Skip to main content
Erschienen in: Neural Computing and Applications 1/2014

01.01.2014 | ICONIP 2012

Current–voltage modeling of graphene-based DNA sensor

verfasst von: H. Karimi Feiz Abadi, R. Yusof, S. Maryam Eshrati, S. D. Naghib, M. Rahmani, M. Ghadiri, E. Akbari, M. T. Ahmadi

Erschienen in: Neural Computing and Applications | Ausgabe 1/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Graphene is considered as an excellent biosensing material due to its outstanding and unique electronic properties such as providing large area detection, ultra-high mobility and ambipolar field-effect characteristic. In this paper, general conductance model of DNA sensor-based graphene is obtained, and the electrical performance of nanostructured graphene-based DNA sensor is evaluated by the current–voltage characteristic. As a result, by increasing the complementary DNA concentration, the drain current is going toward higher amounts.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
3.
Zurück zum Zitat Myung S, Solanki A, Kim C, Park J, Kim KS, Lee K-B (2011) Graphene-encapsulated nanoparticle-based biosensor for the selective detection of cancer biomarkers. Adv Mater 23(19):2221. doi:10.1002/adma.201100014 CrossRef Myung S, Solanki A, Kim C, Park J, Kim KS, Lee K-B (2011) Graphene-encapsulated nanoparticle-based biosensor for the selective detection of cancer biomarkers. Adv Mater 23(19):2221. doi:10.​1002/​adma.​201100014 CrossRef
4.
Zurück zum Zitat Qiu Y, Qu X, Dong J, Ai S, Han R (2011) Electrochemical detection of DNA damage induced by acrylamide and its metabolite at the graphene-ionic liquid-Nafion modified pyrolytic graphite electrode. J Hazard Mater 190(1–3):480–485. doi:10.1016/j.jhazmat.2011.03.071 CrossRef Qiu Y, Qu X, Dong J, Ai S, Han R (2011) Electrochemical detection of DNA damage induced by acrylamide and its metabolite at the graphene-ionic liquid-Nafion modified pyrolytic graphite electrode. J Hazard Mater 190(1–3):480–485. doi:10.​1016/​j.​jhazmat.​2011.​03.​071 CrossRef
6.
Zurück zum Zitat Ohno Y, Maehashi K, Yamashiro Y, Matsumoto K (2009) Electrolyte-gated graphene field-effect transistors for detecting pH protein adsorption. Nano Lett 9(9):3318–3322. doi:10.1021/nl901596m CrossRef Ohno Y, Maehashi K, Yamashiro Y, Matsumoto K (2009) Electrolyte-gated graphene field-effect transistors for detecting pH protein adsorption. Nano Lett 9(9):3318–3322. doi:10.​1021/​nl901596m CrossRef
7.
Zurück zum Zitat Lin L, Liu Y, Tang L, Li J (2011) Electrochemical DNA sensor by the assembly of graphene and DNA-conjugated gold nanoparticles with silver enhancement strategy. Analyst 136(22):4732–4737. doi:10.1039/c1an15610a CrossRef Lin L, Liu Y, Tang L, Li J (2011) Electrochemical DNA sensor by the assembly of graphene and DNA-conjugated gold nanoparticles with silver enhancement strategy. Analyst 136(22):4732–4737. doi:10.​1039/​c1an15610a CrossRef
8.
Zurück zum Zitat Liao K-H, Lin Y-S, Macosko CW, Haynes CL (2011) Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. Acs Appl Mater Interfaces 3(7):2607–2615. doi:10.1021/am200428v CrossRef Liao K-H, Lin Y-S, Macosko CW, Haynes CL (2011) Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. Acs Appl Mater Interfaces 3(7):2607–2615. doi:10.​1021/​am200428v CrossRef
9.
Zurück zum Zitat Baby TT, Aravind SSJ, Arockiadoss T, Rakhi RB, Ramaprabhu S (2010) Metal decorated graphene nanosheets as immobilization matrix for amperometric glucose biosensor. Sens Actuators B Chem 145(1):71–77. doi:10.1016/j.snb.2009.11.022 CrossRef Baby TT, Aravind SSJ, Arockiadoss T, Rakhi RB, Ramaprabhu S (2010) Metal decorated graphene nanosheets as immobilization matrix for amperometric glucose biosensor. Sens Actuators B Chem 145(1):71–77. doi:10.​1016/​j.​snb.​2009.​11.​022 CrossRef
10.
Zurück zum Zitat Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6(9):652–655CrossRef Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6(9):652–655CrossRef
11.
Zurück zum Zitat Welsher K, Liu Z, Daranciang D, Dai H (2008) Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules. Nano Lett 8(2):586–590. doi:10.1021/nl072949q CrossRef Welsher K, Liu Z, Daranciang D, Dai H (2008) Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules. Nano Lett 8(2):586–590. doi:10.​1021/​nl072949q CrossRef
12.
Zurück zum Zitat Zheng M, Jagota A, Semke ED, Diner BA, McLean RS, Lustig SR, Richardson RE, Tassi NG (2003) DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater 2(5):338–342CrossRef Zheng M, Jagota A, Semke ED, Diner BA, McLean RS, Lustig SR, Richardson RE, Tassi NG (2003) DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater 2(5):338–342CrossRef
13.
Zurück zum Zitat Nilsson J, Neto AHC, Guinea F, Peres NMR (2007) Transmission through a biased graphene bilayer barrier. Phys Rev B (Condens Matter Mater Phys) 76(16):165416CrossRef Nilsson J, Neto AHC, Guinea F, Peres NMR (2007) Transmission through a biased graphene bilayer barrier. Phys Rev B (Condens Matter Mater Phys) 76(16):165416CrossRef
14.
Zurück zum Zitat Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065):197–200CrossRef Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065):197–200CrossRef
15.
Zurück zum Zitat Dankerl M, Hauf MV, Lippert A, Hess LH, Birner S, Sharp ID, Mahmood A, Mallet P, Veuillen J-Y, Stutzmann M, Garrido JA (2010) Graphene solution-gated field-effect transistor array for sensing applications. Adv Funct Mater 20(18):3117–3124. doi:10.1002/adfm.201000724 CrossRef Dankerl M, Hauf MV, Lippert A, Hess LH, Birner S, Sharp ID, Mahmood A, Mallet P, Veuillen J-Y, Stutzmann M, Garrido JA (2010) Graphene solution-gated field-effect transistor array for sensing applications. Adv Funct Mater 20(18):3117–3124. doi:10.​1002/​adfm.​201000724 CrossRef
16.
Zurück zum Zitat Huang Y, Dong X, Liu Y, Li L-J, Chen P (2011) Graphene-based biosensors for detection of bacteria and their metabolic activities. J Mater Chem 21(33):12358–12362. doi:10.1039/c1jm11436k CrossRef Huang Y, Dong X, Liu Y, Li L-J, Chen P (2011) Graphene-based biosensors for detection of bacteria and their metabolic activities. J Mater Chem 21(33):12358–12362. doi:10.​1039/​c1jm11436k CrossRef
17.
Zurück zum Zitat Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Nanotube molecular wires as chemical sensors. Science 287(5453):622CrossRef Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Nanotube molecular wires as chemical sensors. Science 287(5453):622CrossRef
18.
Zurück zum Zitat Collins PG, Bradley K, Ishigami M, Zettl A (2000) Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287(5459):1801CrossRef Collins PG, Bradley K, Ishigami M, Zettl A (2000) Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287(5459):1801CrossRef
19.
Zurück zum Zitat Snow E, Perkins F, Houser E, Badescu S, Reinecke T (2005) Chemical detection with a single-walled carbon nanotube capacitor. Science 307(5717):1942CrossRef Snow E, Perkins F, Houser E, Badescu S, Reinecke T (2005) Chemical detection with a single-walled carbon nanotube capacitor. Science 307(5717):1942CrossRef
20.
Zurück zum Zitat Shi YB, Xiang JJ, Feng QH, Hu ZP, Zhang HQ, Guo JY (2006) Binary channel SAW mustard gas sensor based on PdPc(0.3)PANI(0.7)hybrid sensitive film. In: Tan J (ed) 4th International symposium on instrumentation science and technology, vol 48. J Phys Conf Ser. pp 292–297. doi:10.1088/1742-6596/48/l/054 Shi YB, Xiang JJ, Feng QH, Hu ZP, Zhang HQ, Guo JY (2006) Binary channel SAW mustard gas sensor based on PdPc(0.3)PANI(0.7)hybrid sensitive film. In: Tan J (ed) 4th International symposium on instrumentation science and technology, vol 48. J Phys Conf Ser. pp 292–297. doi:10.​1088/​1742-6596/​48/​l/​054
21.
Zurück zum Zitat Shi Y, Dong X, Chen P, Wang J, Li LJ (2009) Effective doping of single-layer graphene from underlying SiO_ 2 substrates. Phys Rev B 79(11):115402CrossRef Shi Y, Dong X, Chen P, Wang J, Li LJ (2009) Effective doping of single-layer graphene from underlying SiO_ 2 substrates. Phys Rev B 79(11):115402CrossRef
22.
Zurück zum Zitat Wehling T, Novoselov K, Morozov S, Vdovin E, Katsnelson M, Geim A, Lichtenstein A (2008) Molecular doping of graphene. Nano Lett 8(1):173–177CrossRef Wehling T, Novoselov K, Morozov S, Vdovin E, Katsnelson M, Geim A, Lichtenstein A (2008) Molecular doping of graphene. Nano Lett 8(1):173–177CrossRef
23.
Zurück zum Zitat Dong X, Fu D, Fang W, Shi Y, Chen P, Li LJ (2009) Doping single-layer graphene with aromatic molecules. Small 5(12):1422–1426CrossRef Dong X, Fu D, Fang W, Shi Y, Chen P, Li LJ (2009) Doping single-layer graphene with aromatic molecules. Small 5(12):1422–1426CrossRef
25.
Zurück zum Zitat Star A, Tu E, Niemann J, Gabriel JCP, Joiner CS, Valcke C (2006) Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. Proc Natl Acad Sci USA 103(4):921CrossRef Star A, Tu E, Niemann J, Gabriel JCP, Joiner CS, Valcke C (2006) Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. Proc Natl Acad Sci USA 103(4):921CrossRef
26.
Zurück zum Zitat Choi J, Choi WM, Hong BH Graphene used for device and graphene sheet, comprises etched edge portion comprising functional group of carbonyl, carboxy, hydroxy, formyl and/or oxycarbonyl. US2010178464-A1; KR2010083954-A Choi J, Choi WM, Hong BH Graphene used for device and graphene sheet, comprises etched edge portion comprising functional group of carbonyl, carboxy, hydroxy, formyl and/or oxycarbonyl. US2010178464-A1; KR2010083954-A
27.
Zurück zum Zitat Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J (2008) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9(1):30–35CrossRef Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J (2008) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9(1):30–35CrossRef
28.
Zurück zum Zitat Reina A, Thiele S, Jia X, Bhaviripudi S, Dresselhaus MS, Schaefer JA, Kong J (2009) Growth of large-area single-and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res 2(6):509–516CrossRef Reina A, Thiele S, Jia X, Bhaviripudi S, Dresselhaus MS, Schaefer JA, Kong J (2009) Growth of large-area single-and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res 2(6):509–516CrossRef
29.
Zurück zum Zitat Wen Y, Xing F, He S, Song S, Wang L, Long Y, Li D, Fan C (2010) A graphene-based fluorescent nanoprobe for silver (I) ions detection by using graphene oxide and a silver-specific oligonucleotide. Chem Commun 46(15):2596–2598CrossRef Wen Y, Xing F, He S, Song S, Wang L, Long Y, Li D, Fan C (2010) A graphene-based fluorescent nanoprobe for silver (I) ions detection by using graphene oxide and a silver-specific oligonucleotide. Chem Commun 46(15):2596–2598CrossRef
30.
Zurück zum Zitat Zhong Z, Wu W, Wang D, Wang D, Shan J, Qing Y, Zhang Z (2010) Nanogold-enwrapped graphene nanocomposites as trace labels for sensitivity enhancement of electrochemical immunosensors in clinical immunoassays: carcinoembryonic antigen as a model. Biosens Bioelectron 25(10):2379–2383. doi:10.1016/j.bios.2010.03.009 CrossRef Zhong Z, Wu W, Wang D, Wang D, Shan J, Qing Y, Zhang Z (2010) Nanogold-enwrapped graphene nanocomposites as trace labels for sensitivity enhancement of electrochemical immunosensors in clinical immunoassays: carcinoembryonic antigen as a model. Biosens Bioelectron 25(10):2379–2383. doi:10.​1016/​j.​bios.​2010.​03.​009 CrossRef
31.
Zurück zum Zitat Du D, Zou Z, Shin Y, Wang J, Wu H, Engelhard MH, Liu J, Aksay IA, Lin Y (2010) Sensitive immunosensor for cancer biomarker based on dual signal amplification strategy of graphene sheets and multienzyme functionalized carbon nanospheres. Anal Chem 82(7):2989–2995. doi:10.1021/ac100036p CrossRef Du D, Zou Z, Shin Y, Wang J, Wu H, Engelhard MH, Liu J, Aksay IA, Lin Y (2010) Sensitive immunosensor for cancer biomarker based on dual signal amplification strategy of graphene sheets and multienzyme functionalized carbon nanospheres. Anal Chem 82(7):2989–2995. doi:10.​1021/​ac100036p CrossRef
32.
Zurück zum Zitat Koochi A, Kazemi A, Abadyan M (2011) Simulating deflection and determining stable length of freestanding carbon nanotube probe/sensor in the vicinity of graphene layers using a nanoscale continuum model. Nano 6(5):419–429. doi:10.1142/s1793292011002731 CrossRef Koochi A, Kazemi A, Abadyan M (2011) Simulating deflection and determining stable length of freestanding carbon nanotube probe/sensor in the vicinity of graphene layers using a nanoscale continuum model. Nano 6(5):419–429. doi:10.​1142/​s179329201100273​1 CrossRef
33.
Zurück zum Zitat Chen F, Qing Q, Xia J, Tao N (2010) Graphene field-effect transistors: electrochemical gating, interfacial capacitance, and biosensing applications. Chem Asian J 5(10):2144–2153. doi:10.1002/asia.201000252 CrossRef Chen F, Qing Q, Xia J, Tao N (2010) Graphene field-effect transistors: electrochemical gating, interfacial capacitance, and biosensing applications. Chem Asian J 5(10):2144–2153. doi:10.​1002/​asia.​201000252 CrossRef
35.
Zurück zum Zitat Ahmadi MT, Johari Z, Amin NA, Fallahpour AH, Ismail R (2010) Graphene nanoribbon conductance model in parabolic band structure. J Nanomater :4 Pages Ahmadi MT, Johari Z, Amin NA, Fallahpour AH, Ismail R (2010) Graphene nanoribbon conductance model in parabolic band structure. J Nanomater :4 Pages
36.
Zurück zum Zitat Datta S (2002) Electronic transport in mesoscopic systems. Cambridge University Press, Cambridge Datta S (2002) Electronic transport in mesoscopic systems. Cambridge University Press, Cambridge
37.
Zurück zum Zitat Ahmadi MT, Johari Z, Amin NA, Fallahpour AH, Ismail R (2010) Graphene nanoribbon conductance model in parabolic band structure. J Nanomater 2010:12CrossRef Ahmadi MT, Johari Z, Amin NA, Fallahpour AH, Ismail R (2010) Graphene nanoribbon conductance model in parabolic band structure. J Nanomater 2010:12CrossRef
38.
Zurück zum Zitat Peres NMR, Neto AHC, Guinea F (2006) Conductance quantization in mesoscopic graphene. Phys Rev B 73(19):195411–195419CrossRef Peres NMR, Neto AHC, Guinea F (2006) Conductance quantization in mesoscopic graphene. Phys Rev B 73(19):195411–195419CrossRef
39.
Zurück zum Zitat Gunlycke D, Areshkin D, White C (2007) Semiconducting graphene nanostrips with edge disorder. Appl Phys Lett 90:142104CrossRef Gunlycke D, Areshkin D, White C (2007) Semiconducting graphene nanostrips with edge disorder. Appl Phys Lett 90:142104CrossRef
40.
Zurück zum Zitat Wehling TO, Novoselov KS, Morozov SV, Vdovin EE, Katsnelson MI, Geim AK, Lichtenstein AI (2008) Molecular doping of graphene. Nano Lett 8 Wehling TO, Novoselov KS, Morozov SV, Vdovin EE, Katsnelson MI, Geim AK, Lichtenstein AI (2008) Molecular doping of graphene. Nano Lett 8
41.
Zurück zum Zitat Dong X, Shi Y, Huang W, Chen P, Li L-J (2010) Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Adv Mater 22(14):1649. doi:10.1002/adma.200903645 CrossRef Dong X, Shi Y, Huang W, Chen P, Li L-J (2010) Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Adv Mater 22(14):1649. doi:10.​1002/​adma.​200903645 CrossRef
42.
Zurück zum Zitat Passlack M (2008) III–V metal-oxide-semiconductor technology. 2008 IEEE 20th international conference on indium phosphide and related materials (Iprm):59–59 Passlack M (2008) III–V metal-oxide-semiconductor technology. 2008 IEEE 20th international conference on indium phosphide and related materials (Iprm):59–59
43.
Zurück zum Zitat Datta S (2005) Quantum transport: atom to transistor. Cambridge University Press, New YorkCrossRef Datta S (2005) Quantum transport: atom to transistor. Cambridge University Press, New YorkCrossRef
44.
Zurück zum Zitat Rahmani M, Ahmadi MT, HKF A, Kiani MJ, Akbari E, Ismail R (2013) Analytical modeling of monolayer graphene-based NO2 sensor. Sensor Lett 11:270–275CrossRef Rahmani M, Ahmadi MT, HKF A, Kiani MJ, Akbari E, Ismail R (2013) Analytical modeling of monolayer graphene-based NO2 sensor. Sensor Lett 11:270–275CrossRef
Metadaten
Titel
Current–voltage modeling of graphene-based DNA sensor
verfasst von
H. Karimi Feiz Abadi
R. Yusof
S. Maryam Eshrati
S. D. Naghib
M. Rahmani
M. Ghadiri
E. Akbari
M. T. Ahmadi
Publikationsdatum
01.01.2014
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 1/2014
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-013-1464-1

Weitere Artikel der Ausgabe 1/2014

Neural Computing and Applications 1/2014 Zur Ausgabe

Premium Partner