Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 11/2021

19.07.2021

Cycleability of Tetraethylene Glycol Dimethyl Ether-LiPF6/Polyvinylidene Fluoride Hybrid Electrolytes Reinforced with SiO2 Nanoparticles in Li-O2 Batteries

verfasst von: A. Akbulut Uludağ, A. S. Erses Yay

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 11/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

PVDF and SiO2 additives were added to TEGDME/LiPF6 to prevent the lithium oxide clogging in the cathode pores and to increase the stability of the Li anode. A nickel mesh coated with a graphene/α-MnO2 nanocomposite air-breathing structure was utilized as a cathode. In ECC-Air test cells, glass fiber is used as the separator, while a lithium disk is used as the anode. The test cells were tested using a current density of 0.1 mA/cm2 in a voltage range of 2.15-4.25 V. The findings showed that nanocomposite electrolyte structures with PVDF/SiO2 hybrid additions provide not only good discharging capacity but also the absolute stability of Li-air cells. In order to identify reaction products and reveal cathode surface morphology, scanning electron microscopy (SEM), x-ray diffraction (XRD), and Raman spectroscopy analyses were performed after electrochemical cycle tests.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Manowska and A. Nowrot, The Importance of Heat Emission Caused by Global Energy Production in Terms of Climate Impact, Energies, 2019, 12, p 3069. CrossRef A. Manowska and A. Nowrot, The Importance of Heat Emission Caused by Global Energy Production in Terms of Climate Impact, Energies, 2019, 12, p 3069. CrossRef
2.
Zurück zum Zitat V.S.H. Priya, R. Saravanathamizhan and N. Balasubramanian, Preparation of Biomass Based Carbon for Electrochemical Energy Storage Application, J. Electrochem. Sci. Technol., 2019, 10(2), p 159–169. V.S.H. Priya, R. Saravanathamizhan and N. Balasubramanian, Preparation of Biomass Based Carbon for Electrochemical Energy Storage Application, J. Electrochem. Sci. Technol., 2019, 10(2), p 159–169.
3.
Zurück zum Zitat M. Tokur, H. Algul, S. Ozcan, T. Cetinkaya, M. Uysal, M.O. Guler and H. Akbulut, Stability Effect of Polymer-Based Additives on EMITFSI-LiTFSI Electrolyte in Lithium-air Battery, Solid State Ionics, 2016, 286, p 51–56. CrossRef M. Tokur, H. Algul, S. Ozcan, T. Cetinkaya, M. Uysal, M.O. Guler and H. Akbulut, Stability Effect of Polymer-Based Additives on EMITFSI-LiTFSI Electrolyte in Lithium-air Battery, Solid State Ionics, 2016, 286, p 51–56. CrossRef
4.
Zurück zum Zitat P. Zhang, X. Liu, J. Xue and Z. Wang, Evaluating the Discharge Performance of Heat-Treated Al-Sb Alloys for Al-Air Batteries, J. Mater. Eng. Perform., 2019, 28, p 5476–5484. CrossRef P. Zhang, X. Liu, J. Xue and Z. Wang, Evaluating the Discharge Performance of Heat-Treated Al-Sb Alloys for Al-Air Batteries, J. Mater. Eng. Perform., 2019, 28, p 5476–5484. CrossRef
5.
Zurück zum Zitat J. Ma, G. Wang, Y. Li, W. Li and F. Ren, Influence of Sodium Silicate/Sodium Alginate Additives on Discharge Performance of Mg–Air Battery Based on AZ61 Alloy, J. Mater. Eng. Perform., 2017, 27, p 2247–2254. CrossRef J. Ma, G. Wang, Y. Li, W. Li and F. Ren, Influence of Sodium Silicate/Sodium Alginate Additives on Discharge Performance of Mg–Air Battery Based on AZ61 Alloy, J. Mater. Eng. Perform., 2017, 27, p 2247–2254. CrossRef
6.
Zurück zum Zitat S. Ozcan, M. Tokur, T. Cetinkaya, A. Guler, M. Uysal, M.O. Guler and H. Akbulut, Free Standing Flexible Graphene Oxide + α-MnO2 Composite Cathodes for Li–Air Batteries, Solid State Ionics, 2016, 286, p 34–39. CrossRef S. Ozcan, M. Tokur, T. Cetinkaya, A. Guler, M. Uysal, M.O. Guler and H. Akbulut, Free Standing Flexible Graphene Oxide + α-MnO2 Composite Cathodes for Li–Air Batteries, Solid State Ionics, 2016, 286, p 34–39. CrossRef
7.
Zurück zum Zitat P. Xu, C. Chen, J. Zhu, J. Xie, P. Zhao and M. Wang, RuO2-Particle-Decorated Graphene-Nanoribbon Cathodes for Long-Cycle Li–O2 Batteries, J. Electroanal. Chem., 2019, 842(1), p 98–106. CrossRef P. Xu, C. Chen, J. Zhu, J. Xie, P. Zhao and M. Wang, RuO2-Particle-Decorated Graphene-Nanoribbon Cathodes for Long-Cycle Li–O2 Batteries, J. Electroanal. Chem., 2019, 842(1), p 98–106. CrossRef
8.
Zurück zum Zitat J. Lindberg, B. Wickman, M. Behm, A. Cornell and G. Lindbergh, The Effect of O2 Concentration on the Reaction Mechanism in Li-O2 Batteries, J. Electroanal. Chem., 2017, 797(15), p 1–7. CrossRef J. Lindberg, B. Wickman, M. Behm, A. Cornell and G. Lindbergh, The Effect of O2 Concentration on the Reaction Mechanism in Li-O2 Batteries, J. Electroanal. Chem., 2017, 797(15), p 1–7. CrossRef
9.
Zurück zum Zitat M. Kar, O. Tutusaus, D.R. MacFarlane and R. Mohtadi, Novel and Versatile Room Temperature ionic Liquids for Energy Storage, Energy Environ. Sci., 2018, 12(2), p 566–571. CrossRef M. Kar, O. Tutusaus, D.R. MacFarlane and R. Mohtadi, Novel and Versatile Room Temperature ionic Liquids for Energy Storage, Energy Environ. Sci., 2018, 12(2), p 566–571. CrossRef
10.
Zurück zum Zitat S. Feng, M. Huang, J.R. Lamb, W. Zhang, R. Tatara, Y. Zhang, Y.G. Zhu, C.F. Perkinson, J.A. Johnson and Y.S. Horn, Molecular Design of Stable Sulfamide- and Sulfonamide-based Electrolytes for Aprotic li-O2 Batteries, Chem, 2019, 5(10), p 2630–2641. CrossRef S. Feng, M. Huang, J.R. Lamb, W. Zhang, R. Tatara, Y. Zhang, Y.G. Zhu, C.F. Perkinson, J.A. Johnson and Y.S. Horn, Molecular Design of Stable Sulfamide- and Sulfonamide-based Electrolytes for Aprotic li-O2 Batteries, Chem, 2019, 5(10), p 2630–2641. CrossRef
11.
Zurück zum Zitat A.A. Uludağ, M. Tokur, H. Algul, T. Cetinkaya, M. Uysal and H. Akbulut, High Stable Li-air Battery Cells by using PEO and PVDF Additives in the TEGDME/LiPF6 Electrolytes, Int. J. Hydrogen Energy, 2016, 41(16), p 6954–6964. CrossRef A.A. Uludağ, M. Tokur, H. Algul, T. Cetinkaya, M. Uysal and H. Akbulut, High Stable Li-air Battery Cells by using PEO and PVDF Additives in the TEGDME/LiPF6 Electrolytes, Int. J. Hydrogen Energy, 2016, 41(16), p 6954–6964. CrossRef
12.
Zurück zum Zitat X. Ma, X. Huang, J. Gao, S. Zhang, Z. Deng and J. Suo, Compliant Gel Polymer Electrolyte Based on Poly(Methyl Acrylate-co-Acrylonitrile)/Poly(Vinyl Alcohol) for Flexible Lithium-ion Batteries, Electrochim. Acta, 2014, 115, p 216–222. CrossRef X. Ma, X. Huang, J. Gao, S. Zhang, Z. Deng and J. Suo, Compliant Gel Polymer Electrolyte Based on Poly(Methyl Acrylate-co-Acrylonitrile)/Poly(Vinyl Alcohol) for Flexible Lithium-ion Batteries, Electrochim. Acta, 2014, 115, p 216–222. CrossRef
13.
Zurück zum Zitat P.F. Zhang, J.Y. Zhang, T. Sheng, Y.Q. Lu, Z.W. Yin, Y.Y. Li, X.X. Peng, Y. Zhou, J.T. Li, Y.J. Wu, J.X. Lin, X.M. Qu, L. Huang and S.G. Sun, Synergetic Effect of Ru and NiO in the Electrocatalytic Decomposition of Li2CO3 to Enhance the Performance of a Li-CO2/O2 Battery, ACS Catal., 2020, 10(2), p 1640–1651. CrossRef P.F. Zhang, J.Y. Zhang, T. Sheng, Y.Q. Lu, Z.W. Yin, Y.Y. Li, X.X. Peng, Y. Zhou, J.T. Li, Y.J. Wu, J.X. Lin, X.M. Qu, L. Huang and S.G. Sun, Synergetic Effect of Ru and NiO in the Electrocatalytic Decomposition of Li2CO3 to Enhance the Performance of a Li-CO2/O2 Battery, ACS Catal., 2020, 10(2), p 1640–1651. CrossRef
14.
Zurück zum Zitat A.A. Uludag, H. Akbulut, M. Tokur, H. Algül, T. Çetinkaya and M. Uysal, Stability Effect of Some Organic and Inorganic Additions in the EMITFSI–LiTFSI Nanocomposite Electrolytes for Lithium-air Batteries, Microsyst Technol., 2016, 22, p 953–963. CrossRef A.A. Uludag, H. Akbulut, M. Tokur, H. Algül, T. Çetinkaya and M. Uysal, Stability Effect of Some Organic and Inorganic Additions in the EMITFSI–LiTFSI Nanocomposite Electrolytes for Lithium-air Batteries, Microsyst Technol., 2016, 22, p 953–963. CrossRef
15.
Zurück zum Zitat B. Li, Y. Liu, X. Zhang, P. He and H. Zhou, Hybrid Polymer Electrolyte for Li–O2 Batteries, Green Energy Environ., 2019, 4(1), p 3–19. CrossRef B. Li, Y. Liu, X. Zhang, P. He and H. Zhou, Hybrid Polymer Electrolyte for Li–O2 Batteries, Green Energy Environ., 2019, 4(1), p 3–19. CrossRef
16.
Zurück zum Zitat Y. Hatakeyama, A. Suga, I. Shimabukuro, S. Sugimoto and S. Shiraishi, Effect of the Thickness of Single-Walled Carbon Nanotube Electrodes on the Discharge Properties of Li–air Batteries, J. Electroanal. Chem., 2020, 878, p 114603. CrossRef Y. Hatakeyama, A. Suga, I. Shimabukuro, S. Sugimoto and S. Shiraishi, Effect of the Thickness of Single-Walled Carbon Nanotube Electrodes on the Discharge Properties of Li–air Batteries, J. Electroanal. Chem., 2020, 878, p 114603. CrossRef
17.
Zurück zum Zitat Q. Wang, D. Zheng, M.E. McKinnon, X.Q. Yang and D. Qu, Kinetic Investigation of Catalytic Disproportionation of Superoxide Ions in the non-Aqueous Electrolyte used in Li–air Batteries, J. Power Sour., 2015, 274, p 1005–1008. CrossRef Q. Wang, D. Zheng, M.E. McKinnon, X.Q. Yang and D. Qu, Kinetic Investigation of Catalytic Disproportionation of Superoxide Ions in the non-Aqueous Electrolyte used in Li–air Batteries, J. Power Sour., 2015, 274, p 1005–1008. CrossRef
18.
Zurück zum Zitat K.U. Schwenke, S. Meini, X.H. Wu, H.A. Gasteiger and M. Piana, Stability of Superoxide Radicals in Glymesolvents for Non-Aqueous Li–O2 Battery Electrolytes, Phys. Chem. Chem. Phys., 2013, 15, p 11830. CrossRef K.U. Schwenke, S. Meini, X.H. Wu, H.A. Gasteiger and M. Piana, Stability of Superoxide Radicals in Glymesolvents for Non-Aqueous Li–O2 Battery Electrolytes, Phys. Chem. Chem. Phys., 2013, 15, p 11830. CrossRef
19.
Zurück zum Zitat J.P. Vivek, T. Homewood and N.G. Araez, An Unsuitable Li–O2 Battery Electrolyte Made Suitable with the use of Redox Mediators, J. Phys. Chem. C, 2019, 123, p 20241. CrossRef J.P. Vivek, T. Homewood and N.G. Araez, An Unsuitable Li–O2 Battery Electrolyte Made Suitable with the use of Redox Mediators, J. Phys. Chem. C, 2019, 123, p 20241. CrossRef
20.
Zurück zum Zitat M. Song, H. Tan, X. Li, A.I.Y. Tok, P. Liang, D. Chao and H.J. Fan, Atomic-Layer-Deposited Amorphous MoS2 for Durable and Flexible Li–O2 Batteries, Small Methods, 2019, 4(6), p 1900274. CrossRef M. Song, H. Tan, X. Li, A.I.Y. Tok, P. Liang, D. Chao and H.J. Fan, Atomic-Layer-Deposited Amorphous MoS2 for Durable and Flexible Li–O2 Batteries, Small Methods, 2019, 4(6), p 1900274. CrossRef
21.
Zurück zum Zitat M. Augustin, P.E. Vullum, F.V. Bruer and A.M. Svensson, Inside the Electrode: Looking at Cycling Products in Li/O2 Batteries, J. Power Sources, 2019, 414, p 130–140. CrossRef M. Augustin, P.E. Vullum, F.V. Bruer and A.M. Svensson, Inside the Electrode: Looking at Cycling Products in Li/O2 Batteries, J. Power Sources, 2019, 414, p 130–140. CrossRef
22.
Zurück zum Zitat X. Mu, P. He and H. Zhou, Advances and Challenges for Aprotic Lithium-Oxygen Batteries using Redox Mediators, Batter. Supercaps, 2019, 2, p 803–819. CrossRef X. Mu, P. He and H. Zhou, Advances and Challenges for Aprotic Lithium-Oxygen Batteries using Redox Mediators, Batter. Supercaps, 2019, 2, p 803–819. CrossRef
23.
Zurück zum Zitat X. Zhang, Z. Xie and Z. Zhou, Recent Progress in Protecting Lithium Anodes for Li-O2 Batteries, ChemElectroChem, 2019, 6(7), p 1969–1977. CrossRef X. Zhang, Z. Xie and Z. Zhou, Recent Progress in Protecting Lithium Anodes for Li-O2 Batteries, ChemElectroChem, 2019, 6(7), p 1969–1977. CrossRef
24.
Zurück zum Zitat S. Hyun, B. Son, H. Kim, J. Sanetuntikul and S. Shanmugam, The Synergistic Effect of Nickel Cobalt Sulfide Nanoflakes and Sulfur-Doped Porous Carboneous Nanostructure as Bifunctional Electrocatalyst for Enhanced Rechargeable Li-O2 Batteries, Appl. Catal. B: Environ., 2020, 263, p 118283. CrossRef S. Hyun, B. Son, H. Kim, J. Sanetuntikul and S. Shanmugam, The Synergistic Effect of Nickel Cobalt Sulfide Nanoflakes and Sulfur-Doped Porous Carboneous Nanostructure as Bifunctional Electrocatalyst for Enhanced Rechargeable Li-O2 Batteries, Appl. Catal. B: Environ., 2020, 263, p 118283. CrossRef
25.
Zurück zum Zitat E. Coudou, J. Jacquemin, H. Galiano, C. Hardacre and M. Anouti, A Comparative Study on the Thermophysical Properties for Two Bis[(Trifluoromethyl)Sulfonyl]Imide-Based Ionic Liquids Containing the Trimethyl-Sulfonium or the Trimethyl-Ammonium Cation in Molecular Solvents, J. Phys. Chem. B, 2013, 117(5), p 1389–1402. CrossRef E. Coudou, J. Jacquemin, H. Galiano, C. Hardacre and M. Anouti, A Comparative Study on the Thermophysical Properties for Two Bis[(Trifluoromethyl)Sulfonyl]Imide-Based Ionic Liquids Containing the Trimethyl-Sulfonium or the Trimethyl-Ammonium Cation in Molecular Solvents, J. Phys. Chem. B, 2013, 117(5), p 1389–1402. CrossRef
26.
Zurück zum Zitat X. Shen, S. Zhang, Y. Wu and Y. Chen, Promoting Li–O2 Batteries with redox mediators, ChemElectroChem, 2019, 12(1), p 104–114. X. Shen, S. Zhang, Y. Wu and Y. Chen, Promoting Li–O2 Batteries with redox mediators, ChemElectroChem, 2019, 12(1), p 104–114.
27.
Zurück zum Zitat H. Guo, G. Hou, L. Dai, Y. Yao, C. Wei, Z. Liang, P. Si and L. Ci, Stable Lithium Anode of Li–O2 Batteries in a Wet Electrolyte Enabled by a High-Current Treatment, J. Phys. Chem. Lett., 2020, 11(1), p 172–178. CrossRef H. Guo, G. Hou, L. Dai, Y. Yao, C. Wei, Z. Liang, P. Si and L. Ci, Stable Lithium Anode of Li–O2 Batteries in a Wet Electrolyte Enabled by a High-Current Treatment, J. Phys. Chem. Lett., 2020, 11(1), p 172–178. CrossRef
28.
Zurück zum Zitat J.K. Kim, J. Scheers, T.J. Park and Y. Kim, Superior Ion-Conducting Hybrid Solid Electrolyte for All-Solid-State Batteries, Chemsuschem, 2015, 8(4), p 636–641. CrossRef J.K. Kim, J. Scheers, T.J. Park and Y. Kim, Superior Ion-Conducting Hybrid Solid Electrolyte for All-Solid-State Batteries, Chemsuschem, 2015, 8(4), p 636–641. CrossRef
29.
Zurück zum Zitat J. Cao, L. Wang, Y.M. Shang, M. Fang, L.F. Deng, J. Gao, J. Li, J. Chen and X.M. He, Dispersibility of Nano-TiO2 on Performance of Composite Polymer Electrolytes for Li-ion Batteries, Electrochim. Acta, 2013, 111, p 674–679. CrossRef J. Cao, L. Wang, Y.M. Shang, M. Fang, L.F. Deng, J. Gao, J. Li, J. Chen and X.M. He, Dispersibility of Nano-TiO2 on Performance of Composite Polymer Electrolytes for Li-ion Batteries, Electrochim. Acta, 2013, 111, p 674–679. CrossRef
30.
Zurück zum Zitat V. Roev, S. Bok Ma, D.J. Lee and D. Im, Lyophobized Ordered Mesoporous Silica Additives for Li-O2 Battery Cathode, J. Electrochem. Sci. Technol., 2014, 5(2), p 58–64. CrossRef V. Roev, S. Bok Ma, D.J. Lee and D. Im, Lyophobized Ordered Mesoporous Silica Additives for Li-O2 Battery Cathode, J. Electrochem. Sci. Technol., 2014, 5(2), p 58–64. CrossRef
31.
Zurück zum Zitat S.H. Kim, K.H.I. Choi, S.J. Cho, J.S. Park, K.Y. Cho, C.K. Lee, S.B. Lee, J.K. Shim and S.Y. Lee, A Shape-Deformable and Thermally Stable Solid-State Electrolyte Based on a Plastic Crystal Composite Polymer Electrolyte for Flexible/Safer Lithium-Ion Batteries, J. Mater. Chem. A, 2014, 2, p 10854. CrossRef S.H. Kim, K.H.I. Choi, S.J. Cho, J.S. Park, K.Y. Cho, C.K. Lee, S.B. Lee, J.K. Shim and S.Y. Lee, A Shape-Deformable and Thermally Stable Solid-State Electrolyte Based on a Plastic Crystal Composite Polymer Electrolyte for Flexible/Safer Lithium-Ion Batteries, J. Mater. Chem. A, 2014, 2, p 10854. CrossRef
32.
Zurück zum Zitat X.L. Hu, G.M. Hou, M.Q. Zhang, M.Z. Rong, W.H. Ruan and E.P. Giannelis, A New Nanocomposite Polymer Electrolyte Based on Poly(Vinyl Alcohol) Incorporating Hypergrafted Nano-Silica, J. Mater. Chem., 2012, 22, p 18961. CrossRef X.L. Hu, G.M. Hou, M.Q. Zhang, M.Z. Rong, W.H. Ruan and E.P. Giannelis, A New Nanocomposite Polymer Electrolyte Based on Poly(Vinyl Alcohol) Incorporating Hypergrafted Nano-Silica, J. Mater. Chem., 2012, 22, p 18961. CrossRef
33.
Zurück zum Zitat Q. Wang, W.L. Song, L.Z. Fan and Q. Shi, Effect of Alumina on Triethylene Glycol Diacetate-2-Propenoic Acid Butyl Ester Composite Polymer Electrolytes for Flexible Lithium Ion Batteries, J. Power Sources, 2015, 279, p 405–412. CrossRef Q. Wang, W.L. Song, L.Z. Fan and Q. Shi, Effect of Alumina on Triethylene Glycol Diacetate-2-Propenoic Acid Butyl Ester Composite Polymer Electrolytes for Flexible Lithium Ion Batteries, J. Power Sources, 2015, 279, p 405–412. CrossRef
34.
Zurück zum Zitat M. Waqas, S. Ali, D. Chen, B. Boateng, Y. Han, M. Zhang, J. Han, J.B. Goodenough and W. He, A Robust Bi-Layer Separator with Lewis Acid-Base Interaction for High-Rate Capacity Lithium-Ion Batteries, Compos. Part B, 2019, 177, p 107448. CrossRef M. Waqas, S. Ali, D. Chen, B. Boateng, Y. Han, M. Zhang, J. Han, J.B. Goodenough and W. He, A Robust Bi-Layer Separator with Lewis Acid-Base Interaction for High-Rate Capacity Lithium-Ion Batteries, Compos. Part B, 2019, 177, p 107448. CrossRef
35.
Zurück zum Zitat W. Xiao, X. Li, Z. Wang, H. Guo, J. Wang, S. Huang and L. Gan, Physicochemical Properties of a Novel Composite Polymer Electrolyte Doped with Vinyltrimethoxylsilane-Modified Nano-La2O3, J. Rare Earths, 2012, 30(10), p 1034–1040. CrossRef W. Xiao, X. Li, Z. Wang, H. Guo, J. Wang, S. Huang and L. Gan, Physicochemical Properties of a Novel Composite Polymer Electrolyte Doped with Vinyltrimethoxylsilane-Modified Nano-La2O3, J. Rare Earths, 2012, 30(10), p 1034–1040. CrossRef
36.
Zurück zum Zitat L. Ma, T. Yu, E. Tzoganakis, K. Amine, T. Wu, Z. Chen and J. Lu, Fundamental Understanding and Material Challenges in Rechargeable Nonaqueous Li–O2 Batteries: Recent Progress and Perspective, Adv. Energy Mater., 2018, 8(22), p 1800348. CrossRef L. Ma, T. Yu, E. Tzoganakis, K. Amine, T. Wu, Z. Chen and J. Lu, Fundamental Understanding and Material Challenges in Rechargeable Nonaqueous Li–O2 Batteries: Recent Progress and Perspective, Adv. Energy Mater., 2018, 8(22), p 1800348. CrossRef
37.
Zurück zum Zitat T. Cetinkaya, U. Tocoglu, M. Uysal, M.O. Guler and H. Akbulut, A Parametric Study on the Rapid Synthesis of One Dimensional (1D) α-MnO2 Nanowires, Microelectron. Eng., 2014, 126, p 54–59. CrossRef T. Cetinkaya, U. Tocoglu, M. Uysal, M.O. Guler and H. Akbulut, A Parametric Study on the Rapid Synthesis of One Dimensional (1D) α-MnO2 Nanowires, Microelectron. Eng., 2014, 126, p 54–59. CrossRef
38.
Zurück zum Zitat J.R. Harding, C.V. Amanchukwu, P.T. Hammond and S.H. Yang, Instability of Poly(Ethylene Oxide) upon Oxidation in Lithium-Air Batteries, J. Phys. Chem. C, 2015, 119(13), p 6947–6955. CrossRef J.R. Harding, C.V. Amanchukwu, P.T. Hammond and S.H. Yang, Instability of Poly(Ethylene Oxide) upon Oxidation in Lithium-Air Batteries, J. Phys. Chem. C, 2015, 119(13), p 6947–6955. CrossRef
39.
Zurück zum Zitat E.M. Benbow, S.P. Kelly, L. Zhao, J.W. Reutenauer and S.L. Suib, Oxygen Reduction Properties of Bifunctional α-Manganese Oxide Electrocatalysts in Aqueous and Organic Electrolytes, J. Phys. Chem. C, 2011, 115(44), p 22009–22017. CrossRef E.M. Benbow, S.P. Kelly, L. Zhao, J.W. Reutenauer and S.L. Suib, Oxygen Reduction Properties of Bifunctional α-Manganese Oxide Electrocatalysts in Aqueous and Organic Electrolytes, J. Phys. Chem. C, 2011, 115(44), p 22009–22017. CrossRef
40.
Zurück zum Zitat D.Y. Wang and J.R. Dahn, A High Precision Study of Electrolyte Additive Combinations Containing Vinylene Carbonate, Ethylene Sulfate, Tris(Trimethylsilyl) Phosphate and Tris(Trimethylsilyl) Thosphite in Li[Ni1/3Mn1/3Co1/3]O2/Graphite Pouch Cells, J. Electrochem. Soc., 2014, 161, p A1890–A1897. CrossRef D.Y. Wang and J.R. Dahn, A High Precision Study of Electrolyte Additive Combinations Containing Vinylene Carbonate, Ethylene Sulfate, Tris(Trimethylsilyl) Phosphate and Tris(Trimethylsilyl) Thosphite in Li[Ni1/3Mn1/3Co1/3]O2/Graphite Pouch Cells, J. Electrochem. Soc., 2014, 161, p A1890–A1897. CrossRef
41.
Zurück zum Zitat M. Marinaro, S.K.E. Moorthy, J. Bernhard, L. Jorises, M.W. Mehrens and U. Kaiser, Electrochemical and Electron Microscopic Characterization of Super-P Based Cathodes for Li-O2 Batteries, J. Nanotechnol., 2013, 4, p 665–670. M. Marinaro, S.K.E. Moorthy, J. Bernhard, L. Jorises, M.W. Mehrens and U. Kaiser, Electrochemical and Electron Microscopic Characterization of Super-P Based Cathodes for Li-O2 Batteries, J. Nanotechnol., 2013, 4, p 665–670.
42.
Zurück zum Zitat S. Ferrari, E. Quartarone, C. Tomasi, M. Bini, P. Galinetto, M. Fagnoni and P. Mustarelli, Investigation of Ether-Based Ionic Liquid Electrolytes for Lithium-O2 Batteries, J. Electrochem. Soc., 2015, 162(2), p A3001–A3006. CrossRef S. Ferrari, E. Quartarone, C. Tomasi, M. Bini, P. Galinetto, M. Fagnoni and P. Mustarelli, Investigation of Ether-Based Ionic Liquid Electrolytes for Lithium-O2 Batteries, J. Electrochem. Soc., 2015, 162(2), p A3001–A3006. CrossRef
43.
Zurück zum Zitat S. Higashi, Y. Kato, K. Takechi, H. Nakamoto, F. Mizuno, H. Nishikoori, H. Iba and T. Asaoka, Evaluation and Analysis of Li-air Battery using Ether-Functionalized Ionic Liquid, J. Power Sour., 2013, 240, p 14–17. CrossRef S. Higashi, Y. Kato, K. Takechi, H. Nakamoto, F. Mizuno, H. Nishikoori, H. Iba and T. Asaoka, Evaluation and Analysis of Li-air Battery using Ether-Functionalized Ionic Liquid, J. Power Sour., 2013, 240, p 14–17. CrossRef
44.
Zurück zum Zitat D. Capsoni, M. Bini, S. Ferrari, E. Quartarone and P. Mustarelli, Recent Advances in the Development of Li–air Batteries, J. Power Sour., 2012, 220, p 253–263. CrossRef D. Capsoni, M. Bini, S. Ferrari, E. Quartarone and P. Mustarelli, Recent Advances in the Development of Li–air Batteries, J. Power Sour., 2012, 220, p 253–263. CrossRef
45.
Zurück zum Zitat M.M.O. Thotiyl, S.A. Freunberger, Z. Peng and P.G. Bruce, The Carbon Electrode in Nonaqueous Li–O2 Cells, J. Am. Chem. Soc., 2013, 135(1), p 494–500. CrossRef M.M.O. Thotiyl, S.A. Freunberger, Z. Peng and P.G. Bruce, The Carbon Electrode in Nonaqueous Li–O2 Cells, J. Am. Chem. Soc., 2013, 135(1), p 494–500. CrossRef
46.
Zurück zum Zitat J. Lu, L. Li, J.B. Park, Y.K. Sun, F. Wu and K. Amine, Aprotic and Aqueous Li–O2 Batteries, Chem. Rev., 2014, 114(11), p 5611–5640. CrossRef J. Lu, L. Li, J.B. Park, Y.K. Sun, F. Wu and K. Amine, Aprotic and Aqueous Li–O2 Batteries, Chem. Rev., 2014, 114(11), p 5611–5640. CrossRef
47.
Zurück zum Zitat J. Yang, D. Zhai, H.H. Wang, K.C. Lau, J.A. Schlueter, P. Du, D.J. Myers, Y.K. Sun, L.A. Curtiss and K. Amine, Evidence for Lithium Superoxide-Like Species in the Discharge Product of a Li–O2 Battery, Phys. Chem. Chem. Phys., 2013, 15(11), p 3764–3671. CrossRef J. Yang, D. Zhai, H.H. Wang, K.C. Lau, J.A. Schlueter, P. Du, D.J. Myers, Y.K. Sun, L.A. Curtiss and K. Amine, Evidence for Lithium Superoxide-Like Species in the Discharge Product of a Li–O2 Battery, Phys. Chem. Chem. Phys., 2013, 15(11), p 3764–3671. CrossRef
49.
Zurück zum Zitat S.A. Manuel and K.S. Nahm, Review on Composite Polymer Electrolytes for Lithium Batteries, Polymer, 2006, 47, p 5952–5964. CrossRef S.A. Manuel and K.S. Nahm, Review on Composite Polymer Electrolytes for Lithium Batteries, Polymer, 2006, 47, p 5952–5964. CrossRef
50.
Zurück zum Zitat K. Wieczorek, J.R. Steven and Z. Florjanczyk, Composite Polyether Based Solid Electrolytes The Lewis Acid-Base Approach, Solid State Ionics, 1996, 85(1–4), p 67–72. CrossRef K. Wieczorek, J.R. Steven and Z. Florjanczyk, Composite Polyether Based Solid Electrolytes The Lewis Acid-Base Approach, Solid State Ionics, 1996, 85(1–4), p 67–72. CrossRef
51.
Zurück zum Zitat M. Ravi, K.K. Kumar, V.M. Madhu and V.V.R.N. Rao, Effect of Nano TiO2 Filler on the Structural and Electrical Properties of PVP Based Polymer Electrolyte Films, Polym. Testing, 2014, 33, p 152–160. CrossRef M. Ravi, K.K. Kumar, V.M. Madhu and V.V.R.N. Rao, Effect of Nano TiO2 Filler on the Structural and Electrical Properties of PVP Based Polymer Electrolyte Films, Polym. Testing, 2014, 33, p 152–160. CrossRef
Metadaten
Titel
Cycleability of Tetraethylene Glycol Dimethyl Ether-LiPF6/Polyvinylidene Fluoride Hybrid Electrolytes Reinforced with SiO2 Nanoparticles in Li-O2 Batteries
verfasst von
A. Akbulut Uludağ
A. S. Erses Yay
Publikationsdatum
19.07.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 11/2021
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06026-2

Weitere Artikel der Ausgabe 11/2021

Journal of Materials Engineering and Performance 11/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.