Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 12/2022

31.05.2022 | Technical Article

Corrosion Behavior of Atmospheric Plasma-Sprayed YAG/8YSZ Double Ceramic-Layered Thermal Barrier Coatings in a Calcium–Magnesium–Alumino-Silicate Melt

verfasst von: Chunling Li, Bo Cheng, Yi Zhang, Guosheng An, Yongjiang Sun, Yu Wang, Wensheng Li

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 12/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Calcium–magnesium–alumino-silicate (CMAS) corrosion is one of the important causes of failure in thermal barrier coatings (TBCs). Herein, 8YSZ (8%Y2O3-ZrO2) single and YAG (Y3Al5O12)/8YSZ double ceramic-layered (DCL) TBCs were deposited on the Al2O3 substrate by atmospheric plasma spraying, respectively. The CMAS corrosion tests were conducted at 1250 °C for 1, 4, and 12 h, as well as on YAG/CMAS mixed powder (mass ratio 1:1) for 12 h. The microstructure and the corrosion products were analyzed to reveal the CMAS corrosion processes and mechanisms of these two types of TBCs. Results showed that YAG particle surface layer is slightly corroded by molten CMAS after 12 h at 1250 °C, which proved the good CMAS corrosion resistance and high-temperature stability of YAG. For the pure 8YSZ TBCs, the coating phase started to transfer from the as-sprayed tetrahedral phase to a monoclinic phase after corrosion for 1 h, and CMAS infiltrated the 8YSZ ceramic layer completely after 12 h. However, for the YAG/8YSZ DCL TBCs, only the high-melting-point apatite phase formed on the surface of TBCs blocked the further infiltration of CMAS by slowing further corrosion of CMAS. The protective apatite phase isolated CMAS from the internal YAG, keeping the bottom 8YSZ ceramic layer intact and extensively reducing the further damage to these TBCs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Q. Chen, P. Hu, and J. Pu, Interfacial Interaction and Roughness Parameters Effects on the Residual Stresses in DCL-TBC System with Different Thickness Distributions, Ceram. Int., 2021, 47(2), p 2781–2792. CrossRef Q. Chen, P. Hu, and J. Pu, Interfacial Interaction and Roughness Parameters Effects on the Residual Stresses in DCL-TBC System with Different Thickness Distributions, Ceram. Int., 2021, 47(2), p 2781–2792. CrossRef
2.
Zurück zum Zitat A.C. Karaoglanli, K.M. Doleker, B. Demirel, A. Turk, and R. Varol, Effect of shot Peening on the Oxidation Behavior of Thermal Barrier Coatings, Appl. Surf. Sci., 2015, 354, p 314–322. CrossRef A.C. Karaoglanli, K.M. Doleker, B. Demirel, A. Turk, and R. Varol, Effect of shot Peening on the Oxidation Behavior of Thermal Barrier Coatings, Appl. Surf. Sci., 2015, 354, p 314–322. CrossRef
3.
Zurück zum Zitat R. Darolia, Thermal Barrier Coatings Technology: Critical Review, Progress Update, Remaining Challenges and Prospects, Int. Mater. Rev., 2013, 58(6), p 315–348. CrossRef R. Darolia, Thermal Barrier Coatings Technology: Critical Review, Progress Update, Remaining Challenges and Prospects, Int. Mater. Rev., 2013, 58(6), p 315–348. CrossRef
4.
Zurück zum Zitat T. Steinke, D. Sebold, and D.E. Mack, A novel Test Approach for plasma-Sprayed Coatings Tested Simultaneously under CMAS and Thermal Gradient Cycling Conditions, Surf. Coat. Tech., 2010, 205(7), p 2287–2295. CrossRef T. Steinke, D. Sebold, and D.E. Mack, A novel Test Approach for plasma-Sprayed Coatings Tested Simultaneously under CMAS and Thermal Gradient Cycling Conditions, Surf. Coat. Tech., 2010, 205(7), p 2287–2295. CrossRef
5.
Zurück zum Zitat A. Sharma, G. Witz, P.C. Howell, and N. Hitchman, Interplay of the Phase and the Chemical Composition of the Powder Feedstock on the Properties of Porous 8YSZ Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2020, 41, p 3706–3716. CrossRef A. Sharma, G. Witz, P.C. Howell, and N. Hitchman, Interplay of the Phase and the Chemical Composition of the Powder Feedstock on the Properties of Porous 8YSZ Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2020, 41, p 3706–3716. CrossRef
6.
Zurück zum Zitat L.Y. Chen, X.X. Tian, and H.Y. Wang, Phase Interaction Induced Texture in a Plasma Sprayed-Remelted NiCrBSi Coating during Solidification: An Electron Backscatter Diffraction Study, Surf. Coat. Tech., 2019, 358, p 467–480. CrossRef L.Y. Chen, X.X. Tian, and H.Y. Wang, Phase Interaction Induced Texture in a Plasma Sprayed-Remelted NiCrBSi Coating during Solidification: An Electron Backscatter Diffraction Study, Surf. Coat. Tech., 2019, 358, p 467–480. CrossRef
7.
Zurück zum Zitat J.J. Gomezchavez, R. Naraparaju, and C. Mikulla, Comparative Study of EB-PVD Gadolinium-Zirconate and Yttria-Rich Zirconia Coatings Performance against Fe-Containing Calcium-Magnesium-Aluminosilicate (CMAS) Infiltration, Corros. Sci., 2021, 190, p 190660. J.J. Gomezchavez, R. Naraparaju, and C. Mikulla, Comparative Study of EB-PVD Gadolinium-Zirconate and Yttria-Rich Zirconia Coatings Performance against Fe-Containing Calcium-Magnesium-Aluminosilicate (CMAS) Infiltration, Corros. Sci., 2021, 190, p 190660.
8.
Zurück zum Zitat P. Sang, L.Y. Chen, and C. Zhao, Particle Size-Dependent Microstructure, Hardness and Electrochemical Corrosion Behavior of Atmospheric Plasma Sprayed NiCrBSi Coatings, Metals, 2019, 9(12), p 1342. CrossRef P. Sang, L.Y. Chen, and C. Zhao, Particle Size-Dependent Microstructure, Hardness and Electrochemical Corrosion Behavior of Atmospheric Plasma Sprayed NiCrBSi Coatings, Metals, 2019, 9(12), p 1342. CrossRef
9.
Zurück zum Zitat Y. Ozgurluk, A.C. Karaoglan, and H. Ahlatci, Comparison of Calcium-Magnesium-Alumina-Silicate (CMAS) Resistance Behavior of Produced with Electron Beam Physical Vapor Deposition (EB-PVD) Method YSZ and Gd2Zr2O7/YSZ Thermal Barrier Coatings Systems, Vacuum, 2021, 194, p 110576. CrossRef Y. Ozgurluk, A.C. Karaoglan, and H. Ahlatci, Comparison of Calcium-Magnesium-Alumina-Silicate (CMAS) Resistance Behavior of Produced with Electron Beam Physical Vapor Deposition (EB-PVD) Method YSZ and Gd2Zr2O7/YSZ Thermal Barrier Coatings Systems, Vacuum, 2021, 194, p 110576. CrossRef
10.
Zurück zum Zitat W. Fan, X. Song, and Y. Huang, Structure Change and Phase Transition Distribution Caused by CMAS Corrosion of YSZ Coating, J. Inorg. Mater., 2021, 36(10), p 1059. CrossRef W. Fan, X. Song, and Y. Huang, Structure Change and Phase Transition Distribution Caused by CMAS Corrosion of YSZ Coating, J. Inorg. Mater., 2021, 36(10), p 1059. CrossRef
11.
Zurück zum Zitat A. Aygun, A.L. Vasiliev, N.P. Padture, and X. Ma, Novel Thermal Barrier Coatings that are Resistant to High-Temperature Attack by Glassy Deposits, Acta. Mater., 2007, 55(20), p 6734–6745. CrossRef A. Aygun, A.L. Vasiliev, N.P. Padture, and X. Ma, Novel Thermal Barrier Coatings that are Resistant to High-Temperature Attack by Glassy Deposits, Acta. Mater., 2007, 55(20), p 6734–6745. CrossRef
12.
Zurück zum Zitat H. Fang, W. Wang, J. Huang, and D. Ye, Investigation of CMAS Resistance of Sacrificial Plasma-Sprayed Mullite-YSZ Protective Layer on 8YSZ Thermal Barrier Coating, Corros. Sci., 2020, 173, p 108764. CrossRef H. Fang, W. Wang, J. Huang, and D. Ye, Investigation of CMAS Resistance of Sacrificial Plasma-Sprayed Mullite-YSZ Protective Layer on 8YSZ Thermal Barrier Coating, Corros. Sci., 2020, 173, p 108764. CrossRef
13.
Zurück zum Zitat S.H. Liu, C.X. Li, and H.Y. Zhang, A Novel Structure of YSZ Coatings by Atmospheric Laminar Plasma Spraying Technology, Scr. Mater., 2018, 153, p 73–76.CrossRef S.H. Liu, C.X. Li, and H.Y. Zhang, A Novel Structure of YSZ Coatings by Atmospheric Laminar Plasma Spraying Technology, Scr. Mater., 2018, 153, p 73–76.CrossRef
14.
Zurück zum Zitat G. Mauer, M.O. Jarligo, D.E. Mack, and R. Vaßen, Plasma-Sprayed Thermal Barrier Coatings: New Materials, Processing Issues, and Solutions, J. Therm. Spray. Techn., 2013, 22(5), p 646–658. CrossRef G. Mauer, M.O. Jarligo, D.E. Mack, and R. Vaßen, Plasma-Sprayed Thermal Barrier Coatings: New Materials, Processing Issues, and Solutions, J. Therm. Spray. Techn., 2013, 22(5), p 646–658. CrossRef
15.
Zurück zum Zitat S.H. Liu, J.P. Trelles, and A.B. Murphy, Low-Pressure Plasma-Induced Physical Vapor Deposition of Advanced Thermal Barrier Coatings: Microstructures, Modelling and Mechanisms, Mater. Today Phys., 2021, 21, p 100481.CrossRef S.H. Liu, J.P. Trelles, and A.B. Murphy, Low-Pressure Plasma-Induced Physical Vapor Deposition of Advanced Thermal Barrier Coatings: Microstructures, Modelling and Mechanisms, Mater. Today Phys., 2021, 21, p 100481.CrossRef
16.
Zurück zum Zitat S. Lakiza, O. Fabrichnay, C.H. Wang, M. Zinkevich, and Aldinger, Phase Diagram of the ZrO2-Gd2O3-Al2O3 System, J. Eur. Ceram. Soc., 2006, 26(3), p 233–246. CrossRef S. Lakiza, O. Fabrichnay, C.H. Wang, M. Zinkevich, and Aldinger, Phase Diagram of the ZrO2-Gd2O3-Al2O3 System, J. Eur. Ceram. Soc., 2006, 26(3), p 233–246. CrossRef
17.
Zurück zum Zitat R. Vaßen, A. Stuke, and D. Stöver, Recent Developments in the field of Thermal Barrier Coatings, J. Therm. Spray. Techn., 2009, 18(2), p 181–186. CrossRef R. Vaßen, A. Stuke, and D. Stöver, Recent Developments in the field of Thermal Barrier Coatings, J. Therm. Spray. Techn., 2009, 18(2), p 181–186. CrossRef
18.
Zurück zum Zitat S. Kramer, J. Yang, and C.G. Levi, Infiltration-Inhibiting Reaction of Gadolinium Zirconate Thermal Barrier Coatings with CMAS Melts, J. Am. Ceram. Soc., 2008, 91(2), p 576–583. CrossRef S. Kramer, J. Yang, and C.G. Levi, Infiltration-Inhibiting Reaction of Gadolinium Zirconate Thermal Barrier Coatings with CMAS Melts, J. Am. Ceram. Soc., 2008, 91(2), p 576–583. CrossRef
19.
Zurück zum Zitat G. Dwivedi, V. Viswanathan, S. Sampath, A. Shyam, E. Lara-Curzio, and K. Faber, Fracture Toughness of Plasma-Sprayed Thermal Barrier Ceramics: Influence of Processing, Microstructure, and Thermal Aging, J. Am. Ceram. Soc., 2014, 97(9), p 2736–2744. CrossRef G. Dwivedi, V. Viswanathan, S. Sampath, A. Shyam, E. Lara-Curzio, and K. Faber, Fracture Toughness of Plasma-Sprayed Thermal Barrier Ceramics: Influence of Processing, Microstructure, and Thermal Aging, J. Am. Ceram. Soc., 2014, 97(9), p 2736–2744. CrossRef
20.
Zurück zum Zitat R. Vaßen, X. Cao, F. Tietz, and D. Basu, Zirconates as New Materials for Thermal Barrier Coatings, J. Am. Ceram. Soc., 2000, 83(8), p 2023–2028. CrossRef R. Vaßen, X. Cao, F. Tietz, and D. Basu, Zirconates as New Materials for Thermal Barrier Coatings, J. Am. Ceram. Soc., 2000, 83(8), p 2023–2028. CrossRef
21.
Zurück zum Zitat Y.J. Su, R.W. Trice, K.T. Faber, H. Wang, and W.D. Porter, Thermal Conductivity, Phase Stability, and Oxidation Resistance of Y3Al5O12(YAG)/Y2O3-ZrO2(YSZ) Thermal-Barrier Coatings, Oxid. Met., 2004, 61, p 253–271. CrossRef Y.J. Su, R.W. Trice, K.T. Faber, H. Wang, and W.D. Porter, Thermal Conductivity, Phase Stability, and Oxidation Resistance of Y3Al5O12(YAG)/Y2O3-ZrO2(YSZ) Thermal-Barrier Coatings, Oxid. Met., 2004, 61, p 253–271. CrossRef
22.
Zurück zum Zitat S.W. Jung, S. Park, and D. Choi, Efficient Drug Delivery Carrier Surface without Unwanted Adsorption Using Sulfobetaine Zwitterion, Adv. Eng. Mater., 2020, 23, p 2001433. S.W. Jung, S. Park, and D. Choi, Efficient Drug Delivery Carrier Surface without Unwanted Adsorption Using Sulfobetaine Zwitterion, Adv. Eng. Mater., 2020, 23, p 2001433.
23.
Zurück zum Zitat M. Gell, J. Wang, R. Kumar, J. Roth, and E.H. Jordan, Higher Temperature Thermal Barrier Coatings with the Combined Use of Yttrium Aluminum Garnet and the Solution Precursor Plasma Spray Process, J. Therm. Spray. Techn., 2018, 27(4), p 543–555. CrossRef M. Gell, J. Wang, R. Kumar, J. Roth, and E.H. Jordan, Higher Temperature Thermal Barrier Coatings with the Combined Use of Yttrium Aluminum Garnet and the Solution Precursor Plasma Spray Process, J. Therm. Spray. Techn., 2018, 27(4), p 543–555. CrossRef
24.
Zurück zum Zitat G.R. Li, J.G. Yang, and C.X. Li, A Comprehensive Mechanism for the Sintering of Plasma-Sprayed Nanostructured Thermal Barrier Coatings, Ceram. Int., 2017, 43, p 9600–9615. CrossRef G.R. Li, J.G. Yang, and C.X. Li, A Comprehensive Mechanism for the Sintering of Plasma-Sprayed Nanostructured Thermal Barrier Coatings, Ceram. Int., 2017, 43, p 9600–9615. CrossRef
25.
Zurück zum Zitat R. Kumar, E. Jordan, M. Gell, J. Roth, C. Jiang, J. Wang, and S. Rommel, CMAS Behavior of Yttrium Aluminum Garnet (YAG) and Yttria-Stabilized Zirconia (YSZ) Thermal Barrier Coatings, Surf. Coat. Tech., 2017, 327, p 126–138. CrossRef R. Kumar, E. Jordan, M. Gell, J. Roth, C. Jiang, J. Wang, and S. Rommel, CMAS Behavior of Yttrium Aluminum Garnet (YAG) and Yttria-Stabilized Zirconia (YSZ) Thermal Barrier Coatings, Surf. Coat. Tech., 2017, 327, p 126–138. CrossRef
26.
Zurück zum Zitat M.J. Liu, G. Zhang, Y.H. Lu, J.Q. Han, G.R. Li, C.X. Li, C.J. Li, and G.J. Yang, Plasma Spray-Physical Vapor Deposition toward Advanced Thermal Barrier Coatings: A Review, Rare. Met., 2020, 39(5), p 479–497. CrossRef M.J. Liu, G. Zhang, Y.H. Lu, J.Q. Han, G.R. Li, C.X. Li, C.J. Li, and G.J. Yang, Plasma Spray-Physical Vapor Deposition toward Advanced Thermal Barrier Coatings: A Review, Rare. Met., 2020, 39(5), p 479–497. CrossRef
27.
Zurück zum Zitat R. Wellman, G. Whitman, and R.J. Nicholls, CMAS Corrosion of EB PVD TBCs: Identifying the Minimum Level to Initiate Damage, Int. J. Refract. Met. H., 2010, 28(1), p 124–132. CrossRef R. Wellman, G. Whitman, and R.J. Nicholls, CMAS Corrosion of EB PVD TBCs: Identifying the Minimum Level to Initiate Damage, Int. J. Refract. Met. H., 2010, 28(1), p 124–132. CrossRef
28.
Zurück zum Zitat K. Stephan, J. Yang, and C.G. Levi, Thermo Mechanical Interaction of Thermal Barrier Coatings with Molten CaO-MgO-Al2O3-SiO2 (CMAS) Deposits, J. Am. Ceram. Soc., 2006, 89(10), p 3167–3175. CrossRef K. Stephan, J. Yang, and C.G. Levi, Thermo Mechanical Interaction of Thermal Barrier Coatings with Molten CaO-MgO-Al2O3-SiO2 (CMAS) Deposits, J. Am. Ceram. Soc., 2006, 89(10), p 3167–3175. CrossRef
29.
Zurück zum Zitat Y. Kuru, O. Savasir, S.Z. Nergiz, C. Oncel, and P. Aken, Yttrium Aluminum Garnet as a Scavenger for Ca and Si, J. Am. Ceram. Soc., 2008, 91(11), p 3663–3667. CrossRef Y. Kuru, O. Savasir, S.Z. Nergiz, C. Oncel, and P. Aken, Yttrium Aluminum Garnet as a Scavenger for Ca and Si, J. Am. Ceram. Soc., 2008, 91(11), p 3663–3667. CrossRef
Metadaten
Titel
Corrosion Behavior of Atmospheric Plasma-Sprayed YAG/8YSZ Double Ceramic-Layered Thermal Barrier Coatings in a Calcium–Magnesium–Alumino-Silicate Melt
verfasst von
Chunling Li
Bo Cheng
Yi Zhang
Guosheng An
Yongjiang Sun
Yu Wang
Wensheng Li
Publikationsdatum
31.05.2022
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 12/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-07014-w

Weitere Artikel der Ausgabe 12/2022

Journal of Materials Engineering and Performance 12/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.