Skip to main content
Erschienen in: Cellulose 5/2022

29.06.2021 | Original Research

Comparative characterization of phosphorylated wood holocelluloses and celluloses for nanocellulose production

verfasst von: Mengchen Zhao, Yuko Ono, Yuichi Noguchi, Shuji Fujisawa, Tsuguyuki Saito

Erschienen in: Cellulose | Ausgabe 5/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Raw material selection for cellulose nanofiber (CNF) production is a crucial step for tailoring CNF properties for its intended applications. Thus, understanding the dependency of the raw material on the resulting CNF properties is imperative. However, this understanding is lacking for newly emerging phosphorylated CNFs. Herein, four types of wood cellulosic materials, namely softwood- and hardwood-derived holocelluloses and purified celluloses, were subjected to phosphorylation. The holocelluloses possessed greater amounts of phosphate groups (up to 2.8 mmol/g) than celluloses (2.2–2.4 mmol/g). Significant amounts of hemicelluloses were retained after phosphorylation in both holocelluloses. The amounts of hemicellulose-derived residual neutral sugars significantly differed depending on the wood species. The disintegration into CNFs was governed not only by the amount and structure of the phosphate groups, but also by the fiber morphology and hemicellulose content of the raw material. Polyphosphate groups, cross-linking via phosphates, and carbamates, which were formed by side reactions, were also quantified.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Daicho K, Saito T, Fujisawa S, Isogai A (2018) The crystallinity of nanocellulose: dispersion-induced disordering of the grain boundary in biologically structured cellulose. ACS Appl Nano Mater 1:5774–5785 Daicho K, Saito T, Fujisawa S, Isogai A (2018) The crystallinity of nanocellulose: dispersion-induced disordering of the grain boundary in biologically structured cellulose. ACS Appl Nano Mater 1:5774–5785
Zurück zum Zitat Daicho K, Kobayashi K, Fujisawa S, Saito T (2020) Crystallinity-independent yet modification-dependent true density of nanocellulose. Biomacromol 21:939–945 Daicho K, Kobayashi K, Fujisawa S, Saito T (2020) Crystallinity-independent yet modification-dependent true density of nanocellulose. Biomacromol 21:939–945
Zurück zum Zitat Davis FV, Findlay J, Rogers E (1949) The urea-phosphoric acid method of flameproofing textiles. J Text Inst Trans 40:839–854 Davis FV, Findlay J, Rogers E (1949) The urea-phosphoric acid method of flameproofing textiles. J Text Inst Trans 40:839–854
Zurück zum Zitat Ehman NV, Lourenço AF, McDonagh BH et al (2020) Influence of initial chemical composition and characteristics of pulps on the production and properties of lignocellulosic nanofibers. Int J Biol Macromol 143:453–461PubMed Ehman NV, Lourenço AF, McDonagh BH et al (2020) Influence of initial chemical composition and characteristics of pulps on the production and properties of lignocellulosic nanofibers. Int J Biol Macromol 143:453–461PubMed
Zurück zum Zitat Fukuzumi H, Saito T, Iwata T et al (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromol 10:162–165 Fukuzumi H, Saito T, Iwata T et al (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromol 10:162–165
Zurück zum Zitat Ghanadpour M, Carosio F, Larsson PT, Wågberg L (2015) Phosphorylated cellulose nanofibrils: a renewable nanomaterial for the preparation of intrinsically flame-retardant materials. Biomacromol 16:3399–3410 Ghanadpour M, Carosio F, Larsson PT, Wågberg L (2015) Phosphorylated cellulose nanofibrils: a renewable nanomaterial for the preparation of intrinsically flame-retardant materials. Biomacromol 16:3399–3410
Zurück zum Zitat Granja PL, Barbosa MA, Pouységu L et al (2001a) Cellulose phosphates as biomaterials. Mineralization of chemically modified regenerated cellulose hydrogels. J Mater Sci 36:2163–2172 Granja PL, Barbosa MA, Pouységu L et al (2001a) Cellulose phosphates as biomaterials. Mineralization of chemically modified regenerated cellulose hydrogels. J Mater Sci 36:2163–2172
Zurück zum Zitat Granja PL, Pouysgu L, Ptraud M et al (2001b) Cellulose phosphates as biomaterials. I. Synthesis and characterization of highly phosphorylated cellulose gels. J Appl Polym Sci 82:3341–3353 Granja PL, Pouysgu L, Ptraud M et al (2001b) Cellulose phosphates as biomaterials. I. Synthesis and characterization of highly phosphorylated cellulose gels. J Appl Polym Sci 82:3341–3353
Zurück zum Zitat Gu J, Hsieh YL (2015) Surface and structure characteristics, self-assembling, and solvent compatibility of holocellulose nanofibrils. ACS Appl Mater Interfaces 7:4192–4201PubMed Gu J, Hsieh YL (2015) Surface and structure characteristics, self-assembling, and solvent compatibility of holocellulose nanofibrils. ACS Appl Mater Interfaces 7:4192–4201PubMed
Zurück zum Zitat Guo Y, Zhou J, Song Y, Zhang L (2009) An efficient and environmentally friendly method for the synthesis of cellulose carbamate by microwave heating. Macromol Rapid Commun 30:1504–1508PubMed Guo Y, Zhou J, Song Y, Zhang L (2009) An efficient and environmentally friendly method for the synthesis of cellulose carbamate by microwave heating. Macromol Rapid Commun 30:1504–1508PubMed
Zurück zum Zitat Guthrie JD (1952) Ion exchange cottons. Ind Eng Chem 44:2187–2189 Guthrie JD (1952) Ion exchange cottons. Ind Eng Chem 44:2187–2189
Zurück zum Zitat Hult EL, Iversen T, Sugiyama J (2003) Characterization of the supermolecular structure of cellulose in wood pulp fibres. Cellulose 10:103–110 Hult EL, Iversen T, Sugiyama J (2003) Characterization of the supermolecular structure of cellulose in wood pulp fibres. Cellulose 10:103–110
Zurück zum Zitat Illy N, Fache M, Ménard R et al (2015) Phosphorylation of bio-based compounds: the state of the art. Polym Chem 6:6257–6291 Illy N, Fache M, Ménard R et al (2015) Phosphorylation of bio-based compounds: the state of the art. Polym Chem 6:6257–6291
Zurück zum Zitat Kim H, Ralph J (2014) A gel-state 2D-NMR method for plant cell wall profiling and analysis: a model study with the amorphous cellulose and xylan from ball-milled cotton linters. RSC Adv 4:7549–7560 Kim H, Ralph J (2014) A gel-state 2D-NMR method for plant cell wall profiling and analysis: a model study with the amorphous cellulose and xylan from ball-milled cotton linters. RSC Adv 4:7549–7560
Zurück zum Zitat Kokol V, Božič M, Vogrinčič R, Mathew AP (2015) Characterisation and properties of homo- and heterogenously phosphorylated nanocellulose. Carbohydr Polym 125:301–313PubMed Kokol V, Božič M, Vogrinčič R, Mathew AP (2015) Characterisation and properties of homo- and heterogenously phosphorylated nanocellulose. Carbohydr Polym 125:301–313PubMed
Zurück zum Zitat Kuramae R, Saito T, Isogai A (2014) TEMPO-oxidized cellulose nanofibrils prepared from various plant holocelluloses. React Funct Polym 85:126–133 Kuramae R, Saito T, Isogai A (2014) TEMPO-oxidized cellulose nanofibrils prepared from various plant holocelluloses. React Funct Polym 85:126–133
Zurück zum Zitat Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose - Its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764PubMed Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose - Its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764PubMed
Zurück zum Zitat Lee KY, Tammelin T, Schulfter K et al (2012) High performance cellulose nanocomposites: comparing the reinforcing ability of bacterial cellulose and nanofibrillated cellulose. ACS Appl Mater Interfaces 4:4078–4086PubMed Lee KY, Tammelin T, Schulfter K et al (2012) High performance cellulose nanocomposites: comparing the reinforcing ability of bacterial cellulose and nanofibrillated cellulose. ACS Appl Mater Interfaces 4:4078–4086PubMed
Zurück zum Zitat Meng Q, Li H, Fu S, Lucia LA (2014) The non-trivial role of native xylans on the preparation of TEMPO-oxidized cellulose nanofibrils. React Funct Polym 85:142–150 Meng Q, Li H, Fu S, Lucia LA (2014) The non-trivial role of native xylans on the preparation of TEMPO-oxidized cellulose nanofibrils. React Funct Polym 85:142–150
Zurück zum Zitat Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994PubMed Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994PubMed
Zurück zum Zitat Mucalo MR, Yokogawa Y, Toriyama M et al (1995) Growth of calcium phosphate on surface-modified cotton. J Mater Sci Mater Med 6:597–605 Mucalo MR, Yokogawa Y, Toriyama M et al (1995) Growth of calcium phosphate on surface-modified cotton. J Mater Sci Mater Med 6:597–605
Zurück zum Zitat Naderi A, Lindström T, Weise CF et al (2016) Phosphorylated nanofibrillated cellulose: production and properties. Nord Pulp Pap Res J 31:21–29 Naderi A, Lindström T, Weise CF et al (2016) Phosphorylated nanofibrillated cellulose: production and properties. Nord Pulp Pap Res J 31:21–29
Zurück zum Zitat Nehls I, Wagenknecht W, Philipp B, Stscherbina D (1994) Characterization of cellulose and cellulose derivatives in solution by high resolution 13C-NMR spectroscopy. Prog Polym Sci 19:29–78 Nehls I, Wagenknecht W, Philipp B, Stscherbina D (1994) Characterization of cellulose and cellulose derivatives in solution by high resolution 13C-NMR spectroscopy. Prog Polym Sci 19:29–78
Zurück zum Zitat Noguchi Y, Homma I, Matsubara Y (2017) Complete nanofibrillation of cellulose prepared by phosphorylation. Cellulose 24:1295–1305 Noguchi Y, Homma I, Matsubara Y (2017) Complete nanofibrillation of cellulose prepared by phosphorylation. Cellulose 24:1295–1305
Zurück zum Zitat Noguchi Y, Homma I, Watanabe T (2020) Properties of phosphorylated cellulose nanofiber dispersions under various conditions. Cellulose 27:2029–2040 Noguchi Y, Homma I, Watanabe T (2020) Properties of phosphorylated cellulose nanofiber dispersions under various conditions. Cellulose 27:2029–2040
Zurück zum Zitat Nuessle AC, Ford FM, Hall WP, Lippert AL (1956) Some aspects of the cellulose-phosphate-urea reaction. Text Res J 26:32–39 Nuessle AC, Ford FM, Hall WP, Lippert AL (1956) Some aspects of the cellulose-phosphate-urea reaction. Text Res J 26:32–39
Zurück zum Zitat Okita Y, Saito T, Isogai A (2009) TEMPO-mediated oxidation of softwood thermomechanical pulp. Holzforschung 63:529–535 Okita Y, Saito T, Isogai A (2009) TEMPO-mediated oxidation of softwood thermomechanical pulp. Holzforschung 63:529–535
Zurück zum Zitat Okita Y, Saito T, Isogai A (2010) Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromol 11:1696–1700 Okita Y, Saito T, Isogai A (2010) Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromol 11:1696–1700
Zurück zum Zitat Ono Y, Tanaka R, Funahashi R et al (2016) SEC–MALLS analysis of ethylenediamine-pretreated native celluloses in LiCl/N, N-dimethylacetamide: softwood kraft pulp and highly crystalline bacterial, tunicate, and algal celluloses. Cellulose 23:1639–1647 Ono Y, Tanaka R, Funahashi R et al (2016) SEC–MALLS analysis of ethylenediamine-pretreated native celluloses in LiCl/N, N-dimethylacetamide: softwood kraft pulp and highly crystalline bacterial, tunicate, and algal celluloses. Cellulose 23:1639–1647
Zurück zum Zitat Pääkkönen T, Dimic-Misic K, Orelma H et al (2016) Effect of xylan in hardwood pulp on the reaction rate of TEMPO-mediated oxidation and the rheology of the final nanofibrillated cellulose gel. Cellulose 23:277–293 Pääkkönen T, Dimic-Misic K, Orelma H et al (2016) Effect of xylan in hardwood pulp on the reaction rate of TEMPO-mediated oxidation and the rheology of the final nanofibrillated cellulose gel. Cellulose 23:277–293
Zurück zum Zitat Petreus T, Stoica BA, Petreus O et al (2014) Preparation and cytocompatibility evaluation for hydrosoluble phosphorous acid-derivatized cellulose as tissue engineering scaffold material. J Mater Sci Mater Med 25:1115–1127PubMed Petreus T, Stoica BA, Petreus O et al (2014) Preparation and cytocompatibility evaluation for hydrosoluble phosphorous acid-derivatized cellulose as tissue engineering scaffold material. J Mater Sci Mater Med 25:1115–1127PubMed
Zurück zum Zitat Preston JM, Clark JF, Beath WR, Nimkar MV (1954) Swelling powers of urea solutions on cellulose. J Text Inst Trans 45:504–509 Preston JM, Clark JF, Beath WR, Nimkar MV (1954) Swelling powers of urea solutions on cellulose. J Text Inst Trans 45:504–509
Zurück zum Zitat Reid JD, Mazzeno LW (1949) Preparation and properties of cellulose phosphates. Ind Eng Chem 41:2828–2831 Reid JD, Mazzeno LW (1949) Preparation and properties of cellulose phosphates. Ind Eng Chem 41:2828–2831
Zurück zum Zitat Rol F, Belgacem N, Meyer V et al (2019) Production of fire-retardant phosphorylated cellulose fibrils by twin-screw extrusion with low energy consumption. Cellulose 26:5635–5651 Rol F, Belgacem N, Meyer V et al (2019) Production of fire-retardant phosphorylated cellulose fibrils by twin-screw extrusion with low energy consumption. Cellulose 26:5635–5651
Zurück zum Zitat Rol F, Sillard C, Bardet M et al (2020) Cellulose phosphorylation comparison and analysis of phosphorate position on cellulose fibers. Carbohydr Polym 229:115294PubMed Rol F, Sillard C, Bardet M et al (2020) Cellulose phosphorylation comparison and analysis of phosphorate position on cellulose fibers. Carbohydr Polym 229:115294PubMed
Zurück zum Zitat Saito N, Seki K, Aoyama M (1992) Super absorbent materials prepared from lignocellulosic materials by phosphorylation II. Mokuzai Gakkaishi 38:382–385 Saito N, Seki K, Aoyama M (1992) Super absorbent materials prepared from lignocellulosic materials by phosphorylation II. Mokuzai Gakkaishi 38:382–385
Zurück zum Zitat Saito T, Nishiyama Y, Putaux JL et al (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromol 7:1687–1691 Saito T, Nishiyama Y, Putaux JL et al (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromol 7:1687–1691
Zurück zum Zitat Stelte W, Sanadi AR (2009) Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulps. Ind Eng Chem Res 48:11211–11219 Stelte W, Sanadi AR (2009) Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulps. Ind Eng Chem Res 48:11211–11219
Zurück zum Zitat Suflet DM, Chitanu GC, Popa VI (2006) Phosphorylation of polysaccharides: new results on synthesis and characterisation of phosphorylated cellulose. React Funct Polym 66:1240–1249 Suflet DM, Chitanu GC, Popa VI (2006) Phosphorylation of polysaccharides: new results on synthesis and characterisation of phosphorylated cellulose. React Funct Polym 66:1240–1249
Zurück zum Zitat Tanaka R, Saito T, Hänninen T et al (2016) Viscoelastic properties of core-shell-structured, hemicellulose-rich nanofibrillated cellulose in dispersion and wet-film states. Biomacromol 17:2104–2111 Tanaka R, Saito T, Hänninen T et al (2016) Viscoelastic properties of core-shell-structured, hemicellulose-rich nanofibrillated cellulose in dispersion and wet-film states. Biomacromol 17:2104–2111
Zurück zum Zitat Tarrés Q, Ehman NV, Vallejos ME et al (2017) Lignocellulosic nanofibers from triticale straw: the influence of hemicelluloses and lignin in their production and properties. Carbohydr Polym 163:20–27PubMed Tarrés Q, Ehman NV, Vallejos ME et al (2017) Lignocellulosic nanofibers from triticale straw: the influence of hemicelluloses and lignin in their production and properties. Carbohydr Polym 163:20–27PubMed
Zurück zum Zitat van Raaphorst JG, Haremaker HH (1970) Separation of sodium and potassium by ion-exchange on cellulose phosphate. Talanta 17:345–349PubMed van Raaphorst JG, Haremaker HH (1970) Separation of sodium and potassium by ion-exchange on cellulose phosphate. Talanta 17:345–349PubMed
Zurück zum Zitat Yang X, Berthold F, Berglund LA (2018) Preserving cellulose structure: delignified wood fibers for paper structures of high strength and transparency. Biomacromol 19:3020–3029 Yang X, Berthold F, Berglund LA (2018) Preserving cellulose structure: delignified wood fibers for paper structures of high strength and transparency. Biomacromol 19:3020–3029
Zurück zum Zitat Zhao Y, Moser C, Lindström ME et al (2017) Cellulose nanofibers from softwood, hardwood, and tunicate: preparation-structure-film performance interrelation. ACS Appl Mater Interfaces 9:13508–13519PubMed Zhao Y, Moser C, Lindström ME et al (2017) Cellulose nanofibers from softwood, hardwood, and tunicate: preparation-structure-film performance interrelation. ACS Appl Mater Interfaces 9:13508–13519PubMed
Metadaten
Titel
Comparative characterization of phosphorylated wood holocelluloses and celluloses for nanocellulose production
verfasst von
Mengchen Zhao
Yuko Ono
Yuichi Noguchi
Shuji Fujisawa
Tsuguyuki Saito
Publikationsdatum
29.06.2021
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 5/2022
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-021-04013-3

Weitere Artikel der Ausgabe 5/2022

Cellulose 5/2022 Zur Ausgabe