Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 12/2022

27.06.2022 | Technical Article

Effects of Various Heat Inputs and Reheating Processes on the Microstructure and Properties of Low-Carbon Bainite Weld Metals Containing 4% Ni

verfasst von: Wanlong Dong, Chunwei Ma, Wei Li, Rui Cao, Chen Liang, Wanchao Zhu, Gaojun Mao, Xili Guo, Yong Jiang, Jianhong Chen

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 12/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effects of welding heat inputs and reheating processes with various cooling rates were investigated by thermally simulated experiments on the microstructure, tensile strength and impact toughness of high-strength weld metals containing 4% Ni. The microstructure was characterized by scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). As a result, an extended continuous cooling transformation (e-CCT) diagram was established. The change in the microstructures is affected from three perspectives. The coarser grains and the generated martensite-austenite (M-A) constituents lead to the deterioration of impact toughness and ultimate tensile strength with the increase in heat inputs. The reheating processes with various cooling rates can change the microstructure, hardness, impact toughness and large angle boundaries. When the heat input increases from 15.8 to 17.9 kJ/cm, the content of block ferrite decreases from the initial 18.9 to 8.5%, and the content of lath bainite increases accordingly. When the heat input is 20.6 kJ/cm, the content of block ferrite increases is 17.3% and the rest is lath bainite. The hardness first decreases in the lower cooling rate range (0.05~1 °C/s) and then increases at higher cooling rates. The minimum hardness at a cooling rate of 1 °C/s may be related to the decrease in the coarse block M-A constituents. The reheating process decreases the impact toughness at room temperature from 83 to 37.45 J for the specimen with a cooling rate of 30 °C/s and increases the impact toughness from 83 to 99.71 J for the specimen with a cooling rate of 0.5 °C/s. The impact toughness at −50 °C after the reheating processes decreases from 74 to 32 J, and the lowest impact toughness after the reheating processes reaches only 32 J. The proportion of high-angle grain boundaries (HAGBs) first increases from 12.13 to 26. 44% and then decreases to 16.34% with increasing cooling rate.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R.O. Ritchie, The Conflicts Between Strength and Toughness, Nat. Mater., 2011, 10(11), p 817–822.CrossRef R.O. Ritchie, The Conflicts Between Strength and Toughness, Nat. Mater., 2011, 10(11), p 817–822.CrossRef
2.
Zurück zum Zitat E. Surian, J. Trotti, A. Cassanelli and L. De Vedia, Influence of chromium on the mechanical properties and microstructure of weld metal from a high-strength SMA electrode, Weld. J., 1994, 73, p 45-s. E. Surian, J. Trotti, A. Cassanelli and L. De Vedia, Influence of chromium on the mechanical properties and microstructure of weld metal from a high-strength SMA electrode, Weld. J., 1994, 73, p 45-s.
3.
Zurück zum Zitat R. Pouriamanesh, K. Dehghani, R. Vallant and N. Enzinger, Effect of Ti Addition on the Microstructure and Mechanical Properties of Weld Metals in HSLA Steels, J. Mater. Eng. Perform., 2018, 27(11), p 6058–6068.CrossRef R. Pouriamanesh, K. Dehghani, R. Vallant and N. Enzinger, Effect of Ti Addition on the Microstructure and Mechanical Properties of Weld Metals in HSLA Steels, J. Mater. Eng. Perform., 2018, 27(11), p 6058–6068.CrossRef
4.
Zurück zum Zitat K. Xu, T. Fang, L. Zhao, H. Cui and F. Lu, Effect of trace element on microstructure and fracture toughness of weld metal, Acta Metall. Sin. (Engl. Lett.), 2020, 33(3), p 425–436.CrossRef K. Xu, T. Fang, L. Zhao, H. Cui and F. Lu, Effect of trace element on microstructure and fracture toughness of weld metal, Acta Metall. Sin. (Engl. Lett.), 2020, 33(3), p 425–436.CrossRef
5.
Zurück zum Zitat Y. Kang, S. Jeong, J.-H. Kang and C. Lee, Factors affecting the inclusion potency for acicular ferrite nucleation in high-strength steel welds, Metall. Mater. Trans. A, 2016, 47(6), p 2842–2854.CrossRef Y. Kang, S. Jeong, J.-H. Kang and C. Lee, Factors affecting the inclusion potency for acicular ferrite nucleation in high-strength steel welds, Metall. Mater. Trans. A, 2016, 47(6), p 2842–2854.CrossRef
6.
Zurück zum Zitat J. Yang, C. Huang, C. Huang and J. Aoh, Influence of acicular ferrite and bainite microstructures on toughness for an ultra-low-carbon alloy steel weld metal, J. Mater. Sci. Lett., 1993, 12(16), p 1290–1293.CrossRef J. Yang, C. Huang, C. Huang and J. Aoh, Influence of acicular ferrite and bainite microstructures on toughness for an ultra-low-carbon alloy steel weld metal, J. Mater. Sci. Lett., 1993, 12(16), p 1290–1293.CrossRef
7.
Zurück zum Zitat T. Zhang, Z. Li, S. Ma, S. Kou and H. Jing, High strength steel (600–900 MPa) deposited metals: microstructure and mechanical properties, Sci. Technol. Weld. Join., 2016, 21(3), p 186–193.CrossRef T. Zhang, Z. Li, S. Ma, S. Kou and H. Jing, High strength steel (600–900 MPa) deposited metals: microstructure and mechanical properties, Sci. Technol. Weld. Join., 2016, 21(3), p 186–193.CrossRef
8.
Zurück zum Zitat F. Liu, C. Tan, X. Gong, L. Wu, B. Chen, X. Song and J. Feng, A comparative study on microstructure and mechanical properties of HG785D steel joint produced by hybrid laser-MAG welding and laser welding, Opt. Laser Technol., 2020, 128, p 106247.CrossRef F. Liu, C. Tan, X. Gong, L. Wu, B. Chen, X. Song and J. Feng, A comparative study on microstructure and mechanical properties of HG785D steel joint produced by hybrid laser-MAG welding and laser welding, Opt. Laser Technol., 2020, 128, p 106247.CrossRef
9.
Zurück zum Zitat E. Keehan, L. Karlsson, H.-O. Andrén and H. Bhadeshia, Influence of carbon, manganese and nickel on microstructure and properties of strong steel weld metals: part 3–increased strength resulting from carbon additions, Sci. Technol. Weld. Join., 2006, 11(1), p 19–24.CrossRef E. Keehan, L. Karlsson, H.-O. Andrén and H. Bhadeshia, Influence of carbon, manganese and nickel on microstructure and properties of strong steel weld metals: part 3–increased strength resulting from carbon additions, Sci. Technol. Weld. Join., 2006, 11(1), p 19–24.CrossRef
10.
Zurück zum Zitat E.J. Barrick and J.N. DuPont, Microstructural characterization and toughness evaluation of 10 wt% Ni steel weld metal gas tungsten arc and gas metal arc weld fusion zones, Mater. Sci. Eng. A., 2020, 796, p 140043.CrossRef E.J. Barrick and J.N. DuPont, Microstructural characterization and toughness evaluation of 10 wt% Ni steel weld metal gas tungsten arc and gas metal arc weld fusion zones, Mater. Sci. Eng. A., 2020, 796, p 140043.CrossRef
11.
Zurück zum Zitat S. Khodir, T. Shibayanagi, M. Takahashi, H. Abdel-Aleem and K. Ikeuchi, Microstructural evolution and mechanical properties of high strength 3–9% Ni-steel alloys weld metals produced by electron beam welding, Mater. Des., 2014, 60, p 391–400.CrossRef S. Khodir, T. Shibayanagi, M. Takahashi, H. Abdel-Aleem and K. Ikeuchi, Microstructural evolution and mechanical properties of high strength 3–9% Ni-steel alloys weld metals produced by electron beam welding, Mater. Des., 2014, 60, p 391–400.CrossRef
12.
Zurück zum Zitat J. Hu, L.X. Du and J.J. Wang, Effect of cooling procedure on microstructures and mechanical properties of hot rolled Nb–Ti bainitic high strength steel, Mater. Sci. Eng. A., 2012, 554, p 79–85.CrossRef J. Hu, L.X. Du and J.J. Wang, Effect of cooling procedure on microstructures and mechanical properties of hot rolled Nb–Ti bainitic high strength steel, Mater. Sci. Eng. A., 2012, 554, p 79–85.CrossRef
13.
Zurück zum Zitat J. Zhang, K. Cui, B. Huang, X. Mao and M. Zheng, Influence of heat input on the microstructure and mechanical properties of CLAM steel multilayer butt-welded joints, Fusion Eng. Des., 2020, 152, p 111413.CrossRef J. Zhang, K. Cui, B. Huang, X. Mao and M. Zheng, Influence of heat input on the microstructure and mechanical properties of CLAM steel multilayer butt-welded joints, Fusion Eng. Des., 2020, 152, p 111413.CrossRef
14.
Zurück zum Zitat D.C. Ramachandran, J. Moon, C.H. Lee, S.D. Kim, J.H. Chung, E. Biro and Y.D. Park, Role of bainitic microstructures with MA constituent on the toughness of an HSLA steel for seismic resistant structural applications, Mater. Sci. Eng. A., 2021, 801, p 140390.CrossRef D.C. Ramachandran, J. Moon, C.H. Lee, S.D. Kim, J.H. Chung, E. Biro and Y.D. Park, Role of bainitic microstructures with MA constituent on the toughness of an HSLA steel for seismic resistant structural applications, Mater. Sci. Eng. A., 2021, 801, p 140390.CrossRef
15.
Zurück zum Zitat Ö. Üstündağ, S. Gook, A. Gumenyuk and M. Rethmeier, Hybrid laser arc welding of thick high-strength pipeline steels of grade X120 with adapted heat input, J. Mater. Process. Technol., 2020, 275, p 116358.CrossRef Ö. Üstündağ, S. Gook, A. Gumenyuk and M. Rethmeier, Hybrid laser arc welding of thick high-strength pipeline steels of grade X120 with adapted heat input, J. Mater. Process. Technol., 2020, 275, p 116358.CrossRef
16.
Zurück zum Zitat X. Yang, X. Di, X. Liu, D. Wang and C. Li, Effects of heat input on microstructure and fracture toughness of simulated coarse-grained heat affected zone for HSLA steels, Mater. Charact., 2019, 155, p 109818.CrossRef X. Yang, X. Di, X. Liu, D. Wang and C. Li, Effects of heat input on microstructure and fracture toughness of simulated coarse-grained heat affected zone for HSLA steels, Mater. Charact., 2019, 155, p 109818.CrossRef
17.
Zurück zum Zitat Q. Chu, S. Xu, X. Tong, J. Li, M. Zhang, F. Yan, W. Zhang, Z. Bi and C. Yan, Comparative study of microstructure and mechanical properties of X80 SAW welds prepared using different wires and heat inputs, J. Mater. Eng. Perform., 2020, 29(7), p 4322–4338.CrossRef Q. Chu, S. Xu, X. Tong, J. Li, M. Zhang, F. Yan, W. Zhang, Z. Bi and C. Yan, Comparative study of microstructure and mechanical properties of X80 SAW welds prepared using different wires and heat inputs, J. Mater. Eng. Perform., 2020, 29(7), p 4322–4338.CrossRef
18.
Zurück zum Zitat R. Cao, J.J. Yuan, Z.K. Xiao, J.Y. Ma, G.J. Mao, X.K. Zhang and J.H. Chen, Sources of variability and lower values in toughness measurements of weld metals, J. Mater. Eng. Perform., 2017, 26, p 2472–2483.CrossRef R. Cao, J.J. Yuan, Z.K. Xiao, J.Y. Ma, G.J. Mao, X.K. Zhang and J.H. Chen, Sources of variability and lower values in toughness measurements of weld metals, J. Mater. Eng. Perform., 2017, 26, p 2472–2483.CrossRef
19.
Zurück zum Zitat Y. Kang, G. Park, S. Jeong and C. Lee, Correlation between microstructure and low-temperature impact toughness of simulated reheated zones in the multi-pass weld metal of high-strength steel, Metall. Mater. Trans. A, 2018, 49(1), p 177–186.CrossRef Y. Kang, G. Park, S. Jeong and C. Lee, Correlation between microstructure and low-temperature impact toughness of simulated reheated zones in the multi-pass weld metal of high-strength steel, Metall. Mater. Trans. A, 2018, 49(1), p 177–186.CrossRef
20.
Zurück zum Zitat X. Wang, Y. Nan, Z. Xie, Y. Tsai, J. Yang and C. Shang, Influence of welding pass on microstructure and toughness in the reheated zone of multi-pass weld metal of 550 MPa offshore engineering steel, Mater. Sci. Eng. A., 2017, 702, p 196–205.CrossRef X. Wang, Y. Nan, Z. Xie, Y. Tsai, J. Yang and C. Shang, Influence of welding pass on microstructure and toughness in the reheated zone of multi-pass weld metal of 550 MPa offshore engineering steel, Mater. Sci. Eng. A., 2017, 702, p 196–205.CrossRef
21.
Zurück zum Zitat X. Wang, Y. Tsai, J. Yang, Z. Wang, X. Li, C. Shang and R. Misra, Effect of interpass temperature on the microstructure and mechanical properties of multi-pass weld metal in a 550-MPa-grade offshore engineering steel, Weld. World., 2017, 61(6), p 1155–1168.CrossRef X. Wang, Y. Tsai, J. Yang, Z. Wang, X. Li, C. Shang and R. Misra, Effect of interpass temperature on the microstructure and mechanical properties of multi-pass weld metal in a 550-MPa-grade offshore engineering steel, Weld. World., 2017, 61(6), p 1155–1168.CrossRef
22.
Zurück zum Zitat P. Haslberger, S. Holly, W. Ernst and R. Schnitzer, Microstructure and mechanical properties of high-strength steel welding consumables with a minimum yield strength of 1100 MPa, J. Mater. Sci., 2018, 53(9), p 6968–6979.CrossRef P. Haslberger, S. Holly, W. Ernst and R. Schnitzer, Microstructure and mechanical properties of high-strength steel welding consumables with a minimum yield strength of 1100 MPa, J. Mater. Sci., 2018, 53(9), p 6968–6979.CrossRef
23.
Zurück zum Zitat E. Keehan, L. Karlsson, H.-O. Andrén and H. Bhadeshia, Influence of carbon, manganese and nickel on microstructure and properties of strong steel weld metals: part 2–impact toughness gain resulting from manganese reductions, Sci. Technol. Weld. Joining, 2006, 11(1), p 9–18.CrossRef E. Keehan, L. Karlsson, H.-O. Andrén and H. Bhadeshia, Influence of carbon, manganese and nickel on microstructure and properties of strong steel weld metals: part 2–impact toughness gain resulting from manganese reductions, Sci. Technol. Weld. Joining, 2006, 11(1), p 9–18.CrossRef
24.
Zurück zum Zitat E. Keehan, L. Karlsson and H.-O. Andrén, Influence of carbon, manganese and nickel on microstructure and properties of strong steel weld metals: part 1–effect of nickel content, Sci. Technol. Weld. Joining, 2006, 11(1), p 1–8.CrossRef E. Keehan, L. Karlsson and H.-O. Andrén, Influence of carbon, manganese and nickel on microstructure and properties of strong steel weld metals: part 1–effect of nickel content, Sci. Technol. Weld. Joining, 2006, 11(1), p 1–8.CrossRef
25.
Zurück zum Zitat X. Di, M. Tong, C. Li, C. Zhao and D. Wang, Microstructural evolution and its influence on toughness in simulated inter-critical heat affected zone of large thickness bainitic steel, Mater. Sci. Eng. A., 2019, 743, p 67–76.CrossRef X. Di, M. Tong, C. Li, C. Zhao and D. Wang, Microstructural evolution and its influence on toughness in simulated inter-critical heat affected zone of large thickness bainitic steel, Mater. Sci. Eng. A., 2019, 743, p 67–76.CrossRef
26.
Zurück zum Zitat S. Kou, Welding Metallurgy, Wiley, New Jersey, 2003. S. Kou, Welding Metallurgy, Wiley, New Jersey, 2003.
27.
Zurück zum Zitat G.J. Mao, R. Cao, X.L. Guo, Y. Jiang and J.H. Chen, In-situ observation of kinetic processes of lath bainite nucleation and growth by laser scanning confocal microscope in reheated weld metals, Metall. Mater. Trans. A, 2017, 48(12), p 5783–5799.CrossRef G.J. Mao, R. Cao, X.L. Guo, Y. Jiang and J.H. Chen, In-situ observation of kinetic processes of lath bainite nucleation and growth by laser scanning confocal microscope in reheated weld metals, Metall. Mater. Trans. A, 2017, 48(12), p 5783–5799.CrossRef
28.
Zurück zum Zitat S. Zajac, V. Schwinn and K.H. Tacke, Characterization and quantication of complex bainitic microstructures in high and ultra-high strength linepipe steels, Mater. Sci., 2005, 500–501, p 387–394. S. Zajac, V. Schwinn and K.H. Tacke, Characterization and quantication of complex bainitic microstructures in high and ultra-high strength linepipe steels, Mater. Sci., 2005, 500–501, p 387–394.
29.
Zurück zum Zitat L. Morsdorf, C.C. Tasan, D. Ponge et al., 3D structural and atomic-scale analysis of lath martensite: Effect of the transformation sequence, Acta Mater., 2015, 95, p 366–377.CrossRef L. Morsdorf, C.C. Tasan, D. Ponge et al., 3D structural and atomic-scale analysis of lath martensite: Effect of the transformation sequence, Acta Mater., 2015, 95, p 366–377.CrossRef
30.
Zurück zum Zitat G.J. Mao, R. Cao, J. Yang, Y. Jiang, S. Wang, X.L. Guo and J.H. Chen, Effect of nickel contents on the microstructure and mechanical properties for low-carbon bainitic weld metals, J. Mater. Eng. Perform., 2017, 26(5), p 2057–2071.CrossRef G.J. Mao, R. Cao, J. Yang, Y. Jiang, S. Wang, X.L. Guo and J.H. Chen, Effect of nickel contents on the microstructure and mechanical properties for low-carbon bainitic weld metals, J. Mater. Eng. Perform., 2017, 26(5), p 2057–2071.CrossRef
31.
Zurück zum Zitat J.H. Chen and R. Cao, Micromechanism of cleavage fracture of metals: a comprehensive microphysical model for cleavage cracking in metals, Butterworth-Heinemann, United Kingdom, 2014. J.H. Chen and R. Cao, Micromechanism of cleavage fracture of metals: a comprehensive microphysical model for cleavage cracking in metals, Butterworth-Heinemann, United Kingdom, 2014.
32.
Zurück zum Zitat R. Cao, X.B. Zhang, Z. Wang, Y. Peng, W.S. Du, Z.L. Tian and J.H. Chen, Investigation of microstructural features determining the toughness of 980 MPa bainitic weld metal, Metall. Mater. Trans. A., 2014, 45(2), p 815–834.CrossRef R. Cao, X.B. Zhang, Z. Wang, Y. Peng, W.S. Du, Z.L. Tian and J.H. Chen, Investigation of microstructural features determining the toughness of 980 MPa bainitic weld metal, Metall. Mater. Trans. A., 2014, 45(2), p 815–834.CrossRef
33.
Zurück zum Zitat K.F. Chung, H.C. Ho, Y.F. Hu, K. Wang and D.A. Nethercot, Experimental evidence on structural adequacy of high strength s690 steel welded joints with different heat input energy, Eng. Struct., 2020, 204, p 110151.CrossRef K.F. Chung, H.C. Ho, Y.F. Hu, K. Wang and D.A. Nethercot, Experimental evidence on structural adequacy of high strength s690 steel welded joints with different heat input energy, Eng. Struct., 2020, 204, p 110151.CrossRef
34.
Zurück zum Zitat Q.W. Wang, C.S. Li, J. Chen and X.Y. Tu, Effects of heat input on microstructure and mechanical properties of Fe–2Cr–Mo–0.12C steel, Mater. Sci. Technol., 2017, 34, p 1–9. Q.W. Wang, C.S. Li, J. Chen and X.Y. Tu, Effects of heat input on microstructure and mechanical properties of Fe–2Cr–Mo–0.12C steel, Mater. Sci. Technol., 2017, 34, p 1–9.
35.
Zurück zum Zitat N. Huda, A.R. Midawi, J. Gianetto, R. Lazor and A.P. Gerlich, Influence of martensite-austenite (MA) on impact toughness of X80 line pipe steels, Mater. Sci. Eng. A., 2016, 662, p 481–491.CrossRef N. Huda, A.R. Midawi, J. Gianetto, R. Lazor and A.P. Gerlich, Influence of martensite-austenite (MA) on impact toughness of X80 line pipe steels, Mater. Sci. Eng. A., 2016, 662, p 481–491.CrossRef
36.
Zurück zum Zitat L. Lan, C. Qiu, D. Zhao, X. Gao and L. Du, Analysis of microstructural variation and mechanical behaviors in submerged arc welded joint of high strength low carbon bainitic steel, Mater. Sci. Eng. A, 2012, 558, p 592–601.CrossRef L. Lan, C. Qiu, D. Zhao, X. Gao and L. Du, Analysis of microstructural variation and mechanical behaviors in submerged arc welded joint of high strength low carbon bainitic steel, Mater. Sci. Eng. A, 2012, 558, p 592–601.CrossRef
37.
Zurück zum Zitat A. Chabok, E. Van der Aa, J.T.M. De Hosson and Y. Pei, Mechanical behavior and failure mechanism of resistance spot welded DP1000 dual phase steel, Mater. Des., 2017, 124, p 171–182.CrossRef A. Chabok, E. Van der Aa, J.T.M. De Hosson and Y. Pei, Mechanical behavior and failure mechanism of resistance spot welded DP1000 dual phase steel, Mater. Des., 2017, 124, p 171–182.CrossRef
38.
Zurück zum Zitat A. Lambert-Perlade, A.F. Gourgues and A. Pineau, Austenite to bainite phase transformation in the heat-affected zone of a high strength low alloy steel, Acta. Mater., 2004, 52, p 2337–2348.CrossRef A. Lambert-Perlade, A.F. Gourgues and A. Pineau, Austenite to bainite phase transformation in the heat-affected zone of a high strength low alloy steel, Acta. Mater., 2004, 52, p 2337–2348.CrossRef
Metadaten
Titel
Effects of Various Heat Inputs and Reheating Processes on the Microstructure and Properties of Low-Carbon Bainite Weld Metals Containing 4% Ni
verfasst von
Wanlong Dong
Chunwei Ma
Wei Li
Rui Cao
Chen Liang
Wanchao Zhu
Gaojun Mao
Xili Guo
Yong Jiang
Jianhong Chen
Publikationsdatum
27.06.2022
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 12/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-07061-3

Weitere Artikel der Ausgabe 12/2022

Journal of Materials Engineering and Performance 12/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.