Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 12/2022

13.05.2022 | Technical Article

Effect of Cr Addition on the Milling Process and Properties of Nanostructured Cu Alloys Prepared by Mechanical Alloying

verfasst von: Litao Han, Jianwei Liu, Huaguo Tang, Zixiang Yan

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 12/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Although nanostructure offers several advantages in improving the performance for Cu alloys prepared by mechanical alloying, the excellent properties have not been obtained to date primarily due to a single strengthening method or the Fe contamination introduced by the stainless steel grinding tank and balls. Herein, we added Cr to regulate the milling process and control the content of Fe doped into the Cu matrix. And the effects of Cr on the morphology, crystallite size, lattice strain and properties of Cu were studied. The results showed that adding an appropriate amount of Cr could prevent more Fe from being doped into the alloy matrix. When the Cr content was lower than 0.2 wt.%, the work hardening could be accelerated, so that the Cu alloys had smaller crystallite size, greater internal strain and higher tensile strength. But with continuous increase in Cr content, the crystallite sizes of the alloys began to increase again. Nevertheless, the nanostructured Cu alloys with particle size less than 10 nm were still obtained. In conclusion, by appropriately adjusting the Cr content, we demonstrated an improvement in the properties of the Cu alloys. The optimum properties were achieved by Cu-0.2 wt.% Cr with tensile strength of 517 MPa, ductility of 7.28% and electrical conductivity of 73.37% IACS. And the study provided a new idea for overcoming the Fe contamination in the metal matrix, and further improving high-performance Cu alloys through the combination of fine-grain strengthening and alloy strengthening.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat L. Chai, Z. Zhou, Z. Xiao, J. Tu, Y. Wang, and W. Huang, Evolution of Surface Microstructure of Cu-50Cr Alloy Treated by High Current Pulsed Electron Beam, Sci. China Technol. Sci., 2015, 58(3), p 462–469. CrossRef L. Chai, Z. Zhou, Z. Xiao, J. Tu, Y. Wang, and W. Huang, Evolution of Surface Microstructure of Cu-50Cr Alloy Treated by High Current Pulsed Electron Beam, Sci. China Technol. Sci., 2015, 58(3), p 462–469. CrossRef
2.
Zurück zum Zitat J.R. Davis, Copper and Copper Alloys, Corr. Metal/Environ. React., 2001, 3(2), p 527–602. J.R. Davis, Copper and Copper Alloys, Corr. Metal/Environ. React., 2001, 3(2), p 527–602.
3.
Zurück zum Zitat W. Wang, J. Zhu, N. Qin, Y. Zhang, S. Li, Z. Xiao, Q. Lei, and Z. Li, Effects of Minor Rare Earths on the Microstructure and Properties of Cu-Cr-Zr Alloy, J. Alloys Compd., 2020, 847, 155762. CrossRef W. Wang, J. Zhu, N. Qin, Y. Zhang, S. Li, Z. Xiao, Q. Lei, and Z. Li, Effects of Minor Rare Earths on the Microstructure and Properties of Cu-Cr-Zr Alloy, J. Alloys Compd., 2020, 847, 155762. CrossRef
4.
Zurück zum Zitat M.T. Dehaqani and G.H. Akbari, Effect of Milling Parameters and Cr Content on Morphology and Solubility of Nanostructured Cu–Cr Solid Solutions, Trans. Indian Inst. Met., 2014, 67(3), p 385–391. CrossRef M.T. Dehaqani and G.H. Akbari, Effect of Milling Parameters and Cr Content on Morphology and Solubility of Nanostructured Cu–Cr Solid Solutions, Trans. Indian Inst. Met., 2014, 67(3), p 385–391. CrossRef
5.
Zurück zum Zitat X. Liu, L. Zhuang, and Y. Zhao, Microstructure and Mechanical Properties of Ultrafine-Grained Copper by Accumulative Roll Bonding and Subsequent Annealing, Mater. Basel, Switzerland, 2020, 13(22), p 5171. (in eng) X. Liu, L. Zhuang, and Y. Zhao, Microstructure and Mechanical Properties of Ultrafine-Grained Copper by Accumulative Roll Bonding and Subsequent Annealing, Mater. Basel, Switzerland, 2020, 13(22), p 5171. (in eng)
6.
Zurück zum Zitat W. Zeng, J. Xie, D. Zhou, Z. Fu, D. Zhang, and E.J. Lavernia, Bulk Cu-NbC Nanocomposites with High Strength and High Electrical Conductivity, J. Alloys Compd., 2018, 745, p 55–62. CrossRef W. Zeng, J. Xie, D. Zhou, Z. Fu, D. Zhang, and E.J. Lavernia, Bulk Cu-NbC Nanocomposites with High Strength and High Electrical Conductivity, J. Alloys Compd., 2018, 745, p 55–62. CrossRef
7.
Zurück zum Zitat A.S. Prosviryakov, SiC Content Effect on the Properties of Cu–SiC Composites Produced by Mechanical Alloying, J. Alloys Compd., 2015, 632, p 707–710. CrossRef A.S. Prosviryakov, SiC Content Effect on the Properties of Cu–SiC Composites Produced by Mechanical Alloying, J. Alloys Compd., 2015, 632, p 707–710. CrossRef
8.
Zurück zum Zitat J. Li, J. Ni, B. Huang, J. Chen, Z. Xu, S. Liao, C. Wang, and W. Luo, Long-Term Ball Milling and Hot Pressing of in-situ Nanoscale Tungsten Carbides Reinforced Copper Composite and Its Characterization, Mater. Charact., 2019, 152, p 134–140. CrossRef J. Li, J. Ni, B. Huang, J. Chen, Z. Xu, S. Liao, C. Wang, and W. Luo, Long-Term Ball Milling and Hot Pressing of in-situ Nanoscale Tungsten Carbides Reinforced Copper Composite and Its Characterization, Mater. Charact., 2019, 152, p 134–140. CrossRef
9.
Zurück zum Zitat L. Peng, H. Xie, G. Huang, Y. Li, X. Yin, X. Feng, X. Mi, and Z. Yang, The Phase Transformation and Its Effects on Properties of a Cu−0.12 wt.% Zr alloy, Mater. Sci. Eng. A, 2015, 633, p 28–34. CrossRef L. Peng, H. Xie, G. Huang, Y. Li, X. Yin, X. Feng, X. Mi, and Z. Yang, The Phase Transformation and Its Effects on Properties of a Cu−0.12 wt.% Zr alloy, Mater. Sci. Eng. A, 2015, 633, p 28–34. CrossRef
10.
Zurück zum Zitat G.H. Akbari and M. Taghian Dehaqani, Nanostructure Cu–Cr Alloy with High Dissolved Cr Contents Obtained by Mechanical Alloying Process, Powder Metal., 2011, 54(1), p 19–23. CrossRef G.H. Akbari and M. Taghian Dehaqani, Nanostructure Cu–Cr Alloy with High Dissolved Cr Contents Obtained by Mechanical Alloying Process, Powder Metal., 2011, 54(1), p 19–23. CrossRef
11.
Zurück zum Zitat D. Roy, M.A. Atwater, K. Youssef, J.C. Ledford, R.O. Scattergood, and C.C. Koch, Studies on Thermal Stability, Mechanical and Electrical Properties of Nano Crystalline Cu99.5Zr05 Alloy, J Alloys Compd, 2013, 558, p 44–49. CrossRef D. Roy, M.A. Atwater, K. Youssef, J.C. Ledford, R.O. Scattergood, and C.C. Koch, Studies on Thermal Stability, Mechanical and Electrical Properties of Nano Crystalline Cu99.5Zr05 Alloy, J Alloys Compd, 2013, 558, p 44–49. CrossRef
12.
Zurück zum Zitat J. Schiøtz and K.W. Jacobsen, A Maximum in the Strength of Nanocrystalline Copper, Science, 2003, 301(5638), p 1357–1359. CrossRef J. Schiøtz and K.W. Jacobsen, A Maximum in the Strength of Nanocrystalline Copper, Science, 2003, 301(5638), p 1357–1359. CrossRef
13.
Zurück zum Zitat C.J. Shen, Z.W. Zhu, and D. Zhu, A Bulk of Uniform Nanocrystalline Copper with Superior Comprehensive Mechanical Properties Electroformed in an Ultra-low Sulfate Concentration Bath without Additives, Mater. Scie. Eng. A, 704(Supplement C), 238-245 (2017) C.J. Shen, Z.W. Zhu, and D. Zhu, A Bulk of Uniform Nanocrystalline Copper with Superior Comprehensive Mechanical Properties Electroformed in an Ultra-low Sulfate Concentration Bath without Additives, Mater. Scie. Eng. A, 704(Supplement C), 238-245 (2017)
14.
Zurück zum Zitat A. Habibi, M. Ketabchi, and M. Eskandarzadeh, Nano-grained Pure Copper with High-Strength and High-Conductivity Produced by Equal Channel Angular Rolling Process, J. Mater Process Technol., 2011, 211(6), p 1085–1090. CrossRef A. Habibi, M. Ketabchi, and M. Eskandarzadeh, Nano-grained Pure Copper with High-Strength and High-Conductivity Produced by Equal Channel Angular Rolling Process, J. Mater Process Technol., 2011, 211(6), p 1085–1090. CrossRef
15.
Zurück zum Zitat L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu, Ultrahigh Strength and High Electrical Conductivity in Copper, 304(5669), 422-426 (2004) L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu, Ultrahigh Strength and High Electrical Conductivity in Copper, 304(5669), 422-426 (2004)
16.
Zurück zum Zitat R.M. Babaheydari, S.O. Mirabootalebi, and G.H. Akbari, Investigation on Mechanical and Electrical Properties of Cu-Ti Nanocomposite Produced by Mechanical Alloying, Int. J. Eng. 33(9), 1759-1765 (2020) (in en) R.M. Babaheydari, S.O. Mirabootalebi, and G.H. Akbari, Investigation on Mechanical and Electrical Properties of Cu-Ti Nanocomposite Produced by Mechanical Alloying, Int. J. Eng. 33(9), 1759-1765 (2020) (in en)
17.
Zurück zum Zitat R. Mirahmadi Babaheydari, S.O. Mirabootalebi, and G.H. Akbari Fakhrabadi, Effect of Alloying Elements on Hardness and Electrical Conductivity of CU Nanocomposites Prepared by Mechanical Alloying, IUST, 18(1), 1–11 (2021) R. Mirahmadi Babaheydari, S.O. Mirabootalebi, and G.H. Akbari Fakhrabadi, Effect of Alloying Elements on Hardness and Electrical Conductivity of CU Nanocomposites Prepared by Mechanical Alloying, IUST, 18(1), 1–11 (2021)
18.
Zurück zum Zitat L.N. Rajeshkumar and K.S. Amirthagadeswaran, Variations in the Properties of Copper-Alumina Nanocomposites Synthesized by Mechanical Alloying, Mater. Technol., 2019, 53(1), p 57–63. L.N. Rajeshkumar and K.S. Amirthagadeswaran, Variations in the Properties of Copper-Alumina Nanocomposites Synthesized by Mechanical Alloying, Mater. Technol., 2019, 53(1), p 57–63.
19.
Zurück zum Zitat P.K. Prajapati and D. Chaira, Fabrication and Characterization of Cu–B4C Metal Matrix Composite by Powder Metallurgy: Effect of B4C on Microstructure, Mechanical Properties and Electrical Conductivity, Trans. Indian Inst. Metals, 2019, 72(3), p 673–684. CrossRef P.K. Prajapati and D. Chaira, Fabrication and Characterization of Cu–B4C Metal Matrix Composite by Powder Metallurgy: Effect of B4C on Microstructure, Mechanical Properties and Electrical Conductivity, Trans. Indian Inst. Metals, 2019, 72(3), p 673–684. CrossRef
20.
Zurück zum Zitat D.A. Aksenov, R.N. Asfandiyarov, G.I. Raab, E.I. Fakhretdinova, and M.A. Shishkunova, Influence of the Chromium Content in Low-Alloyed Cu-Cr Alloys on the Structural Changes, Phase Trans. Proper. Equal-Channel Ang. Pressing, Metals, 11(11), 14, 1795, (2021) (in English) D.A. Aksenov, R.N. Asfandiyarov, G.I. Raab, E.I. Fakhretdinova, and M.A. Shishkunova, Influence of the Chromium Content in Low-Alloyed Cu-Cr Alloys on the Structural Changes, Phase Trans. Proper. Equal-Channel Ang. Pressing, Metals, 11(11), 14, 1795, (2021) (in English)
21.
Zurück zum Zitat K. Rodak, Cu-Cr and Cu-Fe Alloys Processed by New Severe Plastic Deformation: Microstructure and Properties, ed., 2017 K. Rodak, Cu-Cr and Cu-Fe Alloys Processed by New Severe Plastic Deformation: Microstructure and Properties, ed., 2017
22.
Zurück zum Zitat C. Gao, M. Yao, C. Shuai, S. Peng, and Y. Deng, Nano-SiC Reinforced Zn Biocomposites Prepared via Laser Melting: Microstructure, Mechanical Properties and Biodegradability, J. Mater. Sci. Technol., 2019, 35(11), p 2608–2617. CrossRef C. Gao, M. Yao, C. Shuai, S. Peng, and Y. Deng, Nano-SiC Reinforced Zn Biocomposites Prepared via Laser Melting: Microstructure, Mechanical Properties and Biodegradability, J. Mater. Sci. Technol., 2019, 35(11), p 2608–2617. CrossRef
23.
Zurück zum Zitat A. Fathy, A. Wagih, and A. Abu-Oqail, Effect of ZrO2 Content on Properties of Cu-ZrO2 Nanocomposites Synthesized by Optimized High Energy Ball Milling, Ceram Int, 45, (2018) A. Fathy, A. Wagih, and A. Abu-Oqail, Effect of ZrO2 Content on Properties of Cu-ZrO2 Nanocomposites Synthesized by Optimized High Energy Ball Milling, Ceram Int, 45, (2018)
24.
Zurück zum Zitat C. Suryanarayana, Mechanical Alloying and Milling, Prog. Mater. Sci., 2001, 46(1), p 1–184. CrossRef C. Suryanarayana, Mechanical Alloying and Milling, Prog. Mater. Sci., 2001, 46(1), p 1–184. CrossRef
25.
Zurück zum Zitat D. Maurice and T.H. Courtney, Modeling of Mechanical Alloying: Part II. Development of Computational Modeling Programs, Metal. Mater. Trans. A, 1995, 26(9), p 2431–2435. CrossRef D. Maurice and T.H. Courtney, Modeling of Mechanical Alloying: Part II. Development of Computational Modeling Programs, Metal. Mater. Trans. A, 1995, 26(9), p 2431–2435. CrossRef
26.
Zurück zum Zitat A. Kumar, K. Jayasankar, M. Debata, and A. Mandal, Mechanical Alloying and Properties of Immiscible Cu-20 wt.% Mo Alloy. J. Alloys Comp., 647, 1040-1047 (2015) A. Kumar, K. Jayasankar, M. Debata, and A. Mandal, Mechanical Alloying and Properties of Immiscible Cu-20 wt.% Mo Alloy. J. Alloys Comp., 647, 1040-1047 (2015)
27.
Zurück zum Zitat J. Zhou, D. Zhu, L. Tang, X. Jiang, S. Chen, X. Peng, and C. Hu, Microstructure and Properties of Powder Metallurgy Cu-1%Cr-0.65%Zr Alloy Prepared by Hot Pressing, Vacuum, 131, 156-163 (2016) J. Zhou, D. Zhu, L. Tang, X. Jiang, S. Chen, X. Peng, and C. Hu, Microstructure and Properties of Powder Metallurgy Cu-1%Cr-0.65%Zr Alloy Prepared by Hot Pressing, Vacuum, 131, 156-163 (2016)
28.
Zurück zum Zitat K.R. Ramkumar, S. Sivasankaran, and A.S. Alaboodi, Effect of Alumina Content on Microstructures, Mechanical, Wear and Machining Behavior of Cu-10Zn Nanocomposite Prepared by Mechanical Alloying and Hot-Pressing, J. Alloy. Compd., 2017, 709, p 129–141. CrossRef K.R. Ramkumar, S. Sivasankaran, and A.S. Alaboodi, Effect of Alumina Content on Microstructures, Mechanical, Wear and Machining Behavior of Cu-10Zn Nanocomposite Prepared by Mechanical Alloying and Hot-Pressing, J. Alloy. Compd., 2017, 709, p 129–141. CrossRef
29.
Zurück zum Zitat A. Torabi, R.M. Babaheydari, G.H. Akbari, and S.O. Mirabootalebi, Optimizing of Micro-hardness of Nanostructured Cu–Cr Solid Solution Produced by Mechanical Alloying Using ANN and Genetic algorithm, SN Appl. Sci., 2020, 2(11), p 1919. CrossRef A. Torabi, R.M. Babaheydari, G.H. Akbari, and S.O. Mirabootalebi, Optimizing of Micro-hardness of Nanostructured Cu–Cr Solid Solution Produced by Mechanical Alloying Using ANN and Genetic algorithm, SN Appl. Sci., 2020, 2(11), p 1919. CrossRef
30.
Zurück zum Zitat A. Khajesarvi and G.H. Akbari, Synthesis and Structural Characterization of Nanocrystalline Ni50Al50—xMoxintermetallic Compound Prepared by Mechanical Alloying, Russian J. Non-Ferrous Metals, 2017, 58(4), p 411–417. CrossRef A. Khajesarvi and G.H. Akbari, Synthesis and Structural Characterization of Nanocrystalline Ni50Al50—xMoxintermetallic Compound Prepared by Mechanical Alloying, Russian J. Non-Ferrous Metals, 2017, 58(4), p 411–417. CrossRef
31.
Zurück zum Zitat J. Arasteh and G.H. Akbari, Microstructural Evolution During High-energy Mechanical Alloying of Immiscible Zr–Cr Alloy, J. Mater. Res., 2020, 35(14), p 1825–1836. CrossRef J. Arasteh and G.H. Akbari, Microstructural Evolution During High-energy Mechanical Alloying of Immiscible Zr–Cr Alloy, J. Mater. Res., 2020, 35(14), p 1825–1836. CrossRef
32.
Zurück zum Zitat C.F. Sun, Y.C. Guo, Z. Yang, J.P. Li, S.Q. Xi, Z.Q. Jie, and T. Xu, Microstructurally Stable Nanocomposite WTaMoNb/Cu Prepared by Mechanical Alloying and Hot Pressing Sintering, Mater Lett. 306, 4, 130894, (2022) (in English) C.F. Sun, Y.C. Guo, Z. Yang, J.P. Li, S.Q. Xi, Z.Q. Jie, and T. Xu, Microstructurally Stable Nanocomposite WTaMoNb/Cu Prepared by Mechanical Alloying and Hot Pressing Sintering, Mater Lett. 306, 4, 130894, (2022) (in English)
33.
Zurück zum Zitat M. Azimi and G.H. Akbari, Development of Nano-structure Cu–Zr Alloys by the Mechanical Alloying Process, J. Alloys Compd., 2011, 509(1), p 27–32. CrossRef M. Azimi and G.H. Akbari, Development of Nano-structure Cu–Zr Alloys by the Mechanical Alloying Process, J. Alloys Compd., 2011, 509(1), p 27–32. CrossRef
34.
Zurück zum Zitat V. Nguyen-Hoang and N.T.H. Oanh, Microstructure and Electrical Property of Ex-Situ and In-Situ Copper Titanium Carbide Nanocomposites, Metals, 2020, 10, p 735. CrossRef V. Nguyen-Hoang and N.T.H. Oanh, Microstructure and Electrical Property of Ex-Situ and In-Situ Copper Titanium Carbide Nanocomposites, Metals, 2020, 10, p 735. CrossRef
35.
Zurück zum Zitat J. Zhuang, Y. Liu, Z. Cao, and Y. Li, The Influence of Technological Process on Dry Sliding Wear Behaviour of Titanium Carbide Reinforcement Copper Matrix Composites, Mater. Trans., 2010, 51, p 2311–2317. CrossRef J. Zhuang, Y. Liu, Z. Cao, and Y. Li, The Influence of Technological Process on Dry Sliding Wear Behaviour of Titanium Carbide Reinforcement Copper Matrix Composites, Mater. Trans., 2010, 51, p 2311–2317. CrossRef
36.
Zurück zum Zitat J. Zou, D.-P. Lu, Q.-F. Fu, K.-M. Liu, and J. Jiang, Microstructure and Properties of Cu–Fe Deformation Processed in-situ Composite, Vacuum, 2019, 167, p 54–58. CrossRef J. Zou, D.-P. Lu, Q.-F. Fu, K.-M. Liu, and J. Jiang, Microstructure and Properties of Cu–Fe Deformation Processed in-situ Composite, Vacuum, 2019, 167, p 54–58. CrossRef
37.
Zurück zum Zitat G. Shi, X. Chen, H. Jiang, Z. Wang, H. Tang, and Y. Fan, Strengthening Mechanisms of Fe Nanoparticles for Single Crystal Cu–Fe Alloy, Mater. Sci. Eng., A, 2015, 636, p 43–47. CrossRef G. Shi, X. Chen, H. Jiang, Z. Wang, H. Tang, and Y. Fan, Strengthening Mechanisms of Fe Nanoparticles for Single Crystal Cu–Fe Alloy, Mater. Sci. Eng., A, 2015, 636, p 43–47. CrossRef
38.
Zurück zum Zitat H. Gao, J. Wang, D. Shu, and B. Sun, Microstructure and Properties of Cu–11Fe–6Ag in situ Composite after Thermo-mechanical Treatments, J. Alloy. Compd., 2007, 438(1), p 268–273. CrossRef H. Gao, J. Wang, D. Shu, and B. Sun, Microstructure and Properties of Cu–11Fe–6Ag in situ Composite after Thermo-mechanical Treatments, J. Alloy. Compd., 2007, 438(1), p 268–273. CrossRef
39.
Zurück zum Zitat P. Qi, X. Liang, Y. Tong, Y. Chen, and Z.J.R.M.M. Zhang, Engineering, Effect of Milling Time on Preparation of NbMoTaW High Entropy Alloy Powder by Mechanical Alloying, Rare Metal Mater. Eng., (2019) P. Qi, X. Liang, Y. Tong, Y. Chen, and Z.J.R.M.M. Zhang, Engineering, Effect of Milling Time on Preparation of NbMoTaW High Entropy Alloy Powder by Mechanical Alloying, Rare Metal Mater. Eng., (2019)
40.
Zurück zum Zitat P.J.M.S. Xiao, E.o.P. Metallargy, Influence of Milling Rate and Process control Agents on Mechanically Alloying of Ti-26% Cr, Rare Metal Mater. Eng. (2002) P.J.M.S. Xiao, E.o.P. Metallargy, Influence of Milling Rate and Process control Agents on Mechanically Alloying of Ti-26% Cr, Rare Metal Mater. Eng. (2002)
41.
Zurück zum Zitat F. Wang, Y. Li, K. Wakoh, Y. Koizumi, and A. Chiba, Cu–Ti–C Alloy with High Strength and High Electrical Conductivity Prepared by Two-Step Ball-Milling Processes, Mater. Des., 2014, 61, p 70–74. CrossRef F. Wang, Y. Li, K. Wakoh, Y. Koizumi, and A. Chiba, Cu–Ti–C Alloy with High Strength and High Electrical Conductivity Prepared by Two-Step Ball-Milling Processes, Mater. Des., 2014, 61, p 70–74. CrossRef
42.
Zurück zum Zitat Q.-Y. Dong, L.-N. Shen, M.-P. Wang, Y.-L. Jia, Z. Li, F. Cao, and C. Chen, Microstructure and Properties of Cu–23Fe–003P Alloy During Thermomechanical Treatments, Trans. Nonferrous Metals Soc. China, 2015, 25(5), p 1551–1558. CrossRef Q.-Y. Dong, L.-N. Shen, M.-P. Wang, Y.-L. Jia, Z. Li, F. Cao, and C. Chen, Microstructure and Properties of Cu–23Fe–003P Alloy During Thermomechanical Treatments, Trans. Nonferrous Metals Soc. China, 2015, 25(5), p 1551–1558. CrossRef
43.
Zurück zum Zitat Q. Dong, L. Shen, F. Cao, Y. Jia, K. Liao, and M. Wang, Effect of Thermomechanical Processing on the Microstructure and Properties of a Cu-Fe-P Alloy, J. Mater. Eng. Perform., 2015, 24(4), p 1531–1539. CrossRef Q. Dong, L. Shen, F. Cao, Y. Jia, K. Liao, and M. Wang, Effect of Thermomechanical Processing on the Microstructure and Properties of a Cu-Fe-P Alloy, J. Mater. Eng. Perform., 2015, 24(4), p 1531–1539. CrossRef
44.
Zurück zum Zitat S. Papaefthymiou, M. Bouzouni, and E. Gavalas, Theoretical Study of Particle Dissolution during Homogenization in Cu–Fe–P Alloy, 8(6), 455 (2018) S. Papaefthymiou, M. Bouzouni, and E. Gavalas, Theoretical Study of Particle Dissolution during Homogenization in Cu–Fe–P Alloy, 8(6), 455 (2018)
45.
Zurück zum Zitat H. Cao, J.Y. Min, S.D. Wu, A.P. Xian, and J.K. Shang, Pinning of Grain Boundaries by Second Phase Particles in Equal-Channel Angularly Pressed Cu–Fe–P alloy, Mater. Sci. Eng. A, 2006, 431(1), p 86–91. CrossRef H. Cao, J.Y. Min, S.D. Wu, A.P. Xian, and J.K. Shang, Pinning of Grain Boundaries by Second Phase Particles in Equal-Channel Angularly Pressed Cu–Fe–P alloy, Mater. Sci. Eng. A, 2006, 431(1), p 86–91. CrossRef
46.
Zurück zum Zitat L. Han, J. Liu, H. Tang, X. Ma, and W. Zhao, Preparation and Properties of Ultra-Fine-Grained and Nanostructured Copper Alloy with the Addition of P, Mater. Chem. Phys., 2019, 221, p 322–331. CrossRef L. Han, J. Liu, H. Tang, X. Ma, and W. Zhao, Preparation and Properties of Ultra-Fine-Grained and Nanostructured Copper Alloy with the Addition of P, Mater. Chem. Phys., 2019, 221, p 322–331. CrossRef
47.
Zurück zum Zitat R.E. Smallman and R.J. Bishop, Preface, Modern Physical Metallurgy and Materials Engineering (Sixth Edition)ed., R.E. Smallman, R.J. Bishop, Eds., Butterworth-Heinemann, 1999, p x R.E. Smallman and R.J. Bishop, Preface, Modern Physical Metallurgy and Materials Engineering (Sixth Edition)ed., R.E. Smallman, R.J. Bishop, Eds., Butterworth-Heinemann, 1999, p x
48.
Zurück zum Zitat Q. Fang, Z. Kang, Y. Gan, and Y. Long, Microstructures and Mechanical Properties of Spark Plasma Sintered Cu–Cr Composites Prepared by Mechanical Milling and Alloying, Mater. Des., 2015, 88, p 8–15. CrossRef Q. Fang, Z. Kang, Y. Gan, and Y. Long, Microstructures and Mechanical Properties of Spark Plasma Sintered Cu–Cr Composites Prepared by Mechanical Milling and Alloying, Mater. Des., 2015, 88, p 8–15. CrossRef
49.
Zurück zum Zitat I. Lahiri and S. Bhargava, Compaction and Sintering Response of Mechanically Alloyed Cu–Cr Powder, Powder Technol., 2009, 189(3), p 433–438. CrossRef I. Lahiri and S. Bhargava, Compaction and Sintering Response of Mechanically Alloyed Cu–Cr Powder, Powder Technol., 2009, 189(3), p 433–438. CrossRef
50.
Zurück zum Zitat S. Cui and I.-H. Jung, Thermodynamic Modeling of the Cu-Fe-Cr and Cu-Fe-Mn Systems, Calphad, 2017, 56, p 241–259. CrossRef S. Cui and I.-H. Jung, Thermodynamic Modeling of the Cu-Fe-Cr and Cu-Fe-Mn Systems, Calphad, 2017, 56, p 241–259. CrossRef
51.
Zurück zum Zitat Q. Fang and Z. Kang, An Investigation on Morphology and Structure of Cu–Cr Alloy Powders Prepared by Mechanical Milling and Alloying, Powder Technol., 2015, 270, p 104–111. CrossRef Q. Fang and Z. Kang, An Investigation on Morphology and Structure of Cu–Cr Alloy Powders Prepared by Mechanical Milling and Alloying, Powder Technol., 2015, 270, p 104–111. CrossRef
52.
Zurück zum Zitat L. Shan, X. Wang, and Y. Wang, Extension of Solid Solubility and Structural Evolution in Nano-Structured Cu-Cr Solid Solution Induced by High-Energy Milling, 13(23), 5532 (2020). L. Shan, X. Wang, and Y. Wang, Extension of Solid Solubility and Structural Evolution in Nano-Structured Cu-Cr Solid Solution Induced by High-Energy Milling, 13(23), 5532 (2020).
53.
Zurück zum Zitat H. Fernee, J. Nairn, and A. Atrens, Precipitation Hardening of Cu-Fe-Cr Alloys Part I Mechanical and Electrical Properties, J. Mater. Sci., 2001, 36(11), p 2711–2719. CrossRef H. Fernee, J. Nairn, and A. Atrens, Precipitation Hardening of Cu-Fe-Cr Alloys Part I Mechanical and Electrical Properties, J. Mater. Sci., 2001, 36(11), p 2711–2719. CrossRef
54.
Zurück zum Zitat G.H. Akbari and M.T. Dehaqani, Behavior of CU-CR Powder Mixtures during Mechanical Alloying, Int. J. Eng. Trans. B, 2010, 23, p 69–76. G.H. Akbari and M.T. Dehaqani, Behavior of CU-CR Powder Mixtures during Mechanical Alloying, Int. J. Eng. Trans. B, 2010, 23, p 69–76.
55.
Zurück zum Zitat F.L. Zhang, C.Y. Wang, and M. Zhu, Nanostructured WC/Co Composite Powder Prepared by High Energy Ball Milling, Scripta Mater., 2003, 49(11), p 1123–1128. CrossRef F.L. Zhang, C.Y. Wang, and M. Zhu, Nanostructured WC/Co Composite Powder Prepared by High Energy Ball Milling, Scripta Mater., 2003, 49(11), p 1123–1128. CrossRef
56.
Zurück zum Zitat J. Eckert, J.C. Holzer, C.E. Krill, and W.L. Johnson, Structural and Thermodynamic Properties of nanocrystalline fcc metals Prepared by Mechanical Attrition, J. Mater. Res., 1992, 7(7), p 1751–1761. CrossRef J. Eckert, J.C. Holzer, C.E. Krill, and W.L. Johnson, Structural and Thermodynamic Properties of nanocrystalline fcc metals Prepared by Mechanical Attrition, J. Mater. Res., 1992, 7(7), p 1751–1761. CrossRef
57.
Zurück zum Zitat S. Patra, Gouthama, and K. Mondal, Densification Behavior of Mechanically Milled Cu–8at% Cr Alloy and Its Mechanical and Electrical Properties, Progress Nat. Sci. Mater. Int. 24(6), 608–622 (2014) S. Patra, Gouthama, and K. Mondal, Densification Behavior of Mechanically Milled Cu–8at% Cr Alloy and Its Mechanical and Electrical Properties, Progress Nat. Sci. Mater. Int. 24(6), 608–622 (2014)
58.
Zurück zum Zitat S. Safi and G.H. Akbari, Evaluation of Synthesizing Nano Particles in Copper Matrix by Mechanical Alloying of Cu-1% Al and Copper Oxide %J, J. Adv. Mater. Eng., 2017, 36(1), p 71–85. S. Safi and G.H. Akbari, Evaluation of Synthesizing Nano Particles in Copper Matrix by Mechanical Alloying of Cu-1% Al and Copper Oxide %J, J. Adv. Mater. Eng., 2017, 36(1), p 71–85.
59.
Zurück zum Zitat I. Börner and J. Eckert, Structural Properties and Compositional Dependence of Grain Size in Heavily Mechanically Deformed Nanophase NiAl, Mater. Sci. Forum, 1996, 225–227, p 377–382. CrossRef I. Börner and J. Eckert, Structural Properties and Compositional Dependence of Grain Size in Heavily Mechanically Deformed Nanophase NiAl, Mater. Sci. Forum, 1996, 225–227, p 377–382. CrossRef
60.
Zurück zum Zitat C. Aguilar, V.D.P. Martinez, J.M. Palacios, S. Ordoñez, and O. Pavez, A thermodynamic approach to energy storage on mechanical alloying of the Cu–Cr system, Scripta Mater., 2007, 57(3), p 213–216. CrossRef C. Aguilar, V.D.P. Martinez, J.M. Palacios, S. Ordoñez, and O. Pavez, A thermodynamic approach to energy storage on mechanical alloying of the Cu–Cr system, Scripta Mater., 2007, 57(3), p 213–216. CrossRef
61.
Zurück zum Zitat Y. Jin, K. Adachi, T. Takeuchi, and H.G. Suzuki, Correlation Between the Electrical Conductivity and Aging Treatment for a Cu-15 wt.% Cr Alloy Composite Formed in-situ, Mater. Lett., 1997, 32(5), p 307–311. CrossRef Y. Jin, K. Adachi, T. Takeuchi, and H.G. Suzuki, Correlation Between the Electrical Conductivity and Aging Treatment for a Cu-15 wt.% Cr Alloy Composite Formed in-situ, Mater. Lett., 1997, 32(5), p 307–311. CrossRef
62.
Zurück zum Zitat L. Lu, M.O. Lai, and S. Zhang, Diffusion in Mechanical Alloying, J. Mater Process Technol, 1997, 67(1), p 100–104. CrossRef L. Lu, M.O. Lai, and S. Zhang, Diffusion in Mechanical Alloying, J. Mater Process Technol, 1997, 67(1), p 100–104. CrossRef
63.
Zurück zum Zitat L. Lu, M.O. Lai, and S. Zhang, Evolution and Characterization of a Ni3Al Intermetallic Compound During Mechanical Alloying, Mater. Des., 1994, 15(2), p 79–86. CrossRef L. Lu, M.O. Lai, and S. Zhang, Evolution and Characterization of a Ni3Al Intermetallic Compound During Mechanical Alloying, Mater. Des., 1994, 15(2), p 79–86. CrossRef
64.
Zurück zum Zitat G. Veltl, B. Scholz, and H.D. Kunze, Amorphization of Cu–Ta Alloys by Mechanical Alloying, Mater. Sci. Eng. A, 1991, 134, p 1410–1413. CrossRef G. Veltl, B. Scholz, and H.D. Kunze, Amorphization of Cu–Ta Alloys by Mechanical Alloying, Mater. Sci. Eng. A, 1991, 134, p 1410–1413. CrossRef
65.
Zurück zum Zitat A.R. Yavari, P.J. Desré, and T. Benameur, Mechanically Driven Alloying of Immiscible Elements, Phys. Rev. Lett, 1992, 68(14), p 2235–2238. CrossRef A.R. Yavari, P.J. Desré, and T. Benameur, Mechanically Driven Alloying of Immiscible Elements, Phys. Rev. Lett, 1992, 68(14), p 2235–2238. CrossRef
66.
Zurück zum Zitat M. Vaezi, S. Ghassemi, and A. Shokuhfar, The Effect of Impact Energy on the Formation of Nanocrystalline Powders in Cu50% Fe Immiscible Alloy Systems, Mater. Sci.—Poland, 26, (2008) M. Vaezi, S. Ghassemi, and A. Shokuhfar, The Effect of Impact Energy on the Formation of Nanocrystalline Powders in Cu50% Fe Immiscible Alloy Systems, Mater. Sci.—Poland, 26, (2008)
67.
Zurück zum Zitat N. Ravishankar, T.A. Abinandanan, and K. Chattopadhyay, Application of Effective Potential Formalism to Mechanical Alloying in Ag–Cu and Cu–Fe Systems, Mater. Sci. Eng. A, 2001, 304–306, p 413–417. CrossRef N. Ravishankar, T.A. Abinandanan, and K. Chattopadhyay, Application of Effective Potential Formalism to Mechanical Alloying in Ag–Cu and Cu–Fe Systems, Mater. Sci. Eng. A, 2001, 304–306, p 413–417. CrossRef
68.
Zurück zum Zitat A. Orecchini, F. Sacchetti, C. Petrillo, P. Postorino, A. Congeduti, C. Giorgetti, F. Baudelet, and G. Mazzone, Magnetic States of Iron in Metastable fcc Fe–Cu Alloys, J. Alloys Compd., 2006, 424(1), p 27–32. CrossRef A. Orecchini, F. Sacchetti, C. Petrillo, P. Postorino, A. Congeduti, C. Giorgetti, F. Baudelet, and G. Mazzone, Magnetic States of Iron in Metastable fcc Fe–Cu Alloys, J. Alloys Compd., 2006, 424(1), p 27–32. CrossRef
69.
Zurück zum Zitat L. Han, J. Liu, H. Tang, X. Ma, and W. Zhao, Investigation on the Properties of Nanostructured Cu Alloy Prepared by Mechanical Milling and Reactive Hot-Pressing, J. Alloys Compd., 2018, 742, p 284–289. CrossRef L. Han, J. Liu, H. Tang, X. Ma, and W. Zhao, Investigation on the Properties of Nanostructured Cu Alloy Prepared by Mechanical Milling and Reactive Hot-Pressing, J. Alloys Compd., 2018, 742, p 284–289. CrossRef
70.
Zurück zum Zitat F. Wang, Y. Li, X. Wang, Y. Koizumi, Y. Kenta, and A. Chiba, In-situ Fabrication and Characterization of ultrafine structured Cu–TiC Composites with High Strength and High Conductivity by Mechanical Milling, J. Alloys Compd., 2016, 657, p 122–132. CrossRef F. Wang, Y. Li, X. Wang, Y. Koizumi, Y. Kenta, and A. Chiba, In-situ Fabrication and Characterization of ultrafine structured Cu–TiC Composites with High Strength and High Conductivity by Mechanical Milling, J. Alloys Compd., 2016, 657, p 122–132. CrossRef
71.
Zurück zum Zitat N. Simos, Z. Kotsina, E. Dooryhee, Z. Zhong, H. Zhong, F. Camino, E. Quaranta, N. Charitonidis, A. Bertarelli, S. Redaelli, L. Snead, and D. Sprouster, 200 MeV Proton Irradiation of the Oxide-Dispersion-Strengthened Copper Alloy (GlidCop-Al15), J. Nucl. Mater., 2019, 516, p 360–372. CrossRef N. Simos, Z. Kotsina, E. Dooryhee, Z. Zhong, H. Zhong, F. Camino, E. Quaranta, N. Charitonidis, A. Bertarelli, S. Redaelli, L. Snead, and D. Sprouster, 200 MeV Proton Irradiation of the Oxide-Dispersion-Strengthened Copper Alloy (GlidCop-Al15), J. Nucl. Mater., 2019, 516, p 360–372. CrossRef
72.
Zurück zum Zitat M. Ziemnicka-Sylwester, The Cu Matrix Cermets Remarkably Strengthened by TiB2 “in situ” Synthesized via Self-Propagating High Temperature Synthesis, Mater. Des., 2014, 53, p 758–765. CrossRef M. Ziemnicka-Sylwester, The Cu Matrix Cermets Remarkably Strengthened by TiB2 “in situ” Synthesized via Self-Propagating High Temperature Synthesis, Mater. Des., 2014, 53, p 758–765. CrossRef
Metadaten
Titel
Effect of Cr Addition on the Milling Process and Properties of Nanostructured Cu Alloys Prepared by Mechanical Alloying
verfasst von
Litao Han
Jianwei Liu
Huaguo Tang
Zixiang Yan
Publikationsdatum
13.05.2022
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 12/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-06991-2

Weitere Artikel der Ausgabe 12/2022

Journal of Materials Engineering and Performance 12/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.