Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 12/2022

19.05.2022 | Technical Article

Corrosion Response of Carbon Steel Exposed to Dynamic H2S Aqueous Solution in the Presence of Bicarbonate Ions and Natural Aeration

verfasst von: Shaohua Zhang, Ang Gao, Liming Mou, Yanrui Li, Shuo Yu, Yuezhong Zhang, Xiaoyan Yan, Baosheng Liu

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 12/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Corrosion of carbon steel exposed to natural aeration and aqueous solutions containing HCO3 was investigated as a function of the dissolved H2S concentration under static and dynamic conditions through electrochemical and surface characterization. The results revealed the occurrence of more pitting corrosion of carbon steel at a 10 ppm H2S concentration than at a 50 ppm H2S concentration, which was mainly associated with the formation of FeCO3 crystals (higher pH condition at 10 ppm H2S) and followed by a loss of integrity for the corrosion products due to the action of dissolved oxygen; however, defective iron sulfide scale with poor adhesion to the steel was formed once the steel surface was in contact with an aqueous solution containing 50 ppm H2S, and the loose scale was easily spalled by the action of fluid flow, which resulted in an increase in the general corrosion rate for carbon steel. Thus, this study holds promise for understanding the transformation mechanisms of corrosion types and reducing corrosion failures of transportation pipelines in the oil and gas industry.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat C. Yu, H. Wang, X. Gao, and H. Wang, Effect of Ti Microalloying on the Corrosion Behavior of Low-Carbon Steel in H2S/CO2 Environment, J. Mater. Eng. Perform., 2020, 29, p 6118–6129. CrossRef C. Yu, H. Wang, X. Gao, and H. Wang, Effect of Ti Microalloying on the Corrosion Behavior of Low-Carbon Steel in H2S/CO2 Environment, J. Mater. Eng. Perform., 2020, 29, p 6118–6129. CrossRef
2.
Zurück zum Zitat Z. Liu, X. Gao, L. Du, J. Li, P. Li, X. Bai, and R.D.K. Misra, Corrosion Behavior of Low-Alloy Pipeline Steel Exposed to H2S/CO2-Saturated Saline Solution, J. Mater. Eng. Perform., 2017, 26, p 1010–1017. CrossRef Z. Liu, X. Gao, L. Du, J. Li, P. Li, X. Bai, and R.D.K. Misra, Corrosion Behavior of Low-Alloy Pipeline Steel Exposed to H2S/CO2-Saturated Saline Solution, J. Mater. Eng. Perform., 2017, 26, p 1010–1017. CrossRef
3.
Zurück zum Zitat P.R.P. Viana, F.V.V. de Sousa, O.E. Barcia, B. Tribollet, and O.R. Mattos, Hydrogen Reaction Analysis in Aqueous Solutions Containing H2S/CO2 at Different Pressures, Corros. Sci., 2020, 176, 108938. CrossRef P.R.P. Viana, F.V.V. de Sousa, O.E. Barcia, B. Tribollet, and O.R. Mattos, Hydrogen Reaction Analysis in Aqueous Solutions Containing H2S/CO2 at Different Pressures, Corros. Sci., 2020, 176, 108938. CrossRef
4.
Zurück zum Zitat Z.Y. Liu, X.Z. Wang, R.K. Liu, C.W. Du, and X.G. Li, Electrochemical and Sulfide Stress Corrosion Cracking Behaviors of Tubing Steels in a H2S/CO2 Annular Environment, J. Mater. Eng. Perform., 2014, 23, p 1279–1287. CrossRef Z.Y. Liu, X.Z. Wang, R.K. Liu, C.W. Du, and X.G. Li, Electrochemical and Sulfide Stress Corrosion Cracking Behaviors of Tubing Steels in a H2S/CO2 Annular Environment, J. Mater. Eng. Perform., 2014, 23, p 1279–1287. CrossRef
5.
Zurück zum Zitat Z.F. Yin, Y.L. Zhang, G.R. Chang, and T.Q. Yang, Corrosion Behavior and Characteristics of 3Cr Steel in Coexisting H2S- and CO2-Containing Solutions, J. Mater. Eng. Perform., 2020, 29, p 5442–5457. CrossRef Z.F. Yin, Y.L. Zhang, G.R. Chang, and T.Q. Yang, Corrosion Behavior and Characteristics of 3Cr Steel in Coexisting H2S- and CO2-Containing Solutions, J. Mater. Eng. Perform., 2020, 29, p 5442–5457. CrossRef
6.
Zurück zum Zitat D. Rickard, Kinetics of FeS Precipitation: Part 1. Competing Reaction Mechanisms, Geochim. Cosmochim. Acta, 1995, 59, p 4367–4379. D. Rickard, Kinetics of FeS Precipitation: Part 1. Competing Reaction Mechanisms, Geochim. Cosmochim. Acta, 1995, 59, p 4367–4379.
7.
Zurück zum Zitat W. Sun and S. Nešić, Kinetics of Corrosion Layer Formation: Part 1-Iron Carbonate Layers in Carbon Dioxide Corrosion, Corrosion, 2008, 64, p 334–346. CrossRef W. Sun and S. Nešić, Kinetics of Corrosion Layer Formation: Part 1-Iron Carbonate Layers in Carbon Dioxide Corrosion, Corrosion, 2008, 64, p 334–346. CrossRef
8.
Zurück zum Zitat S. Zheng, C. Li, and C. Chen, Effect of Temperature on the Corrosion Behaviours of L360QCS in the Environments Containing Elemental Sulphur and H2S/CO2, Metallofizika i Noveĭshie Tekhnologii, 2012, 34, p 57–63. S. Zheng, C. Li, and C. Chen, Effect of Temperature on the Corrosion Behaviours of L360QCS in the Environments Containing Elemental Sulphur and H2S/CO2, Metallofizika i Noveĭshie Tekhnologii, 2012, 34, p 57–63.
9.
Zurück zum Zitat S. Gao, P. Jin, B. Brown, D. Young, S. Nešić, and M. Singer, Effect of High Temperature on the Aqueous H2S Corrosion of Mild Steel, Corrosion, 2017, 73, p 1188–1191. CrossRef S. Gao, P. Jin, B. Brown, D. Young, S. Nešić, and M. Singer, Effect of High Temperature on the Aqueous H2S Corrosion of Mild Steel, Corrosion, 2017, 73, p 1188–1191. CrossRef
10.
Zurück zum Zitat Y. Qi, H. Luo, S. Zheng, C. Chen, Z. Lv, and M. Xiong, Effect of Temperature on the Corrosion Behavior of Carbon Steel in Hydrogen Sulphide Environments, Int. J. Electrochem. Sci., 2014, 9, p 2101–2112. Y. Qi, H. Luo, S. Zheng, C. Chen, Z. Lv, and M. Xiong, Effect of Temperature on the Corrosion Behavior of Carbon Steel in Hydrogen Sulphide Environments, Int. J. Electrochem. Sci., 2014, 9, p 2101–2112.
11.
Zurück zum Zitat F. Manning and R. Thompson, Oilfield Processing of Petroleum: Crude Oil, Penn Well Publishing Company, USA, 1995. F. Manning and R. Thompson, Oilfield Processing of Petroleum: Crude Oil, Penn Well Publishing Company, USA, 1995.
12.
Zurück zum Zitat L. Xu, H. Xiao, W. Shang, B. Wang, and J. Zhu, Passivation of X65 (UNS K03014) Carbon Steel in NaHCO3 Solution in a CO2 Environment, Corros. Sci., 2016, 109, p 246–256. CrossRef L. Xu, H. Xiao, W. Shang, B. Wang, and J. Zhu, Passivation of X65 (UNS K03014) Carbon Steel in NaHCO3 Solution in a CO2 Environment, Corros. Sci., 2016, 109, p 246–256. CrossRef
13.
Zurück zum Zitat D. John, B. Kinsella, S. Bailey, R.D. Marco, Flow Dependence of Carbon Dioxide Corrosion Rates and the Interference of Trace Dissolved Oxygen, in: Corrosion, 2007, NACE, Paper no. 315, 2007. D. John, B. Kinsella, S. Bailey, R.D. Marco, Flow Dependence of Carbon Dioxide Corrosion Rates and the Interference of Trace Dissolved Oxygen, in: Corrosion, 2007, NACE, Paper no. 315, 2007.
14.
Zurück zum Zitat J. Zhang, W. Liu, X. Lin, S. Dong, S. Lu, C. Yang, T. Wang, and M. Lu, Corrosion Behavior and mechanism of N80 Steel under High Temperature and High Pressure CO2-O2 Coexisting Condition, in: Corrosion 2013, NACE, Paper no. 2479, 2013. J. Zhang, W. Liu, X. Lin, S. Dong, S. Lu, C. Yang, T. Wang, and M. Lu, Corrosion Behavior and mechanism of N80 Steel under High Temperature and High Pressure CO2-O2 Coexisting Condition, in: Corrosion 2013, NACE, Paper no. 2479, 2013.
15.
Zurück zum Zitat X. Lin, W. Liu, F. Wu, C. Xu, J. Dou, and M. Lu, Effect of O2 on Corrosion of 3Cr Steel in High Temperature and High Pressure CO2-O2 Environment, Appl. Surf. Sci., 2015, 329, p 104–115. CrossRef X. Lin, W. Liu, F. Wu, C. Xu, J. Dou, and M. Lu, Effect of O2 on Corrosion of 3Cr Steel in High Temperature and High Pressure CO2-O2 Environment, Appl. Surf. Sci., 2015, 329, p 104–115. CrossRef
16.
Zurück zum Zitat S. Zhang, L. Hou, H. Du, H. Wei, B. Liu, and Y. Wei, A Study on the Interaction Between Chloride Ions and CO2 Towards Carbon Steel Corrosion, Corros. Sci., 2020, 167, 108531. CrossRef S. Zhang, L. Hou, H. Du, H. Wei, B. Liu, and Y. Wei, A Study on the Interaction Between Chloride Ions and CO2 Towards Carbon Steel Corrosion, Corros. Sci., 2020, 167, 108531. CrossRef
17.
Zurück zum Zitat S. Zhang, L. Hou, H. Du, H. Wei, B. Liu, and Y. Wei, Synergistic Contribution of Chloride and Bicarbonate Ions to Pitting Corrosion Behavior of Carbon Steel, Corrosion, 2019, 75, p 1034–1043. CrossRef S. Zhang, L. Hou, H. Du, H. Wei, B. Liu, and Y. Wei, Synergistic Contribution of Chloride and Bicarbonate Ions to Pitting Corrosion Behavior of Carbon Steel, Corrosion, 2019, 75, p 1034–1043. CrossRef
18.
Zurück zum Zitat S. Zhang, Y. Li, B. Liu, L. Mou, S. Yu, Y. Zhang, and X. Yan, Understanding the Synergistic Effect of CO2, H2S and Fluid Flow Towards Carbon Steel Corrosion, Vacuum, 2022, 196, 110790. CrossRef S. Zhang, Y. Li, B. Liu, L. Mou, S. Yu, Y. Zhang, and X. Yan, Understanding the Synergistic Effect of CO2, H2S and Fluid Flow Towards Carbon Steel Corrosion, Vacuum, 2022, 196, 110790. CrossRef
19.
Zurück zum Zitat L.-Q. Chen and Y. Zhao, From Classical Thermodynamics to Phase-Field Method, Prog. Mater. Sci., 2022, 124, 100868. CrossRef L.-Q. Chen and Y. Zhao, From Classical Thermodynamics to Phase-Field Method, Prog. Mater. Sci., 2022, 124, 100868. CrossRef
20.
Zurück zum Zitat Y. Zhao, B. Zhang, H. Hou, W. Chen, and M. Wang, Phase-Field Simulation for the Evolution of Solid/Liquid Interface Front in Directional Solidification Process, J. Mater. Sci. Technol., 2019, 35, p 1044–1052. CrossRef Y. Zhao, B. Zhang, H. Hou, W. Chen, and M. Wang, Phase-Field Simulation for the Evolution of Solid/Liquid Interface Front in Directional Solidification Process, J. Mater. Sci. Technol., 2019, 35, p 1044–1052. CrossRef
21.
Zurück zum Zitat J. Yan, H. Wei, H. Xie, X. Gu, and H. Bao, Seeking for Low Thermal Conductivity Atomic Configurations in SiGe Alloys with Bayesian Optimization, ES Energy & Environment, 2020, 8, p 56–64. J. Yan, H. Wei, H. Xie, X. Gu, and H. Bao, Seeking for Low Thermal Conductivity Atomic Configurations in SiGe Alloys with Bayesian Optimization, ES Energy & Environment, 2020, 8, p 56–64.
22.
Zurück zum Zitat S. Wang, X. Lu, A. Negi, J. He, K. Kim, H. Shao, P. Jiang, J. Liu, and Q. Hao, Revisiting the Reduction of Thermal Conductivity in Nano- to Micro-Grained Bismuth Telluride: The Importance of Grain-Boundary Thermal Resistance, Engineered, Science, 2022, 17, p 45–55. S. Wang, X. Lu, A. Negi, J. He, K. Kim, H. Shao, P. Jiang, J. Liu, and Q. Hao, Revisiting the Reduction of Thermal Conductivity in Nano- to Micro-Grained Bismuth Telluride: The Importance of Grain-Boundary Thermal Resistance, Engineered, Science, 2022, 17, p 45–55.
23.
Zurück zum Zitat L. Onyejia, S. Mohammed, and G. Kale, Electrochemical Response of Micro-alloyed Steel under Potentiostatic Polarization in CO2 Saturated Brine, Corros. Sci., 2018, 2018(138), p 146. CrossRef L. Onyejia, S. Mohammed, and G. Kale, Electrochemical Response of Micro-alloyed Steel under Potentiostatic Polarization in CO2 Saturated Brine, Corros. Sci., 2018, 2018(138), p 146. CrossRef
24.
Zurück zum Zitat H. Ma, X. Cheng, G. Li, S. Chen, Z. Quan, S. Zhao, and L. Niu, The Influence of Hydrogen Sulfide on Corrosion of Iron under Different Conditions, Corros. Sci., 2000, 42, p 1669–1683. CrossRef H. Ma, X. Cheng, G. Li, S. Chen, Z. Quan, S. Zhao, and L. Niu, The Influence of Hydrogen Sulfide on Corrosion of Iron under Different Conditions, Corros. Sci., 2000, 42, p 1669–1683. CrossRef
25.
Zurück zum Zitat M. Javidi, R. Chamanfar, and S. Bekhrad, Investigation on the Efficiency of Corrosion Inhibitor in CO2 Corrosion of Carbon Steel in the Presence of Iron Carbonate Scale, J. Nat. Gas Sci. Eng., 2019, 61, p 197–205. CrossRef M. Javidi, R. Chamanfar, and S. Bekhrad, Investigation on the Efficiency of Corrosion Inhibitor in CO2 Corrosion of Carbon Steel in the Presence of Iron Carbonate Scale, J. Nat. Gas Sci. Eng., 2019, 61, p 197–205. CrossRef
26.
Zurück zum Zitat R.T.T. Jalgham, Theoretical, Monte Carlo Simulations and QSAR Studies on Some Triazole Derivatives as Corrosion Inhibitors for Mild Steel in 1 M HCl, ES Energy & Environment, 2021, 13, p 37–49. R.T.T. Jalgham, Theoretical, Monte Carlo Simulations and QSAR Studies on Some Triazole Derivatives as Corrosion Inhibitors for Mild Steel in 1 M HCl, ES Energy & Environment, 2021, 13, p 37–49.
27.
Zurück zum Zitat J. Liu, J. Zhang, J. Tang, L. Pu, Y. Xue, M. Lu, L. Xu, and Z. Guo, Polydimethylsiloxane Resin Nanocomposite Coating with Alternating Multilayer Structure for Corrosion Protection Performance, ES Materials & Manufacturing, 2020, 10, p 29–38. J. Liu, J. Zhang, J. Tang, L. Pu, Y. Xue, M. Lu, L. Xu, and Z. Guo, Polydimethylsiloxane Resin Nanocomposite Coating with Alternating Multilayer Structure for Corrosion Protection Performance, ES Materials & Manufacturing, 2020, 10, p 29–38.
28.
Zurück zum Zitat ASTM Standard G31-72, Standard Practice for Laboratory Immersion Corrosion Testing of Metals ASTM, International, West Conshohocken, PA, 2004. ASTM Standard G31-72, Standard Practice for Laboratory Immersion Corrosion Testing of Metals ASTM, International, West Conshohocken, PA, 2004.
29.
Zurück zum Zitat N.K. Nambiar, D. Brindha, P. Punniyakotti, B.R. Venkatraman, and S. Angaiah, Derris Indica Leaves Extract as a Green Inhibitor for the Corrosion Of Aluminium in Alkaline Medium, Engineered, Science, 2022, 17, p 167–175. N.K. Nambiar, D. Brindha, P. Punniyakotti, B.R. Venkatraman, and S. Angaiah, Derris Indica Leaves Extract as a Green Inhibitor for the Corrosion Of Aluminium in Alkaline Medium, Engineered, Science, 2022, 17, p 167–175.
30.
Zurück zum Zitat X. Wu, J. Zhong, H. Zhang, H. Liu, J. Mai, S. Shi, Q. Deng, and N. Wang, Garnet Li7La3Zr2O12 Solid-State Electrolyte: Environmental Corrosion, Countermeasures and Applications, ES, Energy & Environment, 2021, 14, p 22–33. X. Wu, J. Zhong, H. Zhang, H. Liu, J. Mai, S. Shi, Q. Deng, and N. Wang, Garnet Li7La3Zr2O12 Solid-State Electrolyte: Environmental Corrosion, Countermeasures and Applications, ES, Energy & Environment, 2021, 14, p 22–33.
31.
Zurück zum Zitat C. de Waard and D.E. Milliams, Carbonic Acid Corrosion of Steel, Corrosion, 1975, 31, p 177–181. CrossRef C. de Waard and D.E. Milliams, Carbonic Acid Corrosion of Steel, Corrosion, 1975, 31, p 177–181. CrossRef
32.
Zurück zum Zitat T.C. Almeida, M.C.E. Bandeira, R.M. Moreira, and O.R. Mattos, New Insights on the Role of CO2 in the Mechanism of Carbon Steel Corrosion, Corros. Sci., 2017, 120, p 239–250. CrossRef T.C. Almeida, M.C.E. Bandeira, R.M. Moreira, and O.R. Mattos, New Insights on the Role of CO2 in the Mechanism of Carbon Steel Corrosion, Corros. Sci., 2017, 120, p 239–250. CrossRef
33.
Zurück zum Zitat M. Keddam, O.R. Mattos, and H. Takenouti, Mechanism of Anodic Dissolution of Iron-Chromium Alloys Investigated by Electrode Impedance-I. Experimental Results and Reaction Model, Electrochim. Acta. 1986. 31, p 1147–1158. M. Keddam, O.R. Mattos, and H. Takenouti, Mechanism of Anodic Dissolution of Iron-Chromium Alloys Investigated by Electrode Impedance-I. Experimental Results and Reaction Model, Electrochim. Acta. 1986. 31, p 1147–1158.
34.
Zurück zum Zitat R.F. Wright, E.R. Brand, M. Ziomek-Moroz, J.H. Tylczak, and P.R. Ohodnicki, Effect of HCO3− on Electrochemical Kinetics of Carbon Steel Corrosion in CO2-Saturated Brines, Electrochim. Acta, 2018, 290, p 626–638. CrossRef R.F. Wright, E.R. Brand, M. Ziomek-Moroz, J.H. Tylczak, and P.R. Ohodnicki, Effect of HCO3 on Electrochemical Kinetics of Carbon Steel Corrosion in CO2-Saturated Brines, Electrochim. Acta, 2018, 290, p 626–638. CrossRef
35.
Zurück zum Zitat B. Wang, L. Xu, J. Zhu, H. Xiao, and M. Lu, Observation and Analysis of Pseudopassive Film on 6.5%Cr Steel in CO2 Corrosion Environment, Corros. Sci., 2016, 111, 711–719. B. Wang, L. Xu, J. Zhu, H. Xiao, and M. Lu, Observation and Analysis of Pseudopassive Film on 6.5%Cr Steel in CO2 Corrosion Environment, Corros. Sci., 2016, 111, 711–719.
36.
Zurück zum Zitat L. Wei, X. Pang, and K. Gao, Corrosion of Low Alloy Steel and Stainless Steel in Supercritical CO2/H2O/H2S Systems, Corros. Sci., 2016, 111, p 637–648. CrossRef L. Wei, X. Pang, and K. Gao, Corrosion of Low Alloy Steel and Stainless Steel in Supercritical CO2/H2O/H2S Systems, Corros. Sci., 2016, 111, p 637–648. CrossRef
37.
Zurück zum Zitat P. Bai, H. Zhao, S. Zheng, and C. Chen, Initiation and Developmental Stages of Steel Corrosion in Wet H2S Environments, Corros. Sci., 2015, 93, p 109–119. CrossRef P. Bai, H. Zhao, S. Zheng, and C. Chen, Initiation and Developmental Stages of Steel Corrosion in Wet H2S Environments, Corros. Sci., 2015, 93, p 109–119. CrossRef
38.
Zurück zum Zitat P. Bai, S. Zheng, H. Zhao, Y. Ding, J. Wu, and C. Chen, Investigations of the Diverse Corrosion Products on Steel in a Hydrogen Sulfide Environment, Corros. Sci., 2014, 87, p 397–406. CrossRef P. Bai, S. Zheng, H. Zhao, Y. Ding, J. Wu, and C. Chen, Investigations of the Diverse Corrosion Products on Steel in a Hydrogen Sulfide Environment, Corros. Sci., 2014, 87, p 397–406. CrossRef
39.
Zurück zum Zitat X. Wen, P. Bai, B. Luo, S. Zheng, and C. Chen, Review of Recent Progress in the Study of Corrosion Products of Steels in a Hydrogen Sulphide Environment, Corros. Sci., 2018, 139, p 124–140. CrossRef X. Wen, P. Bai, B. Luo, S. Zheng, and C. Chen, Review of Recent Progress in the Study of Corrosion Products of Steels in a Hydrogen Sulphide Environment, Corros. Sci., 2018, 139, p 124–140. CrossRef
40.
Zurück zum Zitat J.K. Heuer and J.F. Stubbins, An XPS Characteristic of FeCO3 Films from CO2 Corrosion, Corros. Sci., 1999, 41, p 1231–1243. CrossRef J.K. Heuer and J.F. Stubbins, An XPS Characteristic of FeCO3 Films from CO2 Corrosion, Corros. Sci., 1999, 41, p 1231–1243. CrossRef
41.
Zurück zum Zitat D. Mandrino, XPS and SEM of Unpolished and Polished FeS Surface, Mater. Technol., 2011, 45, p 325–328. D. Mandrino, XPS and SEM of Unpolished and Polished FeS Surface, Mater. Technol., 2011, 45, p 325–328.
42.
Zurück zum Zitat G.A. Bukhtiyarova, V.I. Bukhtiyarov, N.S. Sakaeva, V.V. Kaichev, and B.P. Zolotovskii, XPS Study of the Silica-Supported Fe-Containing Catalysts for Deep or Partial H2S Oxidation, J. Mol. Catal. Chem., 2000, 158, p 251–255. CrossRef G.A. Bukhtiyarova, V.I. Bukhtiyarov, N.S. Sakaeva, V.V. Kaichev, and B.P. Zolotovskii, XPS Study of the Silica-Supported Fe-Containing Catalysts for Deep or Partial H2S Oxidation, J. Mol. Catal. Chem., 2000, 158, p 251–255. CrossRef
43.
Zurück zum Zitat L. Wei, X. Pang, C. Liu, and K. Gao, Formation Mechanism and Protective Property of Corrosion Product Scale on X70 Steel under Supercritical CO2 Environment, Corros. Sci., 2015, 100, p 404–420. CrossRef L. Wei, X. Pang, C. Liu, and K. Gao, Formation Mechanism and Protective Property of Corrosion Product Scale on X70 Steel under Supercritical CO2 Environment, Corros. Sci., 2015, 100, p 404–420. CrossRef
44.
Zurück zum Zitat R. Barker, D. Burkle, T. Charpentier, H. Thompson, and A. Neville, A Review of Iron Carbonate (FeCO3) Formation in the Oil and Gas Industry, Corros. Sci., 2018, 142, p 312–341. CrossRef R. Barker, D. Burkle, T. Charpentier, H. Thompson, and A. Neville, A Review of Iron Carbonate (FeCO3) Formation in the Oil and Gas Industry, Corros. Sci., 2018, 142, p 312–341. CrossRef
45.
Zurück zum Zitat S. Mann, N.H.C. Sparks, R.B. Frankel, D.A. Bazylinski, and H.W. Jannasch, Biomineralization of Ferrimagnetic Greigite (Fe3S4) and Iron Pyrite (FeS2) in a Magnetotactic Bacterium, Nature, 1990, 343, p 258–261. CrossRef S. Mann, N.H.C. Sparks, R.B. Frankel, D.A. Bazylinski, and H.W. Jannasch, Biomineralization of Ferrimagnetic Greigite (Fe3S4) and Iron Pyrite (FeS2) in a Magnetotactic Bacterium, Nature, 1990, 343, p 258–261. CrossRef
46.
Zurück zum Zitat F. Shi, L. Zhang, J. Yang, M. Lu, J. Ding, and H. Li, Polymorphous FeS Corrosion Products of Pipeline Steel under Highly Sour Conditions, Corros. Sci., 2016, 102, p 103–113. CrossRef F. Shi, L. Zhang, J. Yang, M. Lu, J. Ding, and H. Li, Polymorphous FeS Corrosion Products of Pipeline Steel under Highly Sour Conditions, Corros. Sci., 2016, 102, p 103–113. CrossRef
47.
Zurück zum Zitat A.M. Zimer, E.C. Rios, P.C.D. Mendes, W.N. Goncalves, O.M. Bruno, E.C. Pereira, and L.H. Mascaro, Investigation of AISI 1040 Steel Corrosion in H2S Solution Containing Chloride Ions by Digital Image Processing Coupled with Electrochemical Techniques, Corros. Sci., 2011, 53, p 3193–3201. CrossRef A.M. Zimer, E.C. Rios, P.C.D. Mendes, W.N. Goncalves, O.M. Bruno, E.C. Pereira, and L.H. Mascaro, Investigation of AISI 1040 Steel Corrosion in H2S Solution Containing Chloride Ions by Digital Image Processing Coupled with Electrochemical Techniques, Corros. Sci., 2011, 53, p 3193–3201. CrossRef
48.
Zurück zum Zitat D. Wei and K. Osseo-Asare, Particulate Pyrite Formation by the Fe3+/HS− Reaction in Aqueous Solutions: Effects of Solution Composition, Colloid. Surface A, 1996, 118, p 51–61. CrossRef D. Wei and K. Osseo-Asare, Particulate Pyrite Formation by the Fe3+/HS Reaction in Aqueous Solutions: Effects of Solution Composition, Colloid. Surface A, 1996, 118, p 51–61. CrossRef
49.
Zurück zum Zitat R.J. Biernat and R.G. Robins, High-Temperature Potential/pH Diagrams for the Iron-Water and Iron-Water-Sulphur Systems, Electrochim. Acta, 1972, 17, p 1261–1283. CrossRef R.J. Biernat and R.G. Robins, High-Temperature Potential/pH Diagrams for the Iron-Water and Iron-Water-Sulphur Systems, Electrochim. Acta, 1972, 17, p 1261–1283. CrossRef
50.
Zurück zum Zitat S. Zhang, Y. Li, Y. Wei, B. Liu, H. Du, H. Wei, and L. Hou, Synergistic Effect of Chloride Ions and Filmed Surface on Pitting in the Pseudo-passivation Behavior of Carbon Steel, Vacuum, 2021, 185, 110042. CrossRef S. Zhang, Y. Li, Y. Wei, B. Liu, H. Du, H. Wei, and L. Hou, Synergistic Effect of Chloride Ions and Filmed Surface on Pitting in the Pseudo-passivation Behavior of Carbon Steel, Vacuum, 2021, 185, 110042. CrossRef
51.
Zurück zum Zitat S. Gao, B. Brown, D. Young, and M. Singer, Formation of Iron Oxide and Iron Sulfide at High Temperature and Their Effects on Corrosion, Corros. Sci., 2018, 135, p 167–176. CrossRef S. Gao, B. Brown, D. Young, and M. Singer, Formation of Iron Oxide and Iron Sulfide at High Temperature and Their Effects on Corrosion, Corros. Sci., 2018, 135, p 167–176. CrossRef
52.
Zurück zum Zitat G.A. Zhang, Y. Zeng, X.P. Guo, F. Jiang, D.Y. Shi, and Z.Y. Chen, Electrochemical Corrosion Behavior of Carbon Steel under Dynamic High Pressure H2S/CO2 Environment, Corros. Sci., 2012, 65, p 37–47. CrossRef G.A. Zhang, Y. Zeng, X.P. Guo, F. Jiang, D.Y. Shi, and Z.Y. Chen, Electrochemical Corrosion Behavior of Carbon Steel under Dynamic High Pressure H2S/CO2 Environment, Corros. Sci., 2012, 65, p 37–47. CrossRef
53.
Zurück zum Zitat K. Liao, F. Zhou, X. Song, Y. Wang, S. Zhao, J. Liang, L. Chen, and G. He, Synergistic Effect of O2 and H2S on the Corrosion Behavior of N80 Steel in a Simulated High-Pressure Flue Gas Injection System, J. Mater. Eng. Perform., 2020, 29, p 155–166. CrossRef K. Liao, F. Zhou, X. Song, Y. Wang, S. Zhao, J. Liang, L. Chen, and G. He, Synergistic Effect of O2 and H2S on the Corrosion Behavior of N80 Steel in a Simulated High-Pressure Flue Gas Injection System, J. Mater. Eng. Perform., 2020, 29, p 155–166. CrossRef
54.
Zurück zum Zitat R. Rihan, M.N. Zafar, and L. Al-Hadhrami, A Novel Emulsion Flow Loop for Investigating the Corrosion of X65 Steel in Emulsions with H2S/CO2, J. Mater. Eng. Perform., 2016, 25, p 3065–3073. CrossRef R. Rihan, M.N. Zafar, and L. Al-Hadhrami, A Novel Emulsion Flow Loop for Investigating the Corrosion of X65 Steel in Emulsions with H2S/CO2, J. Mater. Eng. Perform., 2016, 25, p 3065–3073. CrossRef
55.
Zurück zum Zitat T. Fan, W. Deng, Y. Gang, Z. Du, and Y. Li, Degradation of Hazardous Organics via Cathodic Flow-through Process Using a Spinel FeCo2O4/CNT Decorated Stainless-Steel Mesh, ES Materials & Manufacturing, 2021, 12, p 53–62. T. Fan, W. Deng, Y. Gang, Z. Du, and Y. Li, Degradation of Hazardous Organics via Cathodic Flow-through Process Using a Spinel FeCo2O4/CNT Decorated Stainless-Steel Mesh, ES Materials & Manufacturing, 2021, 12, p 53–62.
56.
Zurück zum Zitat T. Xin, Y. Zhao, R. Mahjoub, J. Jiang, A. Yadav, K. Nomoto, R. Niu, S. Tang, F. Ji, Z. Quadir, D. Miskovic, J. Daniels, W. Xu, X. Liao, L.-Q. Chen, K. Hagihara, X. Li, S. Ringer, and M. Ferry, Ultrahigh Specific Strength in a Magnesium alloy Strengthened by Spinodal Decomposition, Sci. Adv., 2021, 7, p 1–9. CrossRef T. Xin, Y. Zhao, R. Mahjoub, J. Jiang, A. Yadav, K. Nomoto, R. Niu, S. Tang, F. Ji, Z. Quadir, D. Miskovic, J. Daniels, W. Xu, X. Liao, L.-Q. Chen, K. Hagihara, X. Li, S. Ringer, and M. Ferry, Ultrahigh Specific Strength in a Magnesium alloy Strengthened by Spinodal Decomposition, Sci. Adv., 2021, 7, p 1–9. CrossRef
57.
Zurück zum Zitat L. Chen, Y. Zhao, M. Li, L. Li, L. Hou, and H. Hou, Reinforced AZ91D Magnesium Alloy with Thixomolding Process Facilitated Dispersion of Graphene Nanoplatelets and Enhanced Interfacial Interactions, Mat. Sci. Eng. A, 2021, 804, 140793. CrossRef L. Chen, Y. Zhao, M. Li, L. Li, L. Hou, and H. Hou, Reinforced AZ91D Magnesium Alloy with Thixomolding Process Facilitated Dispersion of Graphene Nanoplatelets and Enhanced Interfacial Interactions, Mat. Sci. Eng. A, 2021, 804, 140793. CrossRef
58.
Zurück zum Zitat J. Zhang, H. Wang, W. Kuang, Y. Zhang, S. Li, Y. Zhao, and D.M. Herlach, Rapid Solidification of Non-stoichiometric Intermetallic Compounds: Modeling and Experimental Verification, Acta Mater., 2018, 148, p 86–99. CrossRef J. Zhang, H. Wang, W. Kuang, Y. Zhang, S. Li, Y. Zhao, and D.M. Herlach, Rapid Solidification of Non-stoichiometric Intermetallic Compounds: Modeling and Experimental Verification, Acta Mater., 2018, 148, p 86–99. CrossRef
Metadaten
Titel
Corrosion Response of Carbon Steel Exposed to Dynamic H2S Aqueous Solution in the Presence of Bicarbonate Ions and Natural Aeration
verfasst von
Shaohua Zhang
Ang Gao
Liming Mou
Yanrui Li
Shuo Yu
Yuezhong Zhang
Xiaoyan Yan
Baosheng Liu
Publikationsdatum
19.05.2022
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 12/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-06976-1

Weitere Artikel der Ausgabe 12/2022

Journal of Materials Engineering and Performance 12/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.