Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 9/2022

20.04.2022 | Technical Article

Statistical Determination of Johnson-Cook Model Parameters for Porous Materials by Machine Learning and Particle Swarm Optimization Algorithm

verfasst von: Mingzhong Hao, Qiang Yu, Chengjian Wei, Ying Chen, Lei Chai, Yun Ge

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 9/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study developed a reliable methodology combined by the machine learning technique, that is, multi-task Gaussian process regression (MTGPR) and particle swarm optimization (PSO) algorithm to identify the Johnson-Cook (JC) constants for porous structures rapidly, meanwhile reducing the experimental consumption. Ti6Al4V (TC4) porous samples with three different porosities were designed based on lattice Weaire–Phelan (LWP) structure and manufactured by selective laser melting technology. Uniaxial compressive tests of the built LWP samples were carried out to measure their mechanical properties. The resultant JC constants derived from MTGPR-PSO model were imported into the compressive finite element analyses (FEAs) of LWP structures with various porosities. It proved that the simulated mechanical behaviors presented an explicit agreement with the experimental results. Furthermore, other JC models of TC4 porous material from previous reports were utilized to perform the compressive FEAs of LWP samples, indicating that the JC models could not be shared among the porous structures fabricated by different manufacturing processes or with various lattice structures. Hence, an effective method like the MTGPR-PSO model was urgently required to identify the JC constants of porous samples customized by additive manufacturing.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H. Gong, K. Rafi, H. Gu, T. Starr and B. Stucker, Analysis of Defect Generation in Ti–6Al–4V Parts Made Using Powder Bed Fusion Additive Manufacturing Processes, Addit. Manuf., 2014, 1–4, p 87–98. H. Gong, K. Rafi, H. Gu, T. Starr and B. Stucker, Analysis of Defect Generation in Ti–6Al–4V Parts Made Using Powder Bed Fusion Additive Manufacturing Processes, Addit. Manuf., 2014, 1–4, p 87–98.
2.
Zurück zum Zitat S. Wang, L. Liu, K. Li, L. Zhu, J. Chen and Y. Hao, Pore Functionally Graded Ti6Al4V Scaffolds for Bone Tissue Engineering Application, Mater. Des., 2019, 168, p 107643.CrossRef S. Wang, L. Liu, K. Li, L. Zhu, J. Chen and Y. Hao, Pore Functionally Graded Ti6Al4V Scaffolds for Bone Tissue Engineering Application, Mater. Des., 2019, 168, p 107643.CrossRef
3.
Zurück zum Zitat X. Li, L. Xiao and W. Song, Deformation and Failure Modes of Ti-6Al-4V Lattice-Walled Tubes Under Uniaxial Compression, Int. J. Impact. Eng, 2019, 130, p 27–40.CrossRef X. Li, L. Xiao and W. Song, Deformation and Failure Modes of Ti-6Al-4V Lattice-Walled Tubes Under Uniaxial Compression, Int. J. Impact. Eng, 2019, 130, p 27–40.CrossRef
4.
Zurück zum Zitat H. Guo, A. Takezawa, M. Honda, C. Kawamura and M. Kitamura, Finite Element Simulation of the Compressive Response of Additively Manufactured Lattice Structures with Large Diameters, Comput. Mater. Sci., 2020, 175, p 109610.CrossRef H. Guo, A. Takezawa, M. Honda, C. Kawamura and M. Kitamura, Finite Element Simulation of the Compressive Response of Additively Manufactured Lattice Structures with Large Diameters, Comput. Mater. Sci., 2020, 175, p 109610.CrossRef
5.
Zurück zum Zitat A. Ataee, Y. Li, M. Brandt and C. Wen, Ultrahigh-Strength Titanium Gyroid Scaffolds Manufactured by Selective Laser Melting (SLM) for Bone Implant Applications, Acta Mater., 2018, 158, p 354–368.CrossRef A. Ataee, Y. Li, M. Brandt and C. Wen, Ultrahigh-Strength Titanium Gyroid Scaffolds Manufactured by Selective Laser Melting (SLM) for Bone Implant Applications, Acta Mater., 2018, 158, p 354–368.CrossRef
6.
Zurück zum Zitat H. Liang, Y. Yang, D. Xie, L. Li, N. Mao, C. Wang, Z. Tian, Q. Jiang and L. Shen, Trabecular-Like Ti-6Al-4V Scaffolds for Orthopedic: Fabrication by Selective Laser Melting and in vitro Biocompatibility, J. Mater. Sci. Tech., 2019, 35(7), p 1284–1297.CrossRef H. Liang, Y. Yang, D. Xie, L. Li, N. Mao, C. Wang, Z. Tian, Q. Jiang and L. Shen, Trabecular-Like Ti-6Al-4V Scaffolds for Orthopedic: Fabrication by Selective Laser Melting and in vitro Biocompatibility, J. Mater. Sci. Tech., 2019, 35(7), p 1284–1297.CrossRef
7.
Zurück zum Zitat R. Xiao, X. Feng, R. Fan, S. Chen, J. Song, L. Gao and Y. Lu, 3D Printing of Titanium-Coated Gradient Composite Lattices for Lightweight Mandibular Prosthesis, Compos. Part B: Eng., 2020, 193, p 108057.CrossRef R. Xiao, X. Feng, R. Fan, S. Chen, J. Song, L. Gao and Y. Lu, 3D Printing of Titanium-Coated Gradient Composite Lattices for Lightweight Mandibular Prosthesis, Compos. Part B: Eng., 2020, 193, p 108057.CrossRef
8.
Zurück zum Zitat H. Koizumi, Y. Takeuchi, H. Imai, T. Kawai and T. Yoneyama, Application of Titanium and Titanium Alloys to Fixed Dental Prostheses, J. Prosthodont. Res., 2019, 63(3), p 266–270.CrossRef H. Koizumi, Y. Takeuchi, H. Imai, T. Kawai and T. Yoneyama, Application of Titanium and Titanium Alloys to Fixed Dental Prostheses, J. Prosthodont. Res., 2019, 63(3), p 266–270.CrossRef
9.
Zurück zum Zitat S. Bahl, B.T. Aleti, S. Suwas and K. Chatterjee, Surface nanostructuring of titanium imparts multifunctional properties for orthopedic and cardiovascular applications, Mater. Des., 2018, 144, p 169–181.CrossRef S. Bahl, B.T. Aleti, S. Suwas and K. Chatterjee, Surface nanostructuring of titanium imparts multifunctional properties for orthopedic and cardiovascular applications, Mater. Des., 2018, 144, p 169–181.CrossRef
10.
Zurück zum Zitat M. Doroszko, A. Falkowska and A. Seweryn, Image-Based Numerical Modeling of the Tensile Deformation Behavior and Mechanical Properties of Additive Manufactured Ti–6Al–4V Diamond Lattice Structures, Mater. Sci. Eng. A, 2021, 818, p 141362.CrossRef M. Doroszko, A. Falkowska and A. Seweryn, Image-Based Numerical Modeling of the Tensile Deformation Behavior and Mechanical Properties of Additive Manufactured Ti–6Al–4V Diamond Lattice Structures, Mater. Sci. Eng. A, 2021, 818, p 141362.CrossRef
11.
Zurück zum Zitat F. Quevedo Gonzalez and N. Nuño, Finite Element Modeling of Manufacturing Irregularities of Porous Materials, Biomater. Biomech. Bioeng., 2016, 3, p 1–14. F. Quevedo Gonzalez and N. Nuño, Finite Element Modeling of Manufacturing Irregularities of Porous Materials, Biomater. Biomech. Bioeng., 2016, 3, p 1–14.
12.
Zurück zum Zitat S. Ruiz de Galarreta, J.R.T. Jeffers and S. Ghouse, A Validated Finite Element Analysis Procedure for Porous Structures, Mater. Des., 2020, 189, p 108546.CrossRef S. Ruiz de Galarreta, J.R.T. Jeffers and S. Ghouse, A Validated Finite Element Analysis Procedure for Porous Structures, Mater. Des., 2020, 189, p 108546.CrossRef
13.
Zurück zum Zitat V. Crupi, E. Kara, G. Epasto, E. Guglielmino and H. Aykul, Static Behavior of Lattice Structures Produced via Direct Metal Laser Sintering Technology, Mater. Des., 2017, 135, p 246–256.CrossRef V. Crupi, E. Kara, G. Epasto, E. Guglielmino and H. Aykul, Static Behavior of Lattice Structures Produced via Direct Metal Laser Sintering Technology, Mater. Des., 2017, 135, p 246–256.CrossRef
14.
Zurück zum Zitat N. Biswas and J.L. Ding, Numerical Study of the Deformation and Fracture Behavior of Porous Ti6Al4V Alloy Under Static and Dynamic Loading, Int. J. Impact. Eng, 2015, 82, p 89–102.CrossRef N. Biswas and J.L. Ding, Numerical Study of the Deformation and Fracture Behavior of Porous Ti6Al4V Alloy Under Static and Dynamic Loading, Int. J. Impact. Eng, 2015, 82, p 89–102.CrossRef
15.
Zurück zum Zitat X. Yan, Q. Li, S. Yin, Z. Chen, R. Jenkins, C. Chen, J. Wang, W. Ma, R. Bolot, R. Lupoi, Z. Ren, H. Liao and M. Liu, Mechanical and in vitro Study of an Isotropic Ti6Al4V Lattice Structure Fabricated Using Selective Laser Melting, J. Alloys Compd., 2019, 782, p 209–223.CrossRef X. Yan, Q. Li, S. Yin, Z. Chen, R. Jenkins, C. Chen, J. Wang, W. Ma, R. Bolot, R. Lupoi, Z. Ren, H. Liao and M. Liu, Mechanical and in vitro Study of an Isotropic Ti6Al4V Lattice Structure Fabricated Using Selective Laser Melting, J. Alloys Compd., 2019, 782, p 209–223.CrossRef
16.
Zurück zum Zitat H. Zhou, M. Zhao, Z. Ma, D.Z. Zhang and G. Fu, Sheet and Network Based Functionally Graded Lattice Structures Manufactured by Selective Laser Melting: Design, Mechanical Properties, and Simulation, Int. J. Mech. Sci., 2020, 175, p 105480.CrossRef H. Zhou, M. Zhao, Z. Ma, D.Z. Zhang and G. Fu, Sheet and Network Based Functionally Graded Lattice Structures Manufactured by Selective Laser Melting: Design, Mechanical Properties, and Simulation, Int. J. Mech. Sci., 2020, 175, p 105480.CrossRef
17.
Zurück zum Zitat M. Zhao, D.Z. Zhang, F. Liu, Z. Li, Z. Ma and Z. Ren, Mechanical and Energy Absorption Characteristics of Additively Manufactured Functionally Graded Sheet Lattice Structures with Minimal Surfaces, Int. J. Mech. Sci., 2020, 167, p 105262.CrossRef M. Zhao, D.Z. Zhang, F. Liu, Z. Li, Z. Ma and Z. Ren, Mechanical and Energy Absorption Characteristics of Additively Manufactured Functionally Graded Sheet Lattice Structures with Minimal Surfaces, Int. J. Mech. Sci., 2020, 167, p 105262.CrossRef
18.
Zurück zum Zitat N. Jin, F. Wang, Y. Wang, B. Zhang, H. Cheng and H. Zhang, Effect of Structural Parameters on Mechanical Properties of Pyramidal Kagome Lattice Material Under Impact Loading, Int. J. Impact. Eng, 2019, 132, p 103313.CrossRef N. Jin, F. Wang, Y. Wang, B. Zhang, H. Cheng and H. Zhang, Effect of Structural Parameters on Mechanical Properties of Pyramidal Kagome Lattice Material Under Impact Loading, Int. J. Impact. Eng, 2019, 132, p 103313.CrossRef
19.
Zurück zum Zitat Leseur, Experimental Investigations of Material Models for Ti6A1-4V and 2024-T3, 2020 Leseur, Experimental Investigations of Material Models for Ti6A1-4V and 2024-T3, 2020
20.
Zurück zum Zitat G. Kay, Failure Modeling of Titanium-6Al-4V and 2024-T3 Aluminum with the Johnson-Cook Material Model, FAA report, DOT/FAA/AR-03/57, September 2003 G. Kay, Failure Modeling of Titanium-6Al-4V and 2024-T3 Aluminum with the Johnson-Cook Material Model, FAA report, DOT/FAA/AR-03/57, September 2003
21.
Zurück zum Zitat P. Li, Constitutive and Failure Behaviour in Selective Laser Melted Stainless Steel for Microlattice Structures, Mater. Sci. Eng. A, 2015, 622, p 114–120.CrossRef P. Li, Constitutive and Failure Behaviour in Selective Laser Melted Stainless Steel for Microlattice Structures, Mater. Sci. Eng. A, 2015, 622, p 114–120.CrossRef
22.
Zurück zum Zitat Z. Wang and P. Li, Characterisation and Constitutive Model of Tensile Properties of Selective Laser Melted Ti-6Al-4V Struts for Microlattice Structures, Mater. Sci. Eng. A, 2018, 725, p 350–358.CrossRef Z. Wang and P. Li, Characterisation and Constitutive Model of Tensile Properties of Selective Laser Melted Ti-6Al-4V Struts for Microlattice Structures, Mater. Sci. Eng. A, 2018, 725, p 350–358.CrossRef
23.
Zurück zum Zitat P. Hanzl, M. Zetek, T. Bakša and T. Kroupa, The Influence of Processing Parameters on the Mechanical Properties of SLM Parts, Procedia Eng., 2015, 100, p 1405–1413.CrossRef P. Hanzl, M. Zetek, T. Bakša and T. Kroupa, The Influence of Processing Parameters on the Mechanical Properties of SLM Parts, Procedia Eng., 2015, 100, p 1405–1413.CrossRef
24.
Zurück zum Zitat K. Guan, Z. Wang, M. Gao, X. Li and X. Zeng, Effects of Processing Parameters on Tensile Properties of Selective Laser Melted 304 Stainless Steel, Mater. Des., 2013, 50, p 581–586.CrossRef K. Guan, Z. Wang, M. Gao, X. Li and X. Zeng, Effects of Processing Parameters on Tensile Properties of Selective Laser Melted 304 Stainless Steel, Mater. Des., 2013, 50, p 581–586.CrossRef
25.
Zurück zum Zitat K. Liu, D. Gu, M. Guo and J. Sun, Effects of Processing Parameters on Densification Behavior, Microstructure Evolution and Mechanical Properties of W-Ti Alloy Fabricated by Laser Powder Bed Fusion, Mater. Sci. Eng. A, 2022, 829, p 142177.CrossRef K. Liu, D. Gu, M. Guo and J. Sun, Effects of Processing Parameters on Densification Behavior, Microstructure Evolution and Mechanical Properties of W-Ti Alloy Fabricated by Laser Powder Bed Fusion, Mater. Sci. Eng. A, 2022, 829, p 142177.CrossRef
26.
Zurück zum Zitat L.E. Murr, S.M. Gaytan, F. Medina, E. Martinez, J.L. Martinez, D.H. Hernandez, B.I. Machado, D.A. Ramirez and R.B. Wicker, Characterization of Ti–6Al–4V Open Cellular Foams Fabricated by Additive Manufacturing Using Electron Beam Melting, Mater. Sci. Eng. A, 2010, 527(7), p 1861–1868.CrossRef L.E. Murr, S.M. Gaytan, F. Medina, E. Martinez, J.L. Martinez, D.H. Hernandez, B.I. Machado, D.A. Ramirez and R.B. Wicker, Characterization of Ti–6Al–4V Open Cellular Foams Fabricated by Additive Manufacturing Using Electron Beam Melting, Mater. Sci. Eng. A, 2010, 527(7), p 1861–1868.CrossRef
27.
Zurück zum Zitat F. Kang, S. Han, R. Salgado and J. Li, System Probabilistic Stability Analysis of Soil Slopes Using Gaussian Process Regression with Latin Hypercube Sampling, Comput. Geotech., 2015, 63, p 13–25.CrossRef F. Kang, S. Han, R. Salgado and J. Li, System Probabilistic Stability Analysis of Soil Slopes Using Gaussian Process Regression with Latin Hypercube Sampling, Comput. Geotech., 2015, 63, p 13–25.CrossRef
28.
Zurück zum Zitat Y. Zhou, Y. Liu, D. Wang, G. De, Y. Li, X. Liu and Y. Wang, A Novel Combined Multi-Task Learning and Gaussian Process Regression Model for the Prediction of Multi-Timescale and Multi-Component of Solar Radiation, J. Clean. Prod., 2021, 284, p 124710.CrossRef Y. Zhou, Y. Liu, D. Wang, G. De, Y. Li, X. Liu and Y. Wang, A Novel Combined Multi-Task Learning and Gaussian Process Regression Model for the Prediction of Multi-Timescale and Multi-Component of Solar Radiation, J. Clean. Prod., 2021, 284, p 124710.CrossRef
29.
Zurück zum Zitat J. Yuan, K. Wang, T. Yu and M. Fang, Reliable Multi-Objective Optimization of High-Speed WEDM Process Based on Gaussian Process Regression, Int. J. Mach. Tools Manuf., 2008, 48(1), p 47–60.CrossRef J. Yuan, K. Wang, T. Yu and M. Fang, Reliable Multi-Objective Optimization of High-Speed WEDM Process Based on Gaussian Process Regression, Int. J. Mach. Tools Manuf., 2008, 48(1), p 47–60.CrossRef
30.
Zurück zum Zitat M. Gilanifar, M. Parvania, M.E. Hariri, Multi-Task Gaussian Process Learning for Energy Forecasting in IoT-Enabled Electric Vehicle Charging Infrastructure, 2020 IEEE 6th World Forum on Internet of Things (WF-IoT), 2-16 June 2020, 2020, pp 1-6 M. Gilanifar, M. Parvania, M.E. Hariri, Multi-Task Gaussian Process Learning for Energy Forecasting in IoT-Enabled Electric Vehicle Charging Infrastructure, 2020 IEEE 6th World Forum on Internet of Things (WF-IoT), 2-16 June 2020, 2020, pp 1-6
31.
Zurück zum Zitat P. Nayeri, F. Yang and A.Z. Elsherbeni, Design of Single-Feed Reflectarray Antennas With Asymmetric Multiple Beams Using the Particle Swarm Optimization Method, IEEE Trans. Antennas Propag., 2013, 61(9), p 4598–4605.CrossRef P. Nayeri, F. Yang and A.Z. Elsherbeni, Design of Single-Feed Reflectarray Antennas With Asymmetric Multiple Beams Using the Particle Swarm Optimization Method, IEEE Trans. Antennas Propag., 2013, 61(9), p 4598–4605.CrossRef
32.
Zurück zum Zitat A. Unler and A. Murat, A Discrete Particle Swarm Optimization Method for Feature Selection in Binary Classification Problems, Eur. J. Oper. Res., 2010, 206(3), p 528–539.CrossRef A. Unler and A. Murat, A Discrete Particle Swarm Optimization Method for Feature Selection in Binary Classification Problems, Eur. J. Oper. Res., 2010, 206(3), p 528–539.CrossRef
33.
Zurück zum Zitat Y. Xu, W. Zhang, D. Chamoret and M. Domaszewski, Minimizing Thermal Residual Stresses in C/SiC Functionally Graded Material Coating of C/C Composites by Using Particle Swarm Optimization Algorithm, Comput. Mater. Sci., 2012, 61, p 99–105.CrossRef Y. Xu, W. Zhang, D. Chamoret and M. Domaszewski, Minimizing Thermal Residual Stresses in C/SiC Functionally Graded Material Coating of C/C Composites by Using Particle Swarm Optimization Algorithm, Comput. Mater. Sci., 2012, 61, p 99–105.CrossRef
34.
Zurück zum Zitat S. Panda and N.P. Padhy, Comparison of Particle Swarm Optimization and Genetic Algorithm for FACTS-Based Controller Design, Appl. Soft Comput., 2008, 8(4), p 1418–1427.CrossRef S. Panda and N.P. Padhy, Comparison of Particle Swarm Optimization and Genetic Algorithm for FACTS-Based Controller Design, Appl. Soft Comput., 2008, 8(4), p 1418–1427.CrossRef
35.
Zurück zum Zitat R. Hassan, B. Cohanim, O. de Weck, G. Venter, A Comparison of Particle Swarm Optimization and the Genetic Algorithm, 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conferenceed., American Institute of Aeronautics and Astronautics, 2005 R. Hassan, B. Cohanim, O. de Weck, G. Venter, A Comparison of Particle Swarm Optimization and the Genetic Algorithm, 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conferenceed., American Institute of Aeronautics and Astronautics, 2005
36.
Zurück zum Zitat M. Hao, C. Wei, X. Liu, Y. Ge and J. Cai, Quantitative Evaluation on Mechanical Characterization of Ti6Al4V Porous Scaffold Designed Based on Weaire-Phelan Structure via Experimental and Numerical Analysis Methods, J. Alloys Compd., 2021, 885, p 160234.CrossRef M. Hao, C. Wei, X. Liu, Y. Ge and J. Cai, Quantitative Evaluation on Mechanical Characterization of Ti6Al4V Porous Scaffold Designed Based on Weaire-Phelan Structure via Experimental and Numerical Analysis Methods, J. Alloys Compd., 2021, 885, p 160234.CrossRef
37.
Zurück zum Zitat International Organization for Standardization (ISO), ISO 13314: Mechanical Testing of Metals – Ductility Testing – Compression Test for Porous and Cellular Metals, First edition 2011-12-15, 2011 International Organization for Standardization (ISO), ISO 13314: Mechanical Testing of Metals – Ductility Testing – Compression Test for Porous and Cellular Metals, First edition 2011-12-15, 2011
38.
Zurück zum Zitat Y. Prawoto, M. Fanone, S. Shahedi, M.S. Ismail and W.B. Wan Nik, Computational Approach Using Johnson-Cook Model on Dual Phase Steel, Comput. Mater. Sci., 2012, 54, p 48–55.CrossRef Y. Prawoto, M. Fanone, S. Shahedi, M.S. Ismail and W.B. Wan Nik, Computational Approach Using Johnson-Cook Model on Dual Phase Steel, Comput. Mater. Sci., 2012, 54, p 48–55.CrossRef
39.
Zurück zum Zitat C.E. Rasmussen, Gaussian Processes in Machine Learning, Advanced Lectures on Machine Learning: ML Summer Schools 2003, Canberra, Australia, February 2 - 14, 2003, Tübingen, Germany, August 4 - 16, 2003, Revised Lecturesed., O. Bousquet, U. von Luxburg, G. Rätsch, Eds., Springer Berlin Heidelberg, 2004, p 63–71 C.E. Rasmussen, Gaussian Processes in Machine Learning, Advanced Lectures on Machine Learning: ML Summer Schools 2003, Canberra, Australia, February 2 - 14, 2003, Tübingen, Germany, August 4 - 16, 2003, Revised Lecturesed., O. Bousquet, U. von Luxburg, G. Rätsch, Eds., Springer Berlin Heidelberg, 2004, p 63–71
40.
Zurück zum Zitat E.V. Bonilla, K.M.A. Chai, C.K.I. Williams, Multi-task Gaussian Process prediction, Proceedings of the 20th International Conf. Neural Information Processing Systemsed., Curran Associates Inc., 2007, p 153–160 E.V. Bonilla, K.M.A. Chai, C.K.I. Williams, Multi-task Gaussian Process prediction, Proceedings of the 20th International Conf. Neural Information Processing Systemsed., Curran Associates Inc., 2007, p 153–160
41.
Zurück zum Zitat R. Couperthwaite, D. Allaire and R. Arróyave, Utilizing Gaussian Processes to Fit High Dimension Thermodynamic Data that Includes Estimated Variability, Comput. Mater. Sci., 2021, 188, p 110133.CrossRef R. Couperthwaite, D. Allaire and R. Arróyave, Utilizing Gaussian Processes to Fit High Dimension Thermodynamic Data that Includes Estimated Variability, Comput. Mater. Sci., 2021, 188, p 110133.CrossRef
42.
Zurück zum Zitat J.L. Loeppky, J. Sacks and W.J. Welch, Choosing the Sample Size of a Computer Experiment: A Practical Guide, Technometrics, 2009, 51(4), p 366–376.CrossRef J.L. Loeppky, J. Sacks and W.J. Welch, Choosing the Sample Size of a Computer Experiment: A Practical Guide, Technometrics, 2009, 51(4), p 366–376.CrossRef
43.
Zurück zum Zitat R.T. Silvestrini, D.C. Montgomery and B. Jones, Comparing Computer Experiments for the Gaussian Process Model Using Integrated Prediction Variance, Qual. Eng., 2013, 25(2), p 164–174.CrossRef R.T. Silvestrini, D.C. Montgomery and B. Jones, Comparing Computer Experiments for the Gaussian Process Model Using Integrated Prediction Variance, Qual. Eng., 2013, 25(2), p 164–174.CrossRef
44.
Zurück zum Zitat Y. Zhang, J.C. Outeiro and T. Mabrouki, On the Selection of Johnson-cook Constitutive Model Parameters for Ti-6Al-4V Using Three Types of Numerical Models of Orthogonal Cutting, Procedia CIRP, 2015, 31, p 112–117.CrossRef Y. Zhang, J.C. Outeiro and T. Mabrouki, On the Selection of Johnson-cook Constitutive Model Parameters for Ti-6Al-4V Using Three Types of Numerical Models of Orthogonal Cutting, Procedia CIRP, 2015, 31, p 112–117.CrossRef
45.
Zurück zum Zitat H. Zhang, Maximum-Likelihood Estimation for Multivariate Spatial Linear Coregionalization Models, Environmetrics, 2007, 18(2), p 125–139.CrossRef H. Zhang, Maximum-Likelihood Estimation for Multivariate Spatial Linear Coregionalization Models, Environmetrics, 2007, 18(2), p 125–139.CrossRef
46.
Zurück zum Zitat Y. Liu, Y. Zhou, D. Wang, Y. Wang, Y. Li and Y. Zhu, Classification of Solar Radiation Zones and General Models for Estimating the Daily Global Solar Radiation on Horizontal Surfaces in China, Energy Conv. Manag., 2017, 154, p 168–179.CrossRef Y. Liu, Y. Zhou, D. Wang, Y. Wang, Y. Li and Y. Zhu, Classification of Solar Radiation Zones and General Models for Estimating the Daily Global Solar Radiation on Horizontal Surfaces in China, Energy Conv. Manag., 2017, 154, p 168–179.CrossRef
47.
Zurück zum Zitat R. Zhang and X. Xue, A Predictive Model for the Bond Strength of Near-Surface-Mounted FRP Bonded to Concrete, Compos. Struct., 2021, 262, p 113618.CrossRef R. Zhang and X. Xue, A Predictive Model for the Bond Strength of Near-Surface-Mounted FRP Bonded to Concrete, Compos. Struct., 2021, 262, p 113618.CrossRef
48.
Zurück zum Zitat S. Arabnejad, R. Burnett Johnston, J.A. Pura, B. Singh, M. Tanzer and D. Pasini, High-Strength Porous Biomaterials for Bone Replacement: A Strategy to Assess the Interplay Between Cell Morphology, Mechanical Properties, Bone Ingrowth and Manufacturing Constraints, Acta Biomater., 2016, 30, p 345–356.CrossRef S. Arabnejad, R. Burnett Johnston, J.A. Pura, B. Singh, M. Tanzer and D. Pasini, High-Strength Porous Biomaterials for Bone Replacement: A Strategy to Assess the Interplay Between Cell Morphology, Mechanical Properties, Bone Ingrowth and Manufacturing Constraints, Acta Biomater., 2016, 30, p 345–356.CrossRef
49.
Zurück zum Zitat D. Gu and Y. Shen, Processing Conditions and Microstructural Features of Porous 316L Stainless Steel Components by DMLS, Appl. Surf. Sci., 2008, 255(5, Part 1), p 1880–1887.CrossRef D. Gu and Y. Shen, Processing Conditions and Microstructural Features of Porous 316L Stainless Steel Components by DMLS, Appl. Surf. Sci., 2008, 255(5, Part 1), p 1880–1887.CrossRef
50.
Zurück zum Zitat R. Hedayati, H. Hosseini-Toudeshky, M. Sadighi, M. Mohammadi-Aghdam and A.A. Zadpoor, Computational Prediction of the Fatigue Behavior of Additively Manufactured Porous Metallic Biomaterials, Int. J. Fatigue, 2016, 84, p 67–79.CrossRef R. Hedayati, H. Hosseini-Toudeshky, M. Sadighi, M. Mohammadi-Aghdam and A.A. Zadpoor, Computational Prediction of the Fatigue Behavior of Additively Manufactured Porous Metallic Biomaterials, Int. J. Fatigue, 2016, 84, p 67–79.CrossRef
51.
Zurück zum Zitat P. Li, Y.E. Ma, W. Sun, X. Qian, W. Zhang and Z. Wang, Fracture and Failure Behavior of Additive Manufactured Ti6Al4V Lattice Structures Under Compressive Load, Eng. Fract. Mech., 2021, 244, p 107537.CrossRef P. Li, Y.E. Ma, W. Sun, X. Qian, W. Zhang and Z. Wang, Fracture and Failure Behavior of Additive Manufactured Ti6Al4V Lattice Structures Under Compressive Load, Eng. Fract. Mech., 2021, 244, p 107537.CrossRef
Metadaten
Titel
Statistical Determination of Johnson-Cook Model Parameters for Porous Materials by Machine Learning and Particle Swarm Optimization Algorithm
verfasst von
Mingzhong Hao
Qiang Yu
Chengjian Wei
Ying Chen
Lei Chai
Yun Ge
Publikationsdatum
20.04.2022
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 9/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-06765-w

Weitere Artikel der Ausgabe 9/2022

Journal of Materials Engineering and Performance 9/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.