Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 7/2017

07.06.2017

Corrosion Behavior of PEO Coatings Formed on AZ31 Alloy in Phosphate-Based Electrolytes with Calcium Acetate Additive

verfasst von: E. Ziyaei, M. Atapour, H. Edris, A. Hakimizad

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 7/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The PEO coating started on magnesium AZ31 using a unipolar DC power source. The coating was generated in the electrolyte based on Na3PO4·12H2O and KOH with calcium acetate as additive. The x-ray diffraction method showed some phases containing calcium and phosphate, which was created in the presence of additive. Also, the EDS tests of the sample’s surfaces proved the existence of calcium on the surface. Based on the electrochemical tests results, the most corrosion resistance belongs to the sample with calcium acetate additive. In fact, the results of the EIS tests showed the coating with calcium acetate has the highest resistance but the lowest capacitance. However, this state belongs to the surface morphology, the lower porosity, and surface chemical composition.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat C. Blawert and P. Bala Srinivasan, 6-Plasma electrolytic oxidation treatment of magnesium alloys, Surface Engineering of Light Alloys, H. Dong, Ed., Woodhead Publishing, Cambridge, 2010, p 155–183 CrossRef C. Blawert and P. Bala Srinivasan, 6-Plasma electrolytic oxidation treatment of magnesium alloys, Surface Engineering of Light Alloys, H. Dong, Ed., Woodhead Publishing, Cambridge, 2010, p 155–183 CrossRef
2.
Zurück zum Zitat A. Fekry, Electrochemical Corrosion Behavior of Magnesium Alloys in Biological Solutions, INTECH Open Access Publisher, Croatia, 2011CrossRef A. Fekry, Electrochemical Corrosion Behavior of Magnesium Alloys in Biological Solutions, INTECH Open Access Publisher, Croatia, 2011CrossRef
3.
Zurück zum Zitat M. Salahshoor and Y. Guo, Biodegradable Orthopedic Magnesium-Calcium (MgCa) Alloys, Process. Corros. Perform. Mater., 2012, 5(1), p 135–155 M. Salahshoor and Y. Guo, Biodegradable Orthopedic Magnesium-Calcium (MgCa) Alloys, Process. Corros. Perform. Mater., 2012, 5(1), p 135–155
4.
Zurück zum Zitat T.S.N. Sankara Narayanan, I.S. Park, and M.H. Lee, Strategies to Improve the Corrosion Resistance of Microarc Oxidation (MAO) Coated Magnesium Alloys for Degradable Implants: Prospects and Challenges, Prog. Mater. Sci., 2014, 60, p 1–71CrossRef T.S.N. Sankara Narayanan, I.S. Park, and M.H. Lee, Strategies to Improve the Corrosion Resistance of Microarc Oxidation (MAO) Coated Magnesium Alloys for Degradable Implants: Prospects and Challenges, Prog. Mater. Sci., 2014, 60, p 1–71CrossRef
5.
Zurück zum Zitat L. Zhang, J. Zhang, C.-F. Chen, and Y. Gu, Advances in Microarc Oxidation Coated AZ31 Mg Alloys for Biomedical Applications, Corros. Sci., 2015, 91, p 7–28CrossRef L. Zhang, J. Zhang, C.-F. Chen, and Y. Gu, Advances in Microarc Oxidation Coated AZ31 Mg Alloys for Biomedical Applications, Corros. Sci., 2015, 91, p 7–28CrossRef
6.
Zurück zum Zitat R. Zeng, W. Dietzel, F. Witte, N. Hort, and C. Blawert, Progress and Challenge for Magnesium Alloys as Biomaterials, Adv. Eng. Mater., 2008, 10(8), p B3–B14CrossRef R. Zeng, W. Dietzel, F. Witte, N. Hort, and C. Blawert, Progress and Challenge for Magnesium Alloys as Biomaterials, Adv. Eng. Mater., 2008, 10(8), p B3–B14CrossRef
7.
Zurück zum Zitat D. Persaud-Sharma and A. McGoron, Biodegradable Magnesium Alloys: A Review of Material Development and Applications, J. Biomim. Biomater. Tissue Eng., 2012, 12, p 25–39CrossRef D. Persaud-Sharma and A. McGoron, Biodegradable Magnesium Alloys: A Review of Material Development and Applications, J. Biomim. Biomater. Tissue Eng., 2012, 12, p 25–39CrossRef
8.
Zurück zum Zitat F. Zhang, Z.-G. Liu, R.-C. Zeng, S.-Q. Li, H.-Z. Cui, L. Song, and E.-H. Han, Corrosion Resistance of Mg–Al-LDH Coating on Magnesium Alloy AZ31, Surf. Coat. Technol., 2014, 258, p 1152–1158CrossRef F. Zhang, Z.-G. Liu, R.-C. Zeng, S.-Q. Li, H.-Z. Cui, L. Song, and E.-H. Han, Corrosion Resistance of Mg–Al-LDH Coating on Magnesium Alloy AZ31, Surf. Coat. Technol., 2014, 258, p 1152–1158CrossRef
9.
Zurück zum Zitat E.S. Bogya, Z. Károly, and R. Barabás, Atmospheric Plasma Sprayed Silica–Hydroxyapatite Coatings on Magnesium Alloy Substrates, Ceram. Int., 2015, 41(4), p 6005–6012CrossRef E.S. Bogya, Z. Károly, and R. Barabás, Atmospheric Plasma Sprayed Silica–Hydroxyapatite Coatings on Magnesium Alloy Substrates, Ceram. Int., 2015, 41(4), p 6005–6012CrossRef
10.
Zurück zum Zitat S. Wang, Y. Xia, L. Liu, and N. Si, Preparation and Performance of MAO Coatings Obtained on AZ91D Mg Alloy Under Unipolar and Bipolar Modes in a Novel Dual Electrolyte, Ceramics International, 2014, 40(1, Part A), p 93–99CrossRef S. Wang, Y. Xia, L. Liu, and N. Si, Preparation and Performance of MAO Coatings Obtained on AZ91D Mg Alloy Under Unipolar and Bipolar Modes in a Novel Dual Electrolyte, Ceramics International, 2014, 40(1, Part A), p 93–99CrossRef
11.
Zurück zum Zitat H. Zhao, S. Cai, S. Niu, R. Zhang, X. Wu, G. Xu, and Z. Ding, The influence of alkali pretreatments of AZ31 magnesium alloys on bonding of bioglass–ceramic coatings and corrosion resistance for biomedical applications, Ceramics International, 2015, 41(3, Part B), p 4590–4600CrossRef H. Zhao, S. Cai, S. Niu, R. Zhang, X. Wu, G. Xu, and Z. Ding, The influence of alkali pretreatments of AZ31 magnesium alloys on bonding of bioglass–ceramic coatings and corrosion resistance for biomedical applications, Ceramics International, 2015, 41(3, Part B), p 4590–4600CrossRef
12.
Zurück zum Zitat A. Zomorodian, M.P. Garcia, T. Moura e Silva, J.C.S. Fernandes, M.H. Fernandes, and M.F. Montemor, Corrosion Resistance of a Composite Polymeric Coating Applied on Biodegradable AZ31 Magnesium Alloy, Acta Biomater., 2013, 9(10), p 8660–8670CrossRef A. Zomorodian, M.P. Garcia, T. Moura e Silva, J.C.S. Fernandes, M.H. Fernandes, and M.F. Montemor, Corrosion Resistance of a Composite Polymeric Coating Applied on Biodegradable AZ31 Magnesium Alloy, Acta Biomater., 2013, 9(10), p 8660–8670CrossRef
13.
Zurück zum Zitat R. Zeng, Z. Lan, L. Kong, Y. Huang, and H. Cui, Characterization of Calcium-Modified Zinc Phosphate Conversion Coatings and their Influences on Corrosion Resistance of AZ31 Alloy, Surf. Coat. Technol., 2011, 205(11), p 3347–3355CrossRef R. Zeng, Z. Lan, L. Kong, Y. Huang, and H. Cui, Characterization of Calcium-Modified Zinc Phosphate Conversion Coatings and their Influences on Corrosion Resistance of AZ31 Alloy, Surf. Coat. Technol., 2011, 205(11), p 3347–3355CrossRef
14.
Zurück zum Zitat G. Rapheal, S. Kumar, N. Scharnagl, and C. Blawert, Effect of Current Density on the Microstructure and Corrosion Properties of Plasma Electrolytic Oxidation (PEO) Coatings on AM50 Mg Alloy Produced in an Electrolyte Containing Clay Additives, Surf. Coat. Technol., 2016, 289, p 150–164CrossRef G. Rapheal, S. Kumar, N. Scharnagl, and C. Blawert, Effect of Current Density on the Microstructure and Corrosion Properties of Plasma Electrolytic Oxidation (PEO) Coatings on AM50 Mg Alloy Produced in an Electrolyte Containing Clay Additives, Surf. Coat. Technol., 2016, 289, p 150–164CrossRef
15.
Zurück zum Zitat W.-C. Gu, G.-H. Lv, H. Chen, G.-L. Chen, W.-R. Feng, and S.-Z. Yang, Characterisation of Ceramic Coatings Produced by Plasma Electrolytic Oxidation of Aluminum Alloy, Mater. Sci. Eng. A, 2007, 447(1–2), p 158–162CrossRef W.-C. Gu, G.-H. Lv, H. Chen, G.-L. Chen, W.-R. Feng, and S.-Z. Yang, Characterisation of Ceramic Coatings Produced by Plasma Electrolytic Oxidation of Aluminum Alloy, Mater. Sci. Eng. A, 2007, 447(1–2), p 158–162CrossRef
16.
Zurück zum Zitat V. Raj and M. Mubarak Ali, Formation of Ceramic Alumina Nanocomposite Coatings on Aluminum for Enhanced Corrosion Resistance, J. Mater. Process. Technol., 2009, 209(12–13), p 5341–5352CrossRef V. Raj and M. Mubarak Ali, Formation of Ceramic Alumina Nanocomposite Coatings on Aluminum for Enhanced Corrosion Resistance, J. Mater. Process. Technol., 2009, 209(12–13), p 5341–5352CrossRef
17.
Zurück zum Zitat J. Martin, A. Melhem, I. Shchedrina, T. Duchanoy, A. Nominé, G. Henrion, T. Czerwiec, and T. Belmonte, Effects of Electrical Parameters on Plasma Electrolytic Oxidation of Aluminum, Surf. Coat. Technol., 2013, 221, p 70–76CrossRef J. Martin, A. Melhem, I. Shchedrina, T. Duchanoy, A. Nominé, G. Henrion, T. Czerwiec, and T. Belmonte, Effects of Electrical Parameters on Plasma Electrolytic Oxidation of Aluminum, Surf. Coat. Technol., 2013, 221, p 70–76CrossRef
18.
Zurück zum Zitat S.V. Gnedenkov, O.A. Khrisanfova, A.G. Zavidnaya, S.L. Sinebryukhov, V.S. Egorkin, M.V. Nistratova, A. Yerokhin, and A. Matthews, PEO Coatings Obtained on a Mg–Mn Type Alloy Under Unipolar and Bipolar Modes in Silicate-Containing Electrolytes, Surf. Coat. Technol., 2010, 204(14), p 2316–2322CrossRef S.V. Gnedenkov, O.A. Khrisanfova, A.G. Zavidnaya, S.L. Sinebryukhov, V.S. Egorkin, M.V. Nistratova, A. Yerokhin, and A. Matthews, PEO Coatings Obtained on a Mg–Mn Type Alloy Under Unipolar and Bipolar Modes in Silicate-Containing Electrolytes, Surf. Coat. Technol., 2010, 204(14), p 2316–2322CrossRef
19.
Zurück zum Zitat J. Liang, L. Hu, and J. Hao, Characterization of Microarc Oxidation Coatings Formed on AM60B Magnesium Alloy in Silicate and Phosphate Electrolytes, Appl. Surf. Sci., 2007, 253(10), p 4490–4496CrossRef J. Liang, L. Hu, and J. Hao, Characterization of Microarc Oxidation Coatings Formed on AM60B Magnesium Alloy in Silicate and Phosphate Electrolytes, Appl. Surf. Sci., 2007, 253(10), p 4490–4496CrossRef
20.
Zurück zum Zitat J. Liang, P.B. Srinivasan, C. Blawert, M. Störmer, and W. Dietzel, Electrochemical Corrosion Behavior of Plasma Electrolytic Oxidation Coatings on AM50 Magnesium Alloy Formed in Silicate and Phosphate-Based Electrolytes, Electrochim. Acta, 2009, 54(14), p 3842–3850CrossRef J. Liang, P.B. Srinivasan, C. Blawert, M. Störmer, and W. Dietzel, Electrochemical Corrosion Behavior of Plasma Electrolytic Oxidation Coatings on AM50 Magnesium Alloy Formed in Silicate and Phosphate-Based Electrolytes, Electrochim. Acta, 2009, 54(14), p 3842–3850CrossRef
21.
Zurück zum Zitat D. Sreekanth and N. Rameshbabu, Development and Characterization of MgO/Hydroxyapatite Composite Coating on AZ31 Magnesium Alloy by Plasma Electrolytic Oxidation Coupled with Electrophoretic Deposition, Mater. Lett., 2012, 68, p 439–442CrossRef D. Sreekanth and N. Rameshbabu, Development and Characterization of MgO/Hydroxyapatite Composite Coating on AZ31 Magnesium Alloy by Plasma Electrolytic Oxidation Coupled with Electrophoretic Deposition, Mater. Lett., 2012, 68, p 439–442CrossRef
22.
Zurück zum Zitat X. Lin, X. Wang, L. Tan, P. Wan, X. Yu, Q. Li, and K. Yang, Effect of Preparation Parameters on the Properties of Hydroxyapatite Containing Micro-arc Oxidation Coating on Biodegradable ZK60 Magnesium Alloy, Ceram. Int., 2014, 40(7, Part A), p 10043–10051CrossRef X. Lin, X. Wang, L. Tan, P. Wan, X. Yu, Q. Li, and K. Yang, Effect of Preparation Parameters on the Properties of Hydroxyapatite Containing Micro-arc Oxidation Coating on Biodegradable ZK60 Magnesium Alloy, Ceram. Int., 2014, 40(7, Part A), p 10043–10051CrossRef
23.
Zurück zum Zitat P. Tian, X. Liu, and C. Ding, In Vitro Degradation Behavior and Cytocompatibility of Biodegradable AZ31 Alloy with PEO/HT Composite Coating, Colloids Surf. B Biointerfaces, 2015, 128, p 44–54CrossRef P. Tian, X. Liu, and C. Ding, In Vitro Degradation Behavior and Cytocompatibility of Biodegradable AZ31 Alloy with PEO/HT Composite Coating, Colloids Surf. B Biointerfaces, 2015, 128, p 44–54CrossRef
24.
Zurück zum Zitat P. Whiteside, E. Matykina, J.E. Gough, P. Skeldon, and G.E. Thompson, In Vitro Evaluation of Cell Proliferation and Collagen Synthesis on Titanium Following Plasma Electrolytic Oxidation, J. Biomed. Mater. Res. Part A, 2010, 94A(1), p 38–46CrossRef P. Whiteside, E. Matykina, J.E. Gough, P. Skeldon, and G.E. Thompson, In Vitro Evaluation of Cell Proliferation and Collagen Synthesis on Titanium Following Plasma Electrolytic Oxidation, J. Biomed. Mater. Res. Part A, 2010, 94A(1), p 38–46CrossRef
25.
Zurück zum Zitat M. Mohedano, R. Guzman, R. Arrabal, J.L. López Lacomba, and E. Matykina, Bioactive Plasma Electrolytic Oxidation Coatings—The Role of the Composition, Microstructure, and Electrochemical Stability, J. Biomed. Mater. Res. Part B Appl. Biomater., 2013, 101(8), p 1524–1537CrossRef M. Mohedano, R. Guzman, R. Arrabal, J.L. López Lacomba, and E. Matykina, Bioactive Plasma Electrolytic Oxidation Coatings—The Role of the Composition, Microstructure, and Electrochemical Stability, J. Biomed. Mater. Res. Part B Appl. Biomater., 2013, 101(8), p 1524–1537CrossRef
26.
Zurück zum Zitat P. Bala Srinivasan, J. Liang, R.G. Balajeee, C. Blawert, M. Störmer, and W. Dietzel, Effect of Pulse Frequency on the Microstructure, Phase Composition and Corrosion Performance of a phosphate-Based Plasma Electrolytic Oxidation Coated AM50 Magnesium Alloy, Appl. Surf. Sci., 2010, 256(12), p 3928–3935CrossRef P. Bala Srinivasan, J. Liang, R.G. Balajeee, C. Blawert, M. Störmer, and W. Dietzel, Effect of Pulse Frequency on the Microstructure, Phase Composition and Corrosion Performance of a phosphate-Based Plasma Electrolytic Oxidation Coated AM50 Magnesium Alloy, Appl. Surf. Sci., 2010, 256(12), p 3928–3935CrossRef
27.
Zurück zum Zitat L.L. Hench, Bioceramics: From Concept to Clinic, J. Am. Ceram. Soc., 1991, 74(7), p 1487–1510CrossRef L.L. Hench, Bioceramics: From Concept to Clinic, J. Am. Ceram. Soc., 1991, 74(7), p 1487–1510CrossRef
28.
Zurück zum Zitat A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S.J. Dowey, Plasma Electrolysis for Surface Engineering, Surf. Coat. Technol., 1999, 122(2–3), p 73–93CrossRef A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S.J. Dowey, Plasma Electrolysis for Surface Engineering, Surf. Coat. Technol., 1999, 122(2–3), p 73–93CrossRef
29.
Zurück zum Zitat S. Durdu and M. Usta, The Tribological Properties of Bioceramic Coatings Produced on Ti6Al4V Alloy by Plasma Electrolytic Oxidation, Ceram. Int., 2014, 40(2), p 3627–3635CrossRef S. Durdu and M. Usta, The Tribological Properties of Bioceramic Coatings Produced on Ti6Al4V Alloy by Plasma Electrolytic Oxidation, Ceram. Int., 2014, 40(2), p 3627–3635CrossRef
30.
Zurück zum Zitat S. Durdu, M. Usta, and A.S. Berkem, Bioactive coatings on Ti6Al4V alloy formed by plasma electrolytic oxidation, Surf. Coat. Technol., 2016, 301, p 85–93CrossRef S. Durdu, M. Usta, and A.S. Berkem, Bioactive coatings on Ti6Al4V alloy formed by plasma electrolytic oxidation, Surf. Coat. Technol., 2016, 301, p 85–93CrossRef
31.
Zurück zum Zitat X. Zhou, G.E. Thompson, P. Skeldon, G.C. Wood, K. Shimizu, and H. Habazaki, Film Formation and Detachment During Anodizing of Al–Mg Alloys, Corros. Sci., 1999, 41(8), p 1599–1613CrossRef X. Zhou, G.E. Thompson, P. Skeldon, G.C. Wood, K. Shimizu, and H. Habazaki, Film Formation and Detachment During Anodizing of Al–Mg Alloys, Corros. Sci., 1999, 41(8), p 1599–1613CrossRef
32.
Zurück zum Zitat H. Hornberger, S. Virtanen, and A.R. Boccaccini, Biomedical Coatings on Magnesium Alloys—A Review, Acta Biomater., 2012, 8(7), p 2442–2455CrossRef H. Hornberger, S. Virtanen, and A.R. Boccaccini, Biomedical Coatings on Magnesium Alloys—A Review, Acta Biomater., 2012, 8(7), p 2442–2455CrossRef
33.
Zurück zum Zitat H. Duan, C. Yan, and F. Wang, Effect of Electrolyte Additives on Performance of Plasma Electrolytic Oxidation Films Formed on Magnesium Alloy AZ91D, Electrochim. Acta, 2007, 52(11), p 3785–3793CrossRef H. Duan, C. Yan, and F. Wang, Effect of Electrolyte Additives on Performance of Plasma Electrolytic Oxidation Films Formed on Magnesium Alloy AZ91D, Electrochim. Acta, 2007, 52(11), p 3785–3793CrossRef
34.
Zurück zum Zitat R.C. Barik, J.A. Wharton, R.J.K. Wood, K.R. Stokes, and R.L. Jones, Corrosion, Erosion, and Erosion–Corrosion Performance of Plasma Electrolytic Oxidation (PEO) Deposited Al2O3 Coatings, Surf. Coat. Technol., 2005, 199(2–3), p 158–167CrossRef R.C. Barik, J.A. Wharton, R.J.K. Wood, K.R. Stokes, and R.L. Jones, Corrosion, Erosion, and Erosion–Corrosion Performance of Plasma Electrolytic Oxidation (PEO) Deposited Al2O3 Coatings, Surf. Coat. Technol., 2005, 199(2–3), p 158–167CrossRef
35.
Zurück zum Zitat W.-H. Song, Y.-K. Jun, Y. Han, and S.-H. Hong, Biomimetic Apatite Coatings on Micro-Arc Oxidized Titania, Biomaterials, 2004, 25(17), p 3341–3349CrossRef W.-H. Song, Y.-K. Jun, Y. Han, and S.-H. Hong, Biomimetic Apatite Coatings on Micro-Arc Oxidized Titania, Biomaterials, 2004, 25(17), p 3341–3349CrossRef
36.
Zurück zum Zitat Y. Zhang, C. Yan, F. Wang, and W. Li, Electrochemical Behavior of Anodized Mg Alloy AZ91D in Chloride Containing Aqueous Solution, Corros. Sci., 2005, 47(11), p 2816–2831CrossRef Y. Zhang, C. Yan, F. Wang, and W. Li, Electrochemical Behavior of Anodized Mg Alloy AZ91D in Chloride Containing Aqueous Solution, Corros. Sci., 2005, 47(11), p 2816–2831CrossRef
37.
Zurück zum Zitat M. Shokouhfar, C. Dehghanian, M. Montazeri, and A. Baradaran, Preparation of Ceramic Coating on Ti Substrate by Plasma Electrolytic Oxidation in Different Electrolytes and Evaluation of its Corrosion Resistance: Part II, Appl. Surf. Sci., 2012, 258(7), p 2416–2423CrossRef M. Shokouhfar, C. Dehghanian, M. Montazeri, and A. Baradaran, Preparation of Ceramic Coating on Ti Substrate by Plasma Electrolytic Oxidation in Different Electrolytes and Evaluation of its Corrosion Resistance: Part II, Appl. Surf. Sci., 2012, 258(7), p 2416–2423CrossRef
38.
Zurück zum Zitat D. Mareci, G. Bolat, J. Izquierdo, C. Crimu, C. Munteanu, I. Antoniac, and R.M. Souto, Electrochemical Characteristics of Bioresorbable Binary MgCa Alloys in Ringer’s Solution: Revealing the Impact of Local pH Distributions During In-Vitro Dissolution, Mater. Sci. Eng. C, 2016, 60, p 402–410CrossRef D. Mareci, G. Bolat, J. Izquierdo, C. Crimu, C. Munteanu, I. Antoniac, and R.M. Souto, Electrochemical Characteristics of Bioresorbable Binary MgCa Alloys in Ringer’s Solution: Revealing the Impact of Local pH Distributions During In-Vitro Dissolution, Mater. Sci. Eng. C, 2016, 60, p 402–410CrossRef
39.
Zurück zum Zitat A.D. King, N. Birbilis, and J.R. Scully, Accurate Electrochemical Measurement of Magnesium Corrosion Rates; a Combined Impedance, Mass-Loss and Hydrogen Collection Study, Electrochim. Acta, 2014, 121, p 394–406CrossRef A.D. King, N. Birbilis, and J.R. Scully, Accurate Electrochemical Measurement of Magnesium Corrosion Rates; a Combined Impedance, Mass-Loss and Hydrogen Collection Study, Electrochim. Acta, 2014, 121, p 394–406CrossRef
40.
Zurück zum Zitat F. Witte, J. Fischer, J. Nellesen, H.-A. Crostack, V. Kaese, A. Pisch, F. Beckmann, and H. Windhagen, In Vitro and In Vivo Corrosion Measurements of Magnesium Alloys, Biomaterials, 2006, 27(7), p 1013–1018CrossRef F. Witte, J. Fischer, J. Nellesen, H.-A. Crostack, V. Kaese, A. Pisch, F. Beckmann, and H. Windhagen, In Vitro and In Vivo Corrosion Measurements of Magnesium Alloys, Biomaterials, 2006, 27(7), p 1013–1018CrossRef
41.
Zurück zum Zitat Y. Gao, A. Yerokhin, E. Parfenov, and A. Matthews, Application of Voltage Pulse Transient Analysis during Plasma Electrolytic Oxidation for Assessment of Characteristics and Corrosion Behaviour of Ca- and P-containing Coatings on Magnesium, Electrochim. Acta, 2014, 149, p 218–230CrossRef Y. Gao, A. Yerokhin, E. Parfenov, and A. Matthews, Application of Voltage Pulse Transient Analysis during Plasma Electrolytic Oxidation for Assessment of Characteristics and Corrosion Behaviour of Ca- and P-containing Coatings on Magnesium, Electrochim. Acta, 2014, 149, p 218–230CrossRef
42.
Zurück zum Zitat E. Krasicka-Cydzik, Gel-Like Layer Development During Formation of Thin Anodic Films on Titanium in Phosphoric Acid Solutions, Corros. Sci., 2004, 46(10), p 2487–2502CrossRef E. Krasicka-Cydzik, Gel-Like Layer Development During Formation of Thin Anodic Films on Titanium in Phosphoric Acid Solutions, Corros. Sci., 2004, 46(10), p 2487–2502CrossRef
43.
Zurück zum Zitat M. Jamesh, S. Kumar, and T.S.N. Sankara, Narayanan, Corrosion Behavior of Commercially Pure Mg and ZM21 Mg Alloy in Ringer’s Solution—Long Term Evaluation by EIS, Corros. Sci., 2011, 53(2), p 645–654CrossRef M. Jamesh, S. Kumar, and T.S.N. Sankara, Narayanan, Corrosion Behavior of Commercially Pure Mg and ZM21 Mg Alloy in Ringer’s Solution—Long Term Evaluation by EIS, Corros. Sci., 2011, 53(2), p 645–654CrossRef
44.
Zurück zum Zitat R. Arrabal, E. Matykina, F. Viejo, P. Skeldon, and G.E. Thompson, Corrosion Resistance of WE43 and AZ91D Magnesium Alloys with Phosphate PEO Coatings, Corros. Sci., 2008, 50(6), p 1744–1752CrossRef R. Arrabal, E. Matykina, F. Viejo, P. Skeldon, and G.E. Thompson, Corrosion Resistance of WE43 and AZ91D Magnesium Alloys with Phosphate PEO Coatings, Corros. Sci., 2008, 50(6), p 1744–1752CrossRef
45.
Zurück zum Zitat D.J. Mills, An Introduction to Electrochemical Corrosion Testing for Practicing Engineers and Scientists: By W. Stephen Tait, published by PairODocs Publications, Racine, WI, USA, Progress in Organic Coatings, 26(1), 73–74 (1995) D.J. Mills, An Introduction to Electrochemical Corrosion Testing for Practicing Engineers and Scientists: By W. Stephen Tait, published by PairODocs Publications, Racine, WI, USA, Progress in Organic Coatings, 26(1), 73–74 (1995)
46.
Zurück zum Zitat X. Lu, C. Blawert, Y. Huang, H. Ovri, M.L. Zheludkevich, and K.U. Kainer, Plasma Electrolytic Oxidation Coatings on Mg Alloy with Addition of SiO2 Particles, Electrochim. Acta, 2016, 187, p 20–33CrossRef X. Lu, C. Blawert, Y. Huang, H. Ovri, M.L. Zheludkevich, and K.U. Kainer, Plasma Electrolytic Oxidation Coatings on Mg Alloy with Addition of SiO2 Particles, Electrochim. Acta, 2016, 187, p 20–33CrossRef
47.
Zurück zum Zitat W. Zhang, B. Tian, K.-Q. Du, H.-X. Zhang, and F.-H. Wang, Preparation and Corrosion Performance of PEO Coating with Low Porosity on Magnesium Alloy AZ91D in Acidic KF System, Int. J. Electrochem. Sci., 2011, 6, p 5228–5248 W. Zhang, B. Tian, K.-Q. Du, H.-X. Zhang, and F.-H. Wang, Preparation and Corrosion Performance of PEO Coating with Low Porosity on Magnesium Alloy AZ91D in Acidic KF System, Int. J. Electrochem. Sci., 2011, 6, p 5228–5248
48.
Zurück zum Zitat Y. Gu, C.-F. Chen, S. Bandopadhyay, C. Ning, Y. Zhang, and Y. Guo, Corrosion Mechanism and Model of Pulsed DC Microarc Oxidation Treated AZ31 Alloy in Simulated Body Fluid, Appl. Surf. Sci., 2012, 258(16), p 6116–6126CrossRef Y. Gu, C.-F. Chen, S. Bandopadhyay, C. Ning, Y. Zhang, and Y. Guo, Corrosion Mechanism and Model of Pulsed DC Microarc Oxidation Treated AZ31 Alloy in Simulated Body Fluid, Appl. Surf. Sci., 2012, 258(16), p 6116–6126CrossRef
49.
Zurück zum Zitat D. Sreekanth, N. Rameshbabu, and K. Venkateswarlu, Effect of Various Additives on Morphology and Corrosion Behavior of Ceramic Coatings Developed on AZ31 Magnesium Alloy by Plasma Electrolytic Oxidation, Ceram. Int., 2012, 38(6), p 4607–4615CrossRef D. Sreekanth, N. Rameshbabu, and K. Venkateswarlu, Effect of Various Additives on Morphology and Corrosion Behavior of Ceramic Coatings Developed on AZ31 Magnesium Alloy by Plasma Electrolytic Oxidation, Ceram. Int., 2012, 38(6), p 4607–4615CrossRef
50.
Zurück zum Zitat L. Guo-Hua, C. Huan, W. Xing-Quan, P. Hua, Z. Gu-Ling, Z. Bin, L. Heon-Ju, and Y. Si-Ze, Characteristics of Sealed Plasma Electrolytic Oxidation Coatings with electrochemical Impedance Spectroscopy, Chin. Phys. B, 2010, 19(8), p 085202CrossRef L. Guo-Hua, C. Huan, W. Xing-Quan, P. Hua, Z. Gu-Ling, Z. Bin, L. Heon-Ju, and Y. Si-Ze, Characteristics of Sealed Plasma Electrolytic Oxidation Coatings with electrochemical Impedance Spectroscopy, Chin. Phys. B, 2010, 19(8), p 085202CrossRef
Metadaten
Titel
Corrosion Behavior of PEO Coatings Formed on AZ31 Alloy in Phosphate-Based Electrolytes with Calcium Acetate Additive
verfasst von
E. Ziyaei
M. Atapour
H. Edris
A. Hakimizad
Publikationsdatum
07.06.2017
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 7/2017
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-017-2765-9

Weitere Artikel der Ausgabe 7/2017

Journal of Materials Engineering and Performance 7/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.