Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 9/2022

29.03.2022 | Technical Article

Computational Evaluation of Temperature-Dependent Microstructural Transformations of Ti6Al4V for Laser Powder Bed Fusion Process

verfasst von: Ayse Kubra Yildiz, Mehmet Mollamahmutoglu, Oguzhan Yilmaz

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 9/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In-situ decomposition in the laser powder bed fusion process enables the α’ martensite to transform into lamellar (α + β) microstructures to achieve superior mechanical properties, yet special conditions are required for the formation of decomposition, and these conditions are difficult to predict. In this context, an efficient model has been developed to evaluate the ever-changing thermal behavior of the multi-tracks and multi-layer laser scanning process. The model includes empirical approaches to determine conductivity enhancement factor in the z-direction (λz) and absorptivity for Ti6Al4V. Furthermore, the temperature-dependent microstructural transformations in relation to process parameters and the required stages of martensite decomposition are explained. The model produced consistent results for parameters selected from the literature that allow martensite decomposition. In addition, parameters were estimated for a powder layer thickness of 30 μm and a laser with a beam diameter of 85 μm, where martensite decomposition would be difficult. A cuboid sample was designed to be manufactured on a commercial machine. Despite the limitations in the machine, the martensite decomposition was able to be initiated in the center of the sample by enlarging its dimensions. This shows that lamellar structures with a layer thickness of 30 micrometers can be produced under favorable conditions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D. Palmeri, G. Buffa, G. Pollara and L. Fratini, The Effect of Building Direction on Microstructure and Microhardness during Selective Laser Melting of Ti6Al4V Titanium Alloy, J. Mater. Eng. Perform., 2021, 30(12), p 8725–8734.CrossRef D. Palmeri, G. Buffa, G. Pollara and L. Fratini, The Effect of Building Direction on Microstructure and Microhardness during Selective Laser Melting of Ti6Al4V Titanium Alloy, J. Mater. Eng. Perform., 2021, 30(12), p 8725–8734.CrossRef
2.
Zurück zum Zitat M. Vignesh, G. Ranjith Kumar, M. Sathishkumar , M. Manikandan, G. Rajyalakshmi, R. Ramanujam, and N. Arivazhagan, Development of Biomedical Implants through Additive Manufacturing: A Review, J. Mater. Eng. Perform, 2021, 30(7), 4735-4744. M. Vignesh, G. Ranjith Kumar, M. Sathishkumar , M. Manikandan, G. Rajyalakshmi, R. Ramanujam, and N. Arivazhagan, Development of Biomedical Implants through Additive Manufacturing: A Review, J. Mater. Eng. Perform, 2021, 30(7), 4735-4744.
3.
Zurück zum Zitat A. Moridi, A.G. Demir, L. Caprio, A.J. Hart, B. Previtali, B. Colosimo, Deformation and Failure Mechanisms of Ti–6Al–4V as Built by Selective Laser Melting, Materials Science and Engineering: A.,2019, 768. 138456. A. Moridi, A.G. Demir, L. Caprio, A.J. Hart, B. Previtali, B. Colosimo, Deformation and Failure Mechanisms of Ti–6Al–4V as Built by Selective Laser Melting, Materials Science and Engineering: A.,2019, 768. 138456.
4.
Zurück zum Zitat E. Salsi, M. Chiumenti and M. Cervera, Modeling of Microstructure Evolution of Ti6Al4V for Additive Manufacturing, Metals, 2018, 8, p 633.CrossRef E. Salsi, M. Chiumenti and M. Cervera, Modeling of Microstructure Evolution of Ti6Al4V for Additive Manufacturing, Metals, 2018, 8, p 633.CrossRef
5.
Zurück zum Zitat M. Motyka, Martensite Formation and Decomposition during Traditional and AM Processing of Two-Phase Titanium Alloys—An Overview, Metals, 2021, 11(3), p 481.CrossRef M. Motyka, Martensite Formation and Decomposition during Traditional and AM Processing of Two-Phase Titanium Alloys—An Overview, Metals, 2021, 11(3), p 481.CrossRef
6.
Zurück zum Zitat C. Qiu, N.J.E. Adkins and M.M. Attallah, Microstructure and Tensile Properties of Selectively Laser-Melted and of Hiped Laser-Melted Ti–6Al–4V, Mater. Sci. Eng., 2013, 578, p 230–239.CrossRef C. Qiu, N.J.E. Adkins and M.M. Attallah, Microstructure and Tensile Properties of Selectively Laser-Melted and of Hiped Laser-Melted Ti–6Al–4V, Mater. Sci. Eng., 2013, 578, p 230–239.CrossRef
7.
Zurück zum Zitat C. Formanoir, G. Martin, F. Prima, S.Y.P. Allain, T. Dessolier, F. Sun, S. Vives, B. Hary, Y. Brechet and S. Godet, Micromechanical Behavior and Thermal Stability of a Dual-Phase α+α’ Titanium Alloy Produced by Additive Manufacturing, Acta Mater., 2019, 162, p 149–162.CrossRef C. Formanoir, G. Martin, F. Prima, S.Y.P. Allain, T. Dessolier, F. Sun, S. Vives, B. Hary, Y. Brechet and S. Godet, Micromechanical Behavior and Thermal Stability of a Dual-Phase α+α’ Titanium Alloy Produced by Additive Manufacturing, Acta Mater., 2019, 162, p 149–162.CrossRef
8.
Zurück zum Zitat S.L. Sing, Selective Laser Melting of Novel Titanium-Tantalum Alloy as Orthopaedic Biomaterial, 1st ed. Springer, Singapore, 2019.CrossRef S.L. Sing, Selective Laser Melting of Novel Titanium-Tantalum Alloy as Orthopaedic Biomaterial, 1st ed. Springer, Singapore, 2019.CrossRef
9.
Zurück zum Zitat B. Vrancken, L. Thijs, J.P. Kruth and J. Van Humbeeck, Microstructure and Mechanical Properties of a Novel β Titanium Metallic Composite by Selective Laser Melting, Acta Mater., 2014, 68, p 150–158.CrossRef B. Vrancken, L. Thijs, J.P. Kruth and J. Van Humbeeck, Microstructure and Mechanical Properties of a Novel β Titanium Metallic Composite by Selective Laser Melting, Acta Mater., 2014, 68, p 150–158.CrossRef
10.
Zurück zum Zitat B. Vrancken, L. Thijs, J.P. Kruth and J. Van Humbeeck, Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and Mechanical properties, J. Alloy. Compd., 2012, 541, p 177–185.CrossRef B. Vrancken, L. Thijs, J.P. Kruth and J. Van Humbeeck, Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and Mechanical properties, J. Alloy. Compd., 2012, 541, p 177–185.CrossRef
11.
Zurück zum Zitat I. Yadroitsev, P. Krakhmalev and I. Yadroitsava, Selective Laser Melting of Ti6Al4V Alloy for Biomedical Applications: Temperature Monitoring and Microstructural Evolution, J. Alloy. Compd., 2013, 583, p 404–409.CrossRef I. Yadroitsev, P. Krakhmalev and I. Yadroitsava, Selective Laser Melting of Ti6Al4V Alloy for Biomedical Applications: Temperature Monitoring and Microstructural Evolution, J. Alloy. Compd., 2013, 583, p 404–409.CrossRef
12.
Zurück zum Zitat W. Xu, E.W. Lui, A. Pateras, M. Qjan and M. Brandt, In Situ Tailoring Microstructure in Additively Manufactured Ti-6Al-4V for Superior Mechanical Performance, Acta Mater., 2017, 125, p 390–400.CrossRef W. Xu, E.W. Lui, A. Pateras, M. Qjan and M. Brandt, In Situ Tailoring Microstructure in Additively Manufactured Ti-6Al-4V for Superior Mechanical Performance, Acta Mater., 2017, 125, p 390–400.CrossRef
13.
Zurück zum Zitat W. Xu, M. Brandt, S. Sun, J. Elambasseril, Q. Liu and K. Latham, Additive Manufacturing of Strong and Ductile Ti–6Al–4V by Selective Laser Melting via in Situ Martensite Decomposition, Acta Mater., 2015, 85, p 74–84.CrossRef W. Xu, M. Brandt, S. Sun, J. Elambasseril, Q. Liu and K. Latham, Additive Manufacturing of Strong and Ductile Ti–6Al–4V by Selective Laser Melting via in Situ Martensite Decomposition, Acta Mater., 2015, 85, p 74–84.CrossRef
14.
Zurück zum Zitat W. Xu, S. Sun, J. Elambasseril, Q. Liu, M. Brandt and M. Qian, Ti-6Al-4V Additively Manufactured by Selective Laser Melting with Superior Mechanical Properties, Miner. Metals Mater. Soc., 2015, 67, p 668–673.CrossRef W. Xu, S. Sun, J. Elambasseril, Q. Liu, M. Brandt and M. Qian, Ti-6Al-4V Additively Manufactured by Selective Laser Melting with Superior Mechanical Properties, Miner. Metals Mater. Soc., 2015, 67, p 668–673.CrossRef
15.
Zurück zum Zitat A. Zafari, M.R. Barati and K. Xia, Controlling Martensitic Decomposition during Selective Laser Melting to Achieve Best Ductility in High Strength Ti-6Al-4V, Mater. Sci. Eng., A, 2019, 744, p 445–455.CrossRef A. Zafari, M.R. Barati and K. Xia, Controlling Martensitic Decomposition during Selective Laser Melting to Achieve Best Ductility in High Strength Ti-6Al-4V, Mater. Sci. Eng., A, 2019, 744, p 445–455.CrossRef
16.
Zurück zum Zitat J.Y. Cho, W. Xu, M. Brandt and M. Qian, Selective Laser Melting-Fabricated Ti-6Al-4V Alloy: Microstructural Inhomogeneity, Consequent Variations in Elastic Modulus and Implications, Opt. Laser Technol., 2019, 111, p 664–670.CrossRef J.Y. Cho, W. Xu, M. Brandt and M. Qian, Selective Laser Melting-Fabricated Ti-6Al-4V Alloy: Microstructural Inhomogeneity, Consequent Variations in Elastic Modulus and Implications, Opt. Laser Technol., 2019, 111, p 664–670.CrossRef
17.
Zurück zum Zitat Z. Li, R. Xu, Z. Zhang and I. Kucukkoc, The Influence of Scan Length on Fabricating Thin-Walled Components in Selective Laser Melting, Int. J. Mach. Tools Manuf, 2017, 126, p 1–12.CrossRef Z. Li, R. Xu, Z. Zhang and I. Kucukkoc, The Influence of Scan Length on Fabricating Thin-Walled Components in Selective Laser Melting, Int. J. Mach. Tools Manuf, 2017, 126, p 1–12.CrossRef
18.
Zurück zum Zitat C.H. Fu and Y.B. Guo, 3-Dımensıonal Finite Element Modeling of Selective Laser Melting Ti-6Al-4V Alloy. In: 25th Annual International Solid Freeform Fabrication Symposium, 2014. C.H. Fu and Y.B. Guo, 3-Dımensıonal Finite Element Modeling of Selective Laser Melting Ti-6Al-4V Alloy. In: 25th Annual International Solid Freeform Fabrication Symposium, 2014.
19.
Zurück zum Zitat K.C. Mills, Recommended Values of Thermophysical Properties for Selected Commercial Alloys, first ed., Woodhead Publishing Ltd, 2002. K.C. Mills, Recommended Values of Thermophysical Properties for Selected Commercial Alloys, first ed., Woodhead Publishing Ltd, 2002.
20.
Zurück zum Zitat Z. Fan and F. Liou, Numerical Modeling of The Additive Manufacturing (AM) Processes of Titanium Alloy. In: Titanium Alloys-Towards Achieving Enhanced Properties for Diversified Applications, first ed., IntechOpen, 2012. Z. Fan and F. Liou, Numerical Modeling of The Additive Manufacturing (AM) Processes of Titanium Alloy. In: Titanium Alloys-Towards Achieving Enhanced Properties for Diversified Applications, first ed., IntechOpen, 2012.
21.
Zurück zum Zitat X. Gong, B. Cheng, S. Price and K. Chou, Powder-Bed Electron-Beam-Melting Additive Manufacturing: Powder Characterization, Process Simulation and Metrology, ASME Early Career Technical Conference (ECTC), District F, 2013, 59-66. X. Gong, B. Cheng, S. Price and K. Chou, Powder-Bed Electron-Beam-Melting Additive Manufacturing: Powder Characterization, Process Simulation and Metrology, ASME Early Career Technical Conference (ECTC), District F, 2013, 59-66.
22.
Zurück zum Zitat L. Parry, I.A.R. Ashcroft and D. Wildman, Understanding the Effect of Laser Scan Strategy on Residual Stress in Selective Laser Melting Through Thermo-Mechanical Simulation, Addit. Manuf., 2016, 12, p 1–15. L. Parry, I.A.R. Ashcroft and D. Wildman, Understanding the Effect of Laser Scan Strategy on Residual Stress in Selective Laser Melting Through Thermo-Mechanical Simulation, Addit. Manuf., 2016, 12, p 1–15.
23.
Zurück zum Zitat V.A. Muñoz, “Analysis of the Optimal Parameters for 3D Printing Aluminum Parts with a SLM 280 Machine”, Msc Thesis, Enginyeria Industrial de Barcelona, 2017. V.A. Muñoz, “Analysis of the Optimal Parameters for 3D Printing Aluminum Parts with a SLM 280 Machine”, Msc Thesis, Enginyeria Industrial de Barcelona, 2017.
24.
Zurück zum Zitat Z. Gan, O.L. Kafka, N. Parab, C. Zhao, L. Fang, O. Heinonen, T. Sun and W.K. Liu, Universal Scaling Laws of Keyhole Stability and Porosity in 3D Printing of Metals, Nature Commun., 2021, 12, p 2379.CrossRef Z. Gan, O.L. Kafka, N. Parab, C. Zhao, L. Fang, O. Heinonen, T. Sun and W.K. Liu, Universal Scaling Laws of Keyhole Stability and Porosity in 3D Printing of Metals, Nature Commun., 2021, 12, p 2379.CrossRef
25.
Zurück zum Zitat M. Mollamahmutoğlu, O. Yılmaz, Volumetric Heat Source Model for Laser-Based Powder Bed Fusion Process in Additive Manufacturing. Therm. Sci. Eng. Progress, 2021, 25, 101021. M. Mollamahmutoğlu, O. Yılmaz, Volumetric Heat Source Model for Laser-Based Powder Bed Fusion Process in Additive Manufacturing. Therm. Sci. Eng. Progress, 2021, 25, 101021.
26.
Zurück zum Zitat D. Riedlbauer, T. Scharowsky, R.F. Singer, P. Steinmann, C. Körner and J. Mergheim, Macroscopic Simulation and Experimental Measurement of Melt Pool Characteristics in Selective Electron Beam Melting of Ti-6Al-4V, Int J Adv Manuf Technol, 2016, 88, p 1309–1317.CrossRef D. Riedlbauer, T. Scharowsky, R.F. Singer, P. Steinmann, C. Körner and J. Mergheim, Macroscopic Simulation and Experimental Measurement of Melt Pool Characteristics in Selective Electron Beam Melting of Ti-6Al-4V, Int J Adv Manuf Technol, 2016, 88, p 1309–1317.CrossRef
27.
Zurück zum Zitat H. Gu, H. Gong, J.J.S Dilip, D. Pal, A. Hicks, H. Doak and B. Stucker, Effects of Powder Variation on the Microstructure and Tensile Strength of Ti6al4v Parts Fabricated by Selective Laser Melting. In: 25th Annual International Solid Freeform Fabrication Symposium, 2014. H. Gu, H. Gong, J.J.S Dilip, D. Pal, A. Hicks, H. Doak and B. Stucker, Effects of Powder Variation on the Microstructure and Tensile Strength of Ti6al4v Parts Fabricated by Selective Laser Melting. In: 25th Annual International Solid Freeform Fabrication Symposium, 2014.
28.
Zurück zum Zitat J.J.S. Dilip, S. Zhang, C. Teng, K. Zeng, C. Robinson and D. Pal, Influence of Processing Parameters on the Evolution of Melt Pool, Porosity, and Microstructures in Ti-6Al-4V Alloy Parts Fabricated by Selective Laser Melting, Progress Add. Manuf., 2017, 2, p 157–167.CrossRef J.J.S. Dilip, S. Zhang, C. Teng, K. Zeng, C. Robinson and D. Pal, Influence of Processing Parameters on the Evolution of Melt Pool, Porosity, and Microstructures in Ti-6Al-4V Alloy Parts Fabricated by Selective Laser Melting, Progress Add. Manuf., 2017, 2, p 157–167.CrossRef
29.
Zurück zum Zitat R. Cunningham, C. Zhao, N. Parab, C. Kantzos, J. Pauza and K. Fezzaa, Keyhole Threshold and Morphology in Laser Melting Revealed by Ultrahigh-Speed X-Ray Imaging, Science, 2019, 363, p 849–852.CrossRef R. Cunningham, C. Zhao, N. Parab, C. Kantzos, J. Pauza and K. Fezzaa, Keyhole Threshold and Morphology in Laser Melting Revealed by Ultrahigh-Speed X-Ray Imaging, Science, 2019, 363, p 849–852.CrossRef
30.
Zurück zum Zitat I. Eriksson, J. Powell and A. Kaplan, Measurements of Fluid Flow on Keyhole Front During Laser Welding, Sci. Technol. Weld. Joining, 2011, 16, p 636–641.CrossRef I. Eriksson, J. Powell and A. Kaplan, Measurements of Fluid Flow on Keyhole Front During Laser Welding, Sci. Technol. Weld. Joining, 2011, 16, p 636–641.CrossRef
31.
Zurück zum Zitat L. Ladania, J. Romano, W. Brindley and S. Burlatsky, Effective Liquid Conductivity for Improved Simulation of Thermal Transport in Laser Beam Melting Powder Bed Technology, Addit. Manuf., 2017, 14, p 13–23. L. Ladania, J. Romano, W. Brindley and S. Burlatsky, Effective Liquid Conductivity for Improved Simulation of Thermal Transport in Laser Beam Melting Powder Bed Technology, Addit. Manuf., 2017, 14, p 13–23.
32.
Zurück zum Zitat S. Ancellottia, V. Fontanaria, A. Molinaria, E. Iacobb, P. Belluttib, V. Luchinc, G. Zappinic and M. Benedettia, Numerical/Experimental Strategies to Infer Enhanced Liquid Thermal Conductivity and Roughness in Laser Powder-Bed Fusion Processes, Addit. Manuf., 2019, 27, p 552–564. S. Ancellottia, V. Fontanaria, A. Molinaria, E. Iacobb, P. Belluttib, V. Luchinc, G. Zappinic and M. Benedettia, Numerical/Experimental Strategies to Infer Enhanced Liquid Thermal Conductivity and Roughness in Laser Powder-Bed Fusion Processes, Addit. Manuf., 2019, 27, p 552–564.
33.
Zurück zum Zitat J. Yang, H. Yu, J. Yin, M. Gao, Z. Wang and X. Zeng, Formation and Control of Martensite in Ti-6Al-4V Alloy Produced by Selective Laser Melting, Mater. Des., 2016, 108, p 308–318.CrossRef J. Yang, H. Yu, J. Yin, M. Gao, Z. Wang and X. Zeng, Formation and Control of Martensite in Ti-6Al-4V Alloy Produced by Selective Laser Melting, Mater. Des., 2016, 108, p 308–318.CrossRef
34.
Zurück zum Zitat D.K. Do, Microstructure Characterizing and Mechanical Properties of Selective Laser Melted Ti-6AL-4V Alloys, 2021, PhD thesis, University of Glasgow. D.K. Do, Microstructure Characterizing and Mechanical Properties of Selective Laser Melted Ti-6AL-4V Alloys, 2021, PhD thesis, University of Glasgow.
35.
Zurück zum Zitat K. Kalashnikov, V. Rubtsov, N. Savchenko, T. Kalashnikova, K. Osipovich, A. Eliseev and A. Chumaevskii, The Effect of Wire Feed Geometry on Electron Beam Freeform 3D Printing of Complex-Shaped Samples from Ti-6Al-4V Alloy. Int. J. Adv. Manuf. Technol., 2019, 105. K. Kalashnikov, V. Rubtsov, N. Savchenko, T. Kalashnikova, K. Osipovich, A. Eliseev and A. Chumaevskii, The Effect of Wire Feed Geometry on Electron Beam Freeform 3D Printing of Complex-Shaped Samples from Ti-6Al-4V Alloy. Int. J. Adv. Manuf. Technol., 2019, 105.
Metadaten
Titel
Computational Evaluation of Temperature-Dependent Microstructural Transformations of Ti6Al4V for Laser Powder Bed Fusion Process
verfasst von
Ayse Kubra Yildiz
Mehmet Mollamahmutoglu
Oguzhan Yilmaz
Publikationsdatum
29.03.2022
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 9/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-06767-8

Weitere Artikel der Ausgabe 9/2022

Journal of Materials Engineering and Performance 9/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.