quaternary ammonium functionalized poly (propylene imine) dendrimers as effective antimicrobials: structure–activity studies. Biomacromolecules. 2000;1(3):473–80.CrossRef Chen CZ, et al. Quaternary ammonium functionalized poly (propylene imine) dendrimers as effective antimicrobials: structure–activity studies. Biomacromolecules. 2000;1(3):473–80.CrossRef
40.
Zurück zum Zitat Chen CZ, Cooper SL. Interactions between dendrimer biocides and bacterial membranes. Biomaterials. 2002;23(16):3359–68.CrossRef Chen CZ, Cooper SL. Interactions between dendrimer biocides and bacterial membranes. Biomaterials. 2002;23(16):3359–68.CrossRef
41.
Zurück zum Zitat Ortega P, et al. Amine and ammonium functionalization of chloromethylsilane-ended dendrimers. Antimicrobial activity studies. Org Biomol Chem. 2008;6(18):3264–9.CrossRef Ortega P, et al. Amine and ammonium functionalization of chloromethylsilane-ended dendrimers. Antimicrobial activity studies. Org Biomol Chem. 2008;6(18):3264–9.CrossRef
42.
Zurück zum Zitat Hoogenboom R. Poly (2‐oxazoline)s: a polymer class with numerous potential applications. Angew Chem Int Ed Engl. 2009;48(43):7978–94.CrossRef Hoogenboom R. Poly (2‐oxazoline)s: a polymer class with numerous potential applications. Angew Chem Int Ed Engl. 2009;48(43):7978–94.CrossRef
43.
Zurück zum Zitat Makino A, Kobayashi S. Chemistry of 2‐oxazolines: a crossing of cationic ring‐opening polymerization and enzymatic ring‐opening polyaddition. J Polym Sci A Polym Chem. 2010;48(6):1251–70.CrossRef Makino A, Kobayashi S. Chemistry of 2‐oxazolines: a crossing of cationic ring‐opening polymerization and enzymatic ring‐opening polyaddition. J Polym Sci A Polym Chem. 2010;48(6):1251–70.CrossRef
44.
Zurück zum Zitat Adams N, Schubert US. Poly (2-oxazolines) in biological and biomedical application contexts. Adv Drug Deliv Rev. 2007;59(15):1504–20.CrossRef Adams N, Schubert US. Poly (2-oxazolines) in biological and biomedical application contexts. Adv Drug Deliv Rev. 2007;59(15):1504–20.CrossRef
45.
Zurück zum Zitat Waschinski CJ, Tiller JC. Poly (oxazoline)s with telechelic antimicrobial functions. Biomacromolecules. 2005;6(1):235–43.CrossRef Waschinski CJ, Tiller JC. Poly (oxazoline)s with telechelic antimicrobial functions. Biomacromolecules. 2005;6(1):235–43.CrossRef
46.
Zurück zum Zitat Waschinski CJ, et al. Influence of satellite groups on telechelic antimicrobial functions of polyoxazolines. Macromol Biosci. 2005;5(2):149–56.CrossRef Waschinski CJ, et al. Influence of satellite groups on telechelic antimicrobial functions of polyoxazolines. Macromol Biosci. 2005;5(2):149–56.CrossRef
47.
Zurück zum Zitat Waschinski CJ, et al. Insights in the antibacterial action of poly (methyloxazoline)s with a biocidal end group and varying satellite groups. Biomacromolecules. 2008;9(7):1764–71.CrossRef Waschinski CJ, et al. Insights in the antibacterial action of poly (methyloxazoline)s with a biocidal end group and varying satellite groups. Biomacromolecules. 2008;9(7):1764–71.CrossRef
48.
Zurück zum Zitat Ikeda T, Yamaguchi H, Tazuke S. New polymeric biocides: synthesis and antibacterial activities of polycations with pendant biguanide groups. Antimicrob Agents Chemother. 1984;26(2):139–44.CrossRef Ikeda T, Yamaguchi H, Tazuke S. New polymeric biocides: synthesis and antibacterial activities of polycations with pendant biguanide groups. Antimicrob Agents Chemother. 1984;26(2):139–44.CrossRef
49.
Zurück zum Zitat Ikeda T, Tazuke S, Suzuki Y. Biologically active polycations. 4. Synthesis and antimicrobial activity of poly(trialkylvinylbenzylammonium chloride)s. Makromol Chem. 1984;185(5):869–76.CrossRef Ikeda T, Tazuke S, Suzuki Y. Biologically active polycations. 4. Synthesis and antimicrobial activity of poly(trialkylvinylbenzylammonium chloride)s. Makromol Chem. 1984;185(5):869–76.CrossRef
50.
Zurück zum Zitat Gelman MA, et al. Biocidal activity of polystyrenes that are cationic by virtue of protonation. Org Lett. 2004;6(4):557–60.CrossRef Gelman MA, et al. Biocidal activity of polystyrenes that are cationic by virtue of protonation. Org Lett. 2004;6(4):557–60.CrossRef
51.
Zurück zum Zitat Vigliotta G, et al. Modulating antimicrobial activity by synthesis: dendritic copolymers based on nonquaternized 2-(dimethylamino)ethyl methacrylate by Cu-mediated ATRP. Biomacromolecules. 2012;13(3):833–41.CrossRef Vigliotta G, et al. Modulating antimicrobial activity by synthesis: dendritic copolymers based on nonquaternized 2-(dimethylamino)ethyl methacrylate by Cu-mediated ATRP. Biomacromolecules. 2012;13(3):833–41.CrossRef
52.
Zurück zum Zitat Ornelas-Megiatto C, Wich PR, Fréchet JMJ. Polyphosphonium polymers for siRNA delivery: an efficient and nontoxic alternative to polyammonium carriers. J Am Chem Soc. 2012;134(4):1902–5.CrossRef Ornelas-Megiatto C, Wich PR, Fréchet JMJ. Polyphosphonium polymers for siRNA delivery: an efficient and nontoxic alternative to polyammonium carriers. J Am Chem Soc. 2012;134(4):1902–5.CrossRef
53.
Zurück zum Zitat Hemp ST, et al. Phosphonium-containing diblock copolymers for enhanced colloidal stability and efficient nucleic acid delivery. Biomacromolecules. 2012;13(8):2439–45.CrossRef Hemp ST, et al. Phosphonium-containing diblock copolymers for enhanced colloidal stability and efficient nucleic acid delivery. Biomacromolecules. 2012;13(8):2439–45.CrossRef
54.
Zurück zum Zitat Popa A, et al. Study of quaternary ‘onium’ salts grafted on polymers: antibacterial activity of quaternary phosphonium salts grafted on ‘gel-type’ styrene–divinylbenzene copolymers. React Funct Polym. 2003;55(2):151–8.CrossRef Popa A, et al. Study of quaternary ‘onium’ salts grafted on polymers: antibacterial activity of quaternary phosphonium salts grafted on ‘gel-type’ styrene–divinylbenzene copolymers. React Funct Polym. 2003;55(2):151–8.CrossRef
55.
Zurück zum Zitat Li C, et al. Preparation and antimicrobial activity of quaternary phosphonium modified epoxidized natural rubber. Mater Lett. 2013;93:145–8.CrossRef Li C, et al. Preparation and antimicrobial activity of quaternary phosphonium modified epoxidized natural rubber. Mater Lett. 2013;93:145–8.CrossRef
56.
Zurück zum Zitat Xue Y, et al. Novel quaternary phosphonium-type cationic polyacrylamide and elucidation of dual-functional antibacterial/antiviral activity. RSC Adv. 2014;4(87):46887–95.CrossRef Xue Y, et al. Novel quaternary phosphonium-type cationic polyacrylamide and elucidation of dual-functional antibacterial/antiviral activity. RSC Adv. 2014;4(87):46887–95.CrossRef
57.
Zurück zum Zitat Sun Y, Sun G. Novel refreshable N-halamine polymeric biocides: N-chlorination of aromatic polyamides. Ind Eng Chem Res. 2004;43(17):5015–20.CrossRef Sun Y, Sun G. Novel refreshable N-halamine polymeric biocides: N-chlorination of aromatic polyamides. Ind Eng Chem Res. 2004;43(17):5015–20.CrossRef
58.
Zurück zum Zitat Hui F, Debiemme-Chouvy C. Antimicrobial N-halamine polymers and coatings: a review of their synthesis, characterization, and applications. Biomacromolecules. 2013;14(3):585–601.CrossRef Hui F, Debiemme-Chouvy C. Antimicrobial N-halamine polymers and coatings: a review of their synthesis, characterization, and applications. Biomacromolecules. 2013;14(3):585–601.CrossRef
59.
Zurück zum Zitat Sun Y, et al. Novel refreshable N-halamine polymeric biocides containing imidazolidin-4-one derivatives. J Polym Sci A Polym Chem. 2001;39(18):3073–84.CrossRef Sun Y, et al. Novel refreshable N-halamine polymeric biocides containing imidazolidin-4-one derivatives. J Polym Sci A Polym Chem. 2001;39(18):3073–84.CrossRef
60.
Zurück zum Zitat Chen Z, Sun Y. N-halamine-based antimicrobial additives for polymers: preparation, characterization and antimicrobial activity. Ind Eng Chem Res. 2006;45(8):2634–40.CrossRef Chen Z, Sun Y. N-halamine-based antimicrobial additives for polymers: preparation, characterization and antimicrobial activity. Ind Eng Chem Res. 2006;45(8):2634–40.CrossRef
61.
Zurück zum Zitat Guittard F, Geribaldi S. Highly fluorinated molecular organised systems: strategy and concept. J Fluor Chem. 2001;107(2):363–74.CrossRef Guittard F, Geribaldi S. Highly fluorinated molecular organised systems: strategy and concept. J Fluor Chem. 2001;107(2):363–74.CrossRef
62.
Zurück zum Zitat Massi L, et al. Antimicrobial properties of highly fluorinated bis-ammonium salts. Int J Antimicrob Agents. 2003;21(1):20–6.CrossRef Massi L, et al. Antimicrobial properties of highly fluorinated bis-ammonium salts. Int J Antimicrob Agents. 2003;21(1):20–6.CrossRef
63.
Zurück zum Zitat Caillier L, et al. Polymerizable semi-fluorinated gemini surfactants designed for antimicrobial materials. J Colloid Interface Sci. 2009;332(1):201–7.CrossRef Caillier L, et al. Polymerizable semi-fluorinated gemini surfactants designed for antimicrobial materials. J Colloid Interface Sci. 2009;332(1):201–7.CrossRef
64.
Zurück zum Zitat Thebault P, et al. Surface and antimicrobial properties of semi-fluorinated quaternary ammonium thiol surfactants potentially usable for self-assembled monolayers. J Fluor Chem. 2010;131(5):592–6.CrossRef Thebault P, et al. Surface and antimicrobial properties of semi-fluorinated quaternary ammonium thiol surfactants potentially usable for self-assembled monolayers. J Fluor Chem. 2010;131(5):592–6.CrossRef
65.
Zurück zum Zitat Kugel AJ, et al. Combinatorial materials research applied to the development of new surface coatings XII: novel, environmentally friendly antimicrobial coatings derived from biocide-functional acrylic polyols and isocyanates. J Coat Technol Res. 2009;6(1):107–21.CrossRef Kugel AJ, et al. Combinatorial materials research applied to the development of new surface coatings XII: novel, environmentally friendly antimicrobial coatings derived from biocide-functional acrylic polyols and isocyanates. J Coat Technol Res. 2009;6(1):107–21.CrossRef
66.
Zurück zum Zitat Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415(6870):389–95.CrossRef Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415(6870):389–95.CrossRef
67.
Zurück zum Zitat Hancock REW, Sahl H-G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotech. 2006;24(12):1551–7.CrossRef Hancock REW, Sahl H-G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotech. 2006;24(12):1551–7.CrossRef
68.
Zurück zum Zitat Tew GN, et al. De novo design of biomimetic antimicrobial polymers. Proc Natl Acad Sci U S A. 2002;99(8):5110–4.CrossRef Tew GN, et al. De novo design of biomimetic antimicrobial polymers. Proc Natl Acad Sci U S A. 2002;99(8):5110–4.CrossRef
69.
Zurück zum Zitat Findlay B, Zhanel GG, Schweizer F. Cationic amphiphiles, a new generation of antimicrobials inspired by the natural antimicrobial peptide scaffold. Antimicrob Agents Chemother. 2010;54(10):4049–58.CrossRef Findlay B, Zhanel GG, Schweizer F. Cationic amphiphiles, a new generation of antimicrobials inspired by the natural antimicrobial peptide scaffold. Antimicrob Agents Chemother. 2010;54(10):4049–58.CrossRef
70.
Zurück zum Zitat Tossi A, Sandri L, Giangaspero A. Amphipathic, α-helical antimicrobial peptides. Pept Sci. 2000;55(1):4–30.CrossRef Tossi A, Sandri L, Giangaspero A. Amphipathic, α-helical antimicrobial peptides. Pept Sci. 2000;55(1):4–30.CrossRef
71.
Zurück zum Zitat O’Neil KT, DeGrado WF. How calmodulin binds its targets: sequence independent recognition of amphiphilic α-helices. Trends Biochem Sci. 1990;15(2):59–64.CrossRef O’Neil KT, DeGrado WF. How calmodulin binds its targets: sequence independent recognition of amphiphilic α-helices. Trends Biochem Sci. 1990;15(2):59–64.CrossRef
72.
Zurück zum Zitat Oren Z, Shai Y. Mode of action of linear amphipathic α-helical antimicrobial peptides. Pept Sci. 1998;47(6):451–63.CrossRef Oren Z, Shai Y. Mode of action of linear amphipathic α-helical antimicrobial peptides. Pept Sci. 1998;47(6):451–63.CrossRef
73.
Zurück zum Zitat Chen Y, et al. Rational design of α-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index. J Biol Chem. 2005;280(13):12316–29.CrossRef Chen Y, et al. Rational design of α-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index. J Biol Chem. 2005;280(13):12316–29.CrossRef
74.
Zurück zum Zitat Jiang Z, et al. Effects of hydrophobicity on the antifungal activity of α-helical antimicrobial peptides. Chem Biol Drug Des. 2008;72(6):483–95.CrossRef Jiang Z, et al. Effects of hydrophobicity on the antifungal activity of α-helical antimicrobial peptides. Chem Biol Drug Des. 2008;72(6):483–95.CrossRef
75.
Zurück zum Zitat Jiang Z, et al. Effects of net charge and the number of positively charged residues on the biological activity of amphipathic α-helical cationic antimicrobial peptides. Pept Sci. 2008;90(3):369–83.CrossRef Jiang Z, et al. Effects of net charge and the number of positively charged residues on the biological activity of amphipathic α-helical cationic antimicrobial peptides. Pept Sci. 2008;90(3):369–83.CrossRef
76.
Zurück zum Zitat Martinek TA, Fülöp F. Side-chain control of β-peptide secondary structures. Eur J Biochem. 2003;270(18):3657–66.CrossRef Martinek TA, Fülöp F. Side-chain control of β-peptide secondary structures. Eur J Biochem. 2003;270(18):3657–66.CrossRef
77.
Zurück zum Zitat Wiradharma N, et al. Synthetic cationic amphiphilic α-helical peptides as antimicrobial agents. Biomaterials. 2011;32(8):2204–12.CrossRef Wiradharma N, et al. Synthetic cationic amphiphilic α-helical peptides as antimicrobial agents. Biomaterials. 2011;32(8):2204–12.CrossRef
78.
Zurück zum Zitat Blondelle SE, Houghten RA. Design of model amphipathic peptides having potent antimicrobial activities. Biochemistry. 1992;31(50):12688–94.CrossRef Blondelle SE, Houghten RA. Design of model amphipathic peptides having potent antimicrobial activities. Biochemistry. 1992;31(50):12688–94.CrossRef
79.
Zurück zum Zitat Zelezetsky I, et al. Controlled alteration of the shape and conformational stability of α-helical cell-lytic peptides: effect on mode of action and cell specificity. Biochem J. 2005;390(Pt 1):177–88.CrossRef Zelezetsky I, et al. Controlled alteration of the shape and conformational stability of α-helical cell-lytic peptides: effect on mode of action and cell specificity. Biochem J. 2005;390(Pt 1):177–88.CrossRef
80.
Zurück zum Zitat Won A, et al. Effect of point mutations on the secondary structure and membrane interaction of antimicrobial peptide anoplin. J Phys Chem B. 2011;115(10):2371–9.CrossRef Won A, et al. Effect of point mutations on the secondary structure and membrane interaction of antimicrobial peptide anoplin. J Phys Chem B. 2011;115(10):2371–9.CrossRef
81.
Zurück zum Zitat Gabriel GJ, Tew GN. Conformationally rigid proteomimetics: a case study in designing antimicrobial aryl oligomers. Org Biomol Chem. 2008;6(3):417–23.CrossRef Gabriel GJ, Tew GN. Conformationally rigid proteomimetics: a case study in designing antimicrobial aryl oligomers. Org Biomol Chem. 2008;6(3):417–23.CrossRef
82.
Zurück zum Zitat Tew GN, et al. De novo design of antimicrobial polymers, foldamers, and small molecules: from discovery to practical applications. Acc Chem Res. 2009;43(1):30–9.CrossRef Tew GN, et al. De novo design of antimicrobial polymers, foldamers, and small molecules: from discovery to practical applications. Acc Chem Res. 2009;43(1):30–9.CrossRef
83.
Zurück zum Zitat Liu D, et al. Nontoxic membrane-active antimicrobial arylamide oligomers. Angew Chem Int Ed Engl. 2004;43(9):1158–62.CrossRef Liu D, et al. Nontoxic membrane-active antimicrobial arylamide oligomers. Angew Chem Int Ed Engl. 2004;43(9):1158–62.CrossRef
84.
Zurück zum Zitat Ilker MF, et al. Tuning the hemolytic and antibacterial activities of amphiphilic polynorbornene derivatives. J Am Chem Soc. 2004;126(48):15870–5.CrossRef Ilker MF, et al. Tuning the hemolytic and antibacterial activities of amphiphilic polynorbornene derivatives. J Am Chem Soc. 2004;126(48):15870–5.CrossRef
85.
Zurück zum Zitat Jain A, et al. Antimicrobial polymers. Adv Healthc Mater. 2014;3(12):1969–85.CrossRef Jain A, et al. Antimicrobial polymers. Adv Healthc Mater. 2014;3(12):1969–85.CrossRef
86.
Zurück zum Zitat Hirayama M. The antimicrobial activity, hydrophobicity and toxicity of sulfonium compounds, and their relationship. Biocontrol Sci. 2011;16(1):23–31.CrossRef Hirayama M. The antimicrobial activity, hydrophobicity and toxicity of sulfonium compounds, and their relationship. Biocontrol Sci. 2011;16(1):23–31.CrossRef
87.
Zurück zum Zitat Ward M, et al. Antimicrobial activity of statistical polymethacrylic sulfopropylbetaines against gram-positive and gram-negative bacteria. J Appl Polym Sci. 2006;101(2):1036–41.CrossRef Ward M, et al. Antimicrobial activity of statistical polymethacrylic sulfopropylbetaines against gram-positive and gram-negative bacteria. J Appl Polym Sci. 2006;101(2):1036–41.CrossRef
88.
Zurück zum Zitat Mi L, Jiang S. Integrated antimicrobial and nonfouling zwitterionic polymers. Angew Chem Int Ed Engl. 2014;53(7):1746–54.CrossRef Mi L, Jiang S. Integrated antimicrobial and nonfouling zwitterionic polymers. Angew Chem Int Ed Engl. 2014;53(7):1746–54.CrossRef
89.
Zurück zum Zitat Lowe A, et al. Acrylonitrile-based nitric oxide releasing melt-spun fibers for enhanced wound healing. Macromolecules. 2012;45(15):5894–900.CrossRef Lowe A, et al. Acrylonitrile-based nitric oxide releasing melt-spun fibers for enhanced wound healing. Macromolecules. 2012;45(15):5894–900.CrossRef
90.
Zurück zum Zitat Marambio-Jones C, Hoek EV. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res. 2010;12(5):1531–51.CrossRef Marambio-Jones C, Hoek EV. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res. 2010;12(5):1531–51.CrossRef
91.
Zurück zum Zitat Hetrick EM, et al. Bactericidal efficacy of nitric oxide-releasing silica nanoparticles. ACS Nano. 2008;2(2):235–46.CrossRef Hetrick EM, et al. Bactericidal efficacy of nitric oxide-releasing silica nanoparticles. ACS Nano. 2008;2(2):235–46.CrossRef
92.
Zurück zum Zitat Zhang Y, Jiang J, Chen Y. Synthesis and antimicrobial activity of polymeric guanidine and biguanidine salts. Polymer. 1999;40(22):6189–98.CrossRef Zhang Y, Jiang J, Chen Y. Synthesis and antimicrobial activity of polymeric guanidine and biguanidine salts. Polymer. 1999;40(22):6189–98.CrossRef
93.
Zurück zum Zitat Feiertag P, et al. Structural characterization of biocidal oligoguanidines. Macromol Rapid Commun. 2003;24(9):567–70.CrossRef Feiertag P, et al. Structural characterization of biocidal oligoguanidines. Macromol Rapid Commun. 2003;24(9):567–70.CrossRef
94.
Zurück zum Zitat Albert M, et al. Structure–activity relationships of oligoguanidines influence of counterion, diamine, and average molecular weight on biocidal activities. Biomacromolecules. 2003;4(6):1811–7.CrossRef Albert M, et al. Structure–activity relationships of oligoguanidines influence of counterion, diamine, and average molecular weight on biocidal activities. Biomacromolecules. 2003;4(6):1811–7.CrossRef
95.
Zurück zum Zitat Wang Y, et al. Antimicrobial and hemolytic activities of copolymers with cationic and hydrophobic groups: a comparison of block and random copolymers. Macromol Biosci. 2011;11(11):1499–504. Wang Y, et al. Antimicrobial and hemolytic activities of copolymers with cationic and hydrophobic groups: a comparison of block and random copolymers. Macromol Biosci. 2011;11(11):1499–504.
96.
Zurück zum Zitat Locock KES, et al. Guanylated polymethacrylates: a class of potent antimicrobial polymers with low hemolytic activity. Biomacromolecules. 2013;14(11):4021–31.CrossRef Locock KES, et al. Guanylated polymethacrylates: a class of potent antimicrobial polymers with low hemolytic activity. Biomacromolecules. 2013;14(11):4021–31.CrossRef
97.
Zurück zum Zitat Zhou C, et al. High potency and broad-spectrum antimicrobial peptides synthesized via ring-opening polymerization of α-aminoacid-N-carboxyanhydrides. Biomacromolecules. 2010;11(1):60–7.CrossRef Zhou C, et al. High potency and broad-spectrum antimicrobial peptides synthesized via ring-opening polymerization of α-aminoacid-N-carboxyanhydrides. Biomacromolecules. 2010;11(1):60–7.CrossRef
98.
Zurück zum Zitat Song A, et al. Antibacterial studies of cationic polymers with alternating, random, and uniform backbones. ACS Chem Biol. 2011;6(6):590–9.CrossRef Song A, et al. Antibacterial studies of cationic polymers with alternating, random, and uniform backbones. ACS Chem Biol. 2011;6(6):590–9.CrossRef
99.
Zurück zum Zitat Cheng C-Y, et al. Nature of interactions between PEO-PPO-PEO triblock copolymers and lipid membranes: (II) role of hydration dynamics revealed by dynamic nuclear polarization. Biomacromolecules. 2012;13(9):2624–33.CrossRef Cheng C-Y, et al. Nature of interactions between PEO-PPO-PEO triblock copolymers and lipid membranes: (II) role of hydration dynamics revealed by dynamic nuclear polarization. Biomacromolecules. 2012;13(9):2624–33.CrossRef
100.
Zurück zum Zitat Kuroda K, Caputo GA, DeGrado WF. The role of hydrophobicity in the antimicrobial and hemolytic activities of polymethacrylate derivatives. Chemistry. 2009;15(5):1123–33. doi:10.1002/chem.200801523.CrossRef Kuroda K, Caputo GA, DeGrado WF. The role of hydrophobicity in the antimicrobial and hemolytic activities of polymethacrylate derivatives. Chemistry. 2009;15(5):1123–33. doi:10.​1002/​chem.​200801523.CrossRef
101.
Zurück zum Zitat Palermo EF, Sovadinova I, Kuroda K. Structural determinants of antimicrobial activity and biocompatibility in membrane-disrupting methacrylamide random copolymers. Biomacromolecules. 2009;10(11):3098–107.CrossRef Palermo EF, Sovadinova I, Kuroda K. Structural determinants of antimicrobial activity and biocompatibility in membrane-disrupting methacrylamide random copolymers. Biomacromolecules. 2009;10(11):3098–107.CrossRef
102.
Zurück zum Zitat Kuroda K, DeGrado WF. Amphiphilic polymethacrylate derivatives as antimicrobial agents. J Am Chem Soc. 2005;127(12):4128–9.CrossRef Kuroda K, DeGrado WF. Amphiphilic polymethacrylate derivatives as antimicrobial agents. J Am Chem Soc. 2005;127(12):4128–9.CrossRef
103.
Zurück zum Zitat Mowery BP, et al. Mimicry of antimicrobial host-defense peptides by random copolymers. J Am Chem Soc. 2007;129(50):15474–6.CrossRef Mowery BP, et al. Mimicry of antimicrobial host-defense peptides by random copolymers. J Am Chem Soc. 2007;129(50):15474–6.CrossRef
104.
Zurück zum Zitat Lienkamp K, et al. Antimicrobial polymers prepared by ROMP with unprecedented selectivity: a molecular construction kit approach. J Am Chem Soc. 2008;130(30):9836–43.CrossRef Lienkamp K, et al. Antimicrobial polymers prepared by ROMP with unprecedented selectivity: a molecular construction kit approach. J Am Chem Soc. 2008;130(30):9836–43.CrossRef
105.
Zurück zum Zitat Eren T, et al. Antibacterial and hemolytic activities of quaternary pyridinium functionalized polynorbornenes. Macromol Chem Phys. 2008;209(5):516–24.CrossRef Eren T, et al. Antibacterial and hemolytic activities of quaternary pyridinium functionalized polynorbornenes. Macromol Chem Phys. 2008;209(5):516–24.CrossRef
106.
Zurück zum Zitat Sambhy V, Peterson BR, Sen A. Antibacterial and hemolytic activities of pyridinium polymers as a function of the spatial relationship between the positive charge and the pendant alkyl tail. Angew Chem Int Ed Engl. 2008;47(7):1250–4.CrossRef Sambhy V, Peterson BR, Sen A. Antibacterial and hemolytic activities of pyridinium polymers as a function of the spatial relationship between the positive charge and the pendant alkyl tail. Angew Chem Int Ed Engl. 2008;47(7):1250–4.CrossRef
107.
Zurück zum Zitat Gabriel GJ, et al. Comparison of facially amphiphilic versus segregated monomers in the design of antibacterial copolymers. Chemistry. 2009;15(2):433–9.CrossRef Gabriel GJ, et al. Comparison of facially amphiphilic versus segregated monomers in the design of antibacterial copolymers. Chemistry. 2009;15(2):433–9.CrossRef
108.
Zurück zum Zitat Ganewatta MS, Tang C. Controlling macromolecular structures towards effective antimicrobial polymers. Polymer. 2015;63:A1–29.CrossRef Ganewatta MS, Tang C. Controlling macromolecular structures towards effective antimicrobial polymers. Polymer. 2015;63:A1–29.CrossRef
109.
Zurück zum Zitat Jiang Y, et al. Acid-activated antimicrobial random copolymers: a mechanism-guided design of antimicrobial peptide mimics. Macromolecules. 2013;46(10):3959–64.CrossRef Jiang Y, et al. Acid-activated antimicrobial random copolymers: a mechanism-guided design of antimicrobial peptide mimics. Macromolecules. 2013;46(10):3959–64.CrossRef
110.
Zurück zum Zitat Yang X, et al. Long hydrophilic-and-cationic polymers: a different pathway toward preferential activity against bacterial over mammalian membranes. Biomacromolecules. 2014;15(9):3267–77.CrossRef Yang X, et al. Long hydrophilic-and-cationic polymers: a different pathway toward preferential activity against bacterial over mammalian membranes. Biomacromolecules. 2014;15(9):3267–77.CrossRef
111.
Zurück zum Zitat Oda Y, et al. Block versus random amphiphilic copolymers as antibacterial agents. Biomacromolecules. 2011;12(10):3581–91.CrossRef Oda Y, et al. Block versus random amphiphilic copolymers as antibacterial agents. Biomacromolecules. 2011;12(10):3581–91.CrossRef
112.
Zurück zum Zitat Ortega P, et al. Hyperbranched polymers versus dendrimers containing a carbosilane framework and terminal ammonium groups as antimicrobial agents. Org Biomol Chem. 2011;9(14):5238–48.CrossRef Ortega P, et al. Hyperbranched polymers versus dendrimers containing a carbosilane framework and terminal ammonium groups as antimicrobial agents. Org Biomol Chem. 2011;9(14):5238–48.CrossRef
113.
Zurück zum Zitat Young AW, et al. Structure and antimicrobial properties of multivalent short peptides. MedChemComm. 2011;2(4):308–14.CrossRef Young AW, et al. Structure and antimicrobial properties of multivalent short peptides. MedChemComm. 2011;2(4):308–14.CrossRef
114.
Zurück zum Zitat Liu Z, et al. Tuning the membrane selectivity of antimicrobial peptides by using multivalent design. ChemBioChem. 2007;8(17):2063–5.CrossRef Liu Z, et al. Tuning the membrane selectivity of antimicrobial peptides by using multivalent design. ChemBioChem. 2007;8(17):2063–5.CrossRef
115.
Zurück zum Zitat Hou SY, et al. Antimicrobial dendrimer active against Escherichia coli biofilms. Bioorg Med Chem Lett. 2009;19(18):5478–81.CrossRef Hou SY, et al. Antimicrobial dendrimer active against Escherichia coli biofilms. Bioorg Med Chem Lett. 2009;19(18):5478–81.CrossRef
116.
Zurück zum Zitat Wiradharma N, Liu S-Q, Yang Y-Y. Branched and 4-arm starlike α-helical peptide structures with enhanced antimicrobial potency and selectivity. Small. 2012;8(3):362–6.CrossRef Wiradharma N, Liu S-Q, Yang Y-Y. Branched and 4-arm starlike α-helical peptide structures with enhanced antimicrobial potency and selectivity. Small. 2012;8(3):362–6.CrossRef
117.
Zurück zum Zitat Tulu M, et al. Synthesis, characterization and antimicrobial activity of water soluble dendritic macromolecules. Eur J Med Chem. 2009;44(3):1093–9.CrossRef Tulu M, et al. Synthesis, characterization and antimicrobial activity of water soluble dendritic macromolecules. Eur J Med Chem. 2009;44(3):1093–9.CrossRef
118.
Zurück zum Zitat Calabretta MK, et al. Antibacterial activities of poly(amidoamine) dendrimers terminated with amino and poly(ethylene glycol) groups. Biomacromolecules. 2007;8(6):1807–11.CrossRef Calabretta MK, et al. Antibacterial activities of poly(amidoamine) dendrimers terminated with amino and poly(ethylene glycol) groups. Biomacromolecules. 2007;8(6):1807–11.CrossRef
119.
Zurück zum Zitat Wang B, et al. Inhibition of bacterial growth and intramniotic infection in a guinea pig model of chorioamnionitis using PAMAM dendrimers. Int J Pharm. 2010;395(1–2):298–308.CrossRef Wang B, et al. Inhibition of bacterial growth and intramniotic infection in a guinea pig model of chorioamnionitis using PAMAM dendrimers. Int J Pharm. 2010;395(1–2):298–308.CrossRef
120.
Zurück zum Zitat Nonaka T, et al. Synthesis of water-soluble thermosensitive polymers having phosphonium groups from methacryloyloxyethyl trialkyl phosphonium chlorides–N-isopropylacrylamide copolymers and their functions. J Appl Polym Sci. 2003;87(3):386–93.CrossRef Nonaka T, et al. Synthesis of water-soluble thermosensitive polymers having phosphonium groups from methacryloyloxyethyl trialkyl phosphonium chlorides–N-isopropylacrylamide copolymers and their functions. J Appl Polym Sci. 2003;87(3):386–93.CrossRef
121.
Zurück zum Zitat Palermo EF, Kuroda K. Chemical structure of cationic groups in amphiphilic polymethacrylates modulates the antimicrobial and hemolytic activities. Biomacromolecules. 2009;10(6):1416–28.CrossRef Palermo EF, Kuroda K. Chemical structure of cationic groups in amphiphilic polymethacrylates modulates the antimicrobial and hemolytic activities. Biomacromolecules. 2009;10(6):1416–28.CrossRef
122.
Zurück zum Zitat Al-Badri ZM, et al. Investigating the effect of increasing charge density on the hemolytic activity of synthetic antimicrobial polymers. Biomacromolecules. 2008;9(10):2805–10.CrossRef Al-Badri ZM, et al. Investigating the effect of increasing charge density on the hemolytic activity of synthetic antimicrobial polymers. Biomacromolecules. 2008;9(10):2805–10.CrossRef
123.
Zurück zum Zitat Chen Y, et al. Amphipathic antibacterial agents using cationic methacrylic polymers with natural rosin as pendant group. RSC Adv. 2012;2(27):10275–82.CrossRef Chen Y, et al. Amphipathic antibacterial agents using cationic methacrylic polymers with natural rosin as pendant group. RSC Adv. 2012;2(27):10275–82.CrossRef
124.
Zurück zum Zitat Wang J, et al. Robust antimicrobial compounds and polymers derived from natural resin acids. Chem Commun. 2012;48(6):916–8.CrossRef Wang J, et al. Robust antimicrobial compounds and polymers derived from natural resin acids. Chem Commun. 2012;48(6):916–8.CrossRef
125.
Zurück zum Zitat Colak S, et al. Hydrophilic modifications of an amphiphilic polynorbornene and the effects on its hemolytic and antibacterial activity. Biomacromolecules. 2009;10(2):353–9.CrossRef Colak S, et al. Hydrophilic modifications of an amphiphilic polynorbornene and the effects on its hemolytic and antibacterial activity. Biomacromolecules. 2009;10(2):353–9.CrossRef
126.
Zurück zum Zitat Kanazawa A, Ikeda T, Endo T. Polymeric phosphonium salts as a novel class of cationic biocides. II. Effects of counter anion and molecular weight on antibacterial activity of polymeric phosphonium salts. J Polym Sci A Polym Chem. 1993;31(6):1441–7.CrossRef Kanazawa A, Ikeda T, Endo T. Polymeric phosphonium salts as a novel class of cationic biocides. II. Effects of counter anion and molecular weight on antibacterial activity of polymeric phosphonium salts. J Polym Sci A Polym Chem. 1993;31(6):1441–7.CrossRef
127.
Zurück zum Zitat Bruenke J, et al. Quantitative comparison of the antimicrobial efficiency of leaching versus nonleaching polymer materials. Macromol Biosci. 2016;16(5):647–54.CrossRef Bruenke J, et al. Quantitative comparison of the antimicrobial efficiency of leaching versus nonleaching polymer materials. Macromol Biosci. 2016;16(5):647–54.CrossRef
128.
Zurück zum Zitat Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal. 2016;6(2):71–9.CrossRef Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal. 2016;6(2):71–9.CrossRef
129.
Zurück zum Zitat CLSI. Performance standards for antimicrobial disk susceptibility tests. Approved Standard. 7th ed. CLSI document M02-A11. Wayne, PA: Clinical and Laboratory Standards Institute; 2012. CLSI. Performance standards for antimicrobial disk susceptibility tests. Approved Standard. 7th ed. CLSI document M02-A11. Wayne, PA: Clinical and Laboratory Standards Institute; 2012.
130.
Zurück zum Zitat CLSI. Method for antifungal disk diffusion susceptibility testing of yeasts. Approved Guideline. CLSI document M44-A. Wayne, PA: CLSI; 2004. CLSI. Method for antifungal disk diffusion susceptibility testing of yeasts. Approved Guideline. CLSI document M44-A. Wayne, PA: CLSI; 2004.
131.
Zurück zum Zitat Magaldi S, et al. Well diffusion for antifungal susceptibility testing. Int J Infect Dis. 2004;8(1):39–45.CrossRef Magaldi S, et al. Well diffusion for antifungal susceptibility testing. Int J Infect Dis. 2004;8(1):39–45.CrossRef
132.
Zurück zum Zitat Valgas C, et al. Screening methods to determine antibacterial activity of natural products. Braz J Microbiol. 2007;38(2):369–80.CrossRef Valgas C, et al. Screening methods to determine antibacterial activity of natural products. Braz J Microbiol. 2007;38(2):369–80.CrossRef
133.
Zurück zum Zitat Jiménez-Esquilín A, Roane T. Antifungal activities of actinomycete strains associated with high-altitude sagebrush rhizosphere. J Ind Microbiol Biotechnol. 2005;32(8):378–81.CrossRef Jiménez-Esquilín A, Roane T. Antifungal activities of actinomycete strains associated with high-altitude sagebrush rhizosphere. J Ind Microbiol Biotechnol. 2005;32(8):378–81.CrossRef
134.
Zurück zum Zitat Elleuch L, et al. Bioactive secondary metabolites from a new terrestrial Streptomyces sp. TN262. Appl Biochem Biotechnol. 2010;162(2):579–93.CrossRef Elleuch L, et al. Bioactive secondary metabolites from a new terrestrial Streptomyces sp. TN262. Appl Biochem Biotechnol. 2010;162(2):579–93.CrossRef
135.
Zurück zum Zitat Lertcanawanichakul M, Sawangnop S. A comparison of two methods used for measuring the antagonistic activity of Bacillus species. Walailak J Sci Technol. 2011;5(2):161–71. Lertcanawanichakul M, Sawangnop S. A comparison of two methods used for measuring the antagonistic activity of Bacillus species. Walailak J Sci Technol. 2011;5(2):161–71.
136.
Zurück zum Zitat Ali‐Shtayeh M, Abu Ghdeib SI. Antifungal activity of plant extracts against dermatophytes. Mycoses. 1999;42(11–12):665–72.CrossRef Ali‐Shtayeh M, Abu Ghdeib SI. Antifungal activity of plant extracts against dermatophytes. Mycoses. 1999;42(11–12):665–72.CrossRef
137.
Zurück zum Zitat Mukherjee PK, Raghu K. Effect of temperature on antagonistic and biocontrol potential of shape Trichoderma sp. on Sclerotium rolfsii. Mycopathologia. 1997;139(3):151–5.CrossRef Mukherjee PK, Raghu K. Effect of temperature on antagonistic and biocontrol potential of shape Trichoderma sp. on Sclerotium rolfsii. Mycopathologia. 1997;139(3):151–5.CrossRef
138.
Zurück zum Zitat Kumar SN, et al. Isolation and identification of antimicrobial secondary metabolites from Bacillus cereus associated with a rhabditid entomopathogenic nematode. Ann Microbiol. 2014;64(1):209–18.CrossRef Kumar SN, et al. Isolation and identification of antimicrobial secondary metabolites from Bacillus cereus associated with a rhabditid entomopathogenic nematode. Ann Microbiol. 2014;64(1):209–18.CrossRef
139.
Zurück zum Zitat Dewanjee S, et al. Bioautography and its scope in the field of natural product chemistry. J Pharm Anal. 2015;5(2):75–84.CrossRef Dewanjee S, et al. Bioautography and its scope in the field of natural product chemistry. J Pharm Anal. 2015;5(2):75–84.CrossRef
140.
Zurück zum Zitat Marston A. Thin-layer chromatography with biological detection in phytochemistry. J Chromatogr A. 2011;1218(19):2676–83.CrossRef Marston A. Thin-layer chromatography with biological detection in phytochemistry. J Chromatogr A. 2011;1218(19):2676–83.CrossRef
141.
Zurück zum Zitat Choma IM, Grzelak EM. Bioautography detection in thin-layer chromatography. J Chromatogr A. 2011;1218(19):2684–91.CrossRef Choma IM, Grzelak EM. Bioautography detection in thin-layer chromatography. J Chromatogr A. 2011;1218(19):2684–91.CrossRef
142.
Zurück zum Zitat Grzelak EM, Majer-Dziedzic B, Choma IM. Development of a novel direct bioautography–thin-layer chromatography test: optimization of growth conditions for Gram-negative bacteria, Escherichia coli. J AOAC Int. 2011;94(5):1567–72.CrossRef Grzelak EM, Majer-Dziedzic B, Choma IM. Development of a novel direct bioautography–thin-layer chromatography test: optimization of growth conditions for Gram-negative bacteria, Escherichia coli. J AOAC Int. 2011;94(5):1567–72.CrossRef
143.
Zurück zum Zitat Silva MT, et al. Studies on antimicrobial activity, in vitro, of Physalis angulata L. (Solanaceae) fraction and physalin B bringing out the importance of assay determination. Mem Inst Oswaldo Cruz. 2005;100(7):779–82.CrossRef Silva MT, et al. Studies on antimicrobial activity, in vitro, of Physalis angulata L. (Solanaceae) fraction and physalin B bringing out the importance of assay determination. Mem Inst Oswaldo Cruz. 2005;100(7):779–82.CrossRef
144.
Zurück zum Zitat Runyoro DK, et al. Screening of Tanzanian medicinal plants for anti-Candida activity. BMC Complement Altern Med. 2006;6(1):1.CrossRef Runyoro DK, et al. Screening of Tanzanian medicinal plants for anti-Candida activity. BMC Complement Altern Med. 2006;6(1):1.CrossRef
145.
Zurück zum Zitat Pfaller M, Sheehan D, Rex J. Determination of fungicidal activities against yeasts and molds: lessons learned from bactericidal testing and the need for standardization. Clin Microbiol Rev. 2004;17(2):268–80.CrossRef Pfaller M, Sheehan D, Rex J. Determination of fungicidal activities against yeasts and molds: lessons learned from bactericidal testing and the need for standardization. Clin Microbiol Rev. 2004;17(2):268–80.CrossRef
146.
Zurück zum Zitat CLSI. Methods for determining bactericidal activity of antimicrobial agents. Approved Guideline. CLSI document M26-A. Wayne, PA: Clinical and Laboratory Standards Institute; 1998. CLSI. Methods for determining bactericidal activity of antimicrobial agents. Approved Guideline. CLSI document M26-A. Wayne, PA: Clinical and Laboratory Standards Institute; 1998.
147.
Zurück zum Zitat Konaté K, et al. Antibacterial activity against β-lactamase producing Methicillin and Ampicillin-resistants Staphylococcus aureus: Fractional Inhibitory Concentration Index (FICI) determination. Ann Clin Microbiol Antimicrob. 2012;11(1):1.CrossRef Konaté K, et al. Antibacterial activity against β-lactamase producing Methicillin and Ampicillin-resistants Staphylococcus aureus: Fractional Inhibitory Concentration Index (FICI) determination. Ann Clin Microbiol Antimicrob. 2012;11(1):1.CrossRef
148.
Zurück zum Zitat CLSI. Method for antifungal disk diffusion susceptibility testing of nondermatophyte filamentous fungi. Approved Guideline. CLSI document M51-A. Wayne, PA: Clinical and Laboratory Standards Institute; 2010. CLSI. Method for antifungal disk diffusion susceptibility testing of nondermatophyte filamentous fungi. Approved Guideline. CLSI document M51-A. Wayne, PA: Clinical and Laboratory Standards Institute; 2010.
149.
Zurück zum Zitat CLSI. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved Standard, 9th ed. CLSI document M07-A9. Wayne, PA: Clinical and Laboratory Standards Institute; 2012. CLSI. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved Standard, 9th ed. CLSI document M07-A9. Wayne, PA: Clinical and Laboratory Standards Institute; 2012.
150.
Zurück zum Zitat CLSI. Reference method for broth dilution antifungal susceptibility testing of yeasts. Approved Standard, 2nd ed. NCCLS document M27-A2. Wayne, PA: CLSI; 2002. CLSI. Reference method for broth dilution antifungal susceptibility testing of yeasts. Approved Standard, 2nd ed. NCCLS document M27-A2. Wayne, PA: CLSI; 2002.
151.
Zurück zum Zitat CLSI. Reference method for broth dilution antifungal susceptibility testing filamentous fungi. Approved Standard, 2nd ed. CLSI document M38-A2. Wayne, PA: CLSI; 2008. CLSI. Reference method for broth dilution antifungal susceptibility testing filamentous fungi. Approved Standard, 2nd ed. CLSI document M38-A2. Wayne, PA: CLSI; 2008.
153.
Zurück zum Zitat ASTM E2180–07. Standard test method for determining the activity of incorporated antimicrobial agent(s) in polymeric or hydrophobic materials. 2012. www.astm.org ASTM E2180–07. Standard test method for determining the activity of incorporated antimicrobial agent(s) in polymeric or hydrophobic materials. 2012. www.​astm.​org
154.
Zurück zum Zitat Bechert T, Steinrucke P, Guggenbichler JP. A new method for screening anti-infective biomaterials. Nat Med. 2000;6(9):1053–6.CrossRef Bechert T, Steinrucke P, Guggenbichler JP. A new method for screening anti-infective biomaterials. Nat Med. 2000;6(9):1053–6.CrossRef
155.
Zurück zum Zitat Yacoby I, Benhar I. Targeted anti bacterial therapy. Infect Disord Drug Targets. 2007;7(3):221–9.CrossRef Yacoby I, Benhar I. Targeted anti bacterial therapy. Infect Disord Drug Targets. 2007;7(3):221–9.CrossRef
Metadaten
Titel
Chemical Approaches to Prepare Antimicrobial Polymers
verfasst von
Juan Rodríguez-Hernández
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-47961-3_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.