Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 12/2017

02.11.2017

Cyclic Elastoplastic Performance of Aluminum 7075-T6 Under Strain- and Stress-Controlled Loading

verfasst von: Dylan Agius, Chris Wallbrink, Kyriakos I. Kourousis

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 12/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Elastoplastic investigations of aerospace aluminum are important in the development of an understanding of the possible cyclic transient effects and their contribution to the material performance under cyclic loading. Cyclic plasticity can occur in an aerospace aluminum component or structure depending on the loading conditions and the presence of external and internal discontinuities. Therefore, it is vital that the cyclic transient effects of aerospace aluminum are recognized and understood. This study investigates experimentally the cyclic elastoplastic performance of aluminum 7075-T6 loaded in symmetric strain control, and asymmetric stress and strain control. A combination of cyclic hardening and softening was noticed from high strain amplitude symmetric strain-controlled tests and at low stress amplitude asymmetric stress-controlled tests. From asymmetric strain control results, the extent of mean stress relaxation depended on the size of the strain amplitude. Additionally, saturation of the ratcheting strain (plastic shakedown) was also found to occur during asymmetric stress control tests. The experimental results were further analyzed using published microstructure research from the past two decades to provide added explanation of the micro-mechanism contribution to the cyclic transient behavior.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat X. Chen, D.H. Yu, and K.S. Kim, Experimental Study on Ratcheting Behavior of Eutectic Tin-Lead Solder Under Multiaxial Loading, Mater. Sci. Eng. A, 2005, 406, p 86–94CrossRef X. Chen, D.H. Yu, and K.S. Kim, Experimental Study on Ratcheting Behavior of Eutectic Tin-Lead Solder Under Multiaxial Loading, Mater. Sci. Eng. A, 2005, 406, p 86–94CrossRef
2.
Zurück zum Zitat S. Bari and T. Hassan, Anatomy of Coupled Constitutive Models for Ratcheting Simulation, Int. J. Plast., 2000, 16, p 381–409CrossRef S. Bari and T. Hassan, Anatomy of Coupled Constitutive Models for Ratcheting Simulation, Int. J. Plast., 2000, 16, p 381–409CrossRef
3.
Zurück zum Zitat X.J. Yang, C.L. Chow, and K.J. Lau, Time-Dependent Cyclic Deformation and Failure of 63Sn/37Pb Solder Alloy, Int. J. Fatigue, 2003, 25, p 533–546CrossRef X.J. Yang, C.L. Chow, and K.J. Lau, Time-Dependent Cyclic Deformation and Failure of 63Sn/37Pb Solder Alloy, Int. J. Fatigue, 2003, 25, p 533–546CrossRef
4.
Zurück zum Zitat G. Kang, Q. Gao, L. Cai, and Y. Sun, Experimental Study on Uniaxial and Nonproportionally Multiaxial Ratcheting of SS304 Stainless Steel at Room and High Temperatures, Nucl. Eng. Des., 2002, 216, p 13–26CrossRef G. Kang, Q. Gao, L. Cai, and Y. Sun, Experimental Study on Uniaxial and Nonproportionally Multiaxial Ratcheting of SS304 Stainless Steel at Room and High Temperatures, Nucl. Eng. Des., 2002, 216, p 13–26CrossRef
5.
Zurück zum Zitat K. Dutta and K.K. Ray, Ratcheting Phenomenon and Post-Ratcheting Tensile Behaviour of an Aluminum Alloy, Mater. Sci. Eng. A, 2012, 540, p 30–37CrossRef K. Dutta and K.K. Ray, Ratcheting Phenomenon and Post-Ratcheting Tensile Behaviour of an Aluminum Alloy, Mater. Sci. Eng. A, 2012, 540, p 30–37CrossRef
6.
Zurück zum Zitat X. Yuan, W. Yu, S. Fu, D. Yu, and X. Chen, Effect of Mean Stress and Ratcheting Strain on the Low Cycle Fatigue Behavior of a Wrought 316LN Stainless Steel, Mater. Sci. Eng. A, 2016, 677, p 193–202CrossRef X. Yuan, W. Yu, S. Fu, D. Yu, and X. Chen, Effect of Mean Stress and Ratcheting Strain on the Low Cycle Fatigue Behavior of a Wrought 316LN Stainless Steel, Mater. Sci. Eng. A, 2016, 677, p 193–202CrossRef
7.
Zurück zum Zitat S. Kwofie, Cyclic Creep Behaviour Described in Terms of a One-Parameter Kinetic Model, Mater. Sci. Eng. A, 2005, 392, p 23–30CrossRef S. Kwofie, Cyclic Creep Behaviour Described in Terms of a One-Parameter Kinetic Model, Mater. Sci. Eng. A, 2005, 392, p 23–30CrossRef
8.
Zurück zum Zitat H.J. Christ, C.K. Wamukwamba, and H. Mughrabi, The Effect of Mean Stress on the High-Temperature Fatigue Behaviour of SAE 1045 Steel, Mater. Sci. Eng. A, 1997, 234–236, p 382–385CrossRef H.J. Christ, C.K. Wamukwamba, and H. Mughrabi, The Effect of Mean Stress on the High-Temperature Fatigue Behaviour of SAE 1045 Steel, Mater. Sci. Eng. A, 1997, 234–236, p 382–385CrossRef
9.
Zurück zum Zitat Z. Xia, D. Kujawski, and F. Ellyin, Effect of Mean Stress and Ratcheting Strain on Fatigue Life of Steel, Int. J. Fatigue, 1996, 18, p 335–341CrossRef Z. Xia, D. Kujawski, and F. Ellyin, Effect of Mean Stress and Ratcheting Strain on Fatigue Life of Steel, Int. J. Fatigue, 1996, 18, p 335–341CrossRef
10.
Zurück zum Zitat J. Peng, C.-Y. Zhou, Q. Dai, X.-H. He, and X. Yu, Fatigue and Ratcheting Behaviors of CP-Ti at Room Temperature, Mater. Sci. Eng. A, 2014, 590, p 329–337CrossRef J. Peng, C.-Y. Zhou, Q. Dai, X.-H. He, and X. Yu, Fatigue and Ratcheting Behaviors of CP-Ti at Room Temperature, Mater. Sci. Eng. A, 2014, 590, p 329–337CrossRef
11.
Zurück zum Zitat S. Fu, H. Gao, G. Chen, L. Gao, and X. Chen, Deterioration of Mechanical Properties for Pre-Corroded AZ31 Sheet in Simulated Physiological Environment, Mater. Sci. Eng. A, 2014, 593, p 153–162CrossRef S. Fu, H. Gao, G. Chen, L. Gao, and X. Chen, Deterioration of Mechanical Properties for Pre-Corroded AZ31 Sheet in Simulated Physiological Environment, Mater. Sci. Eng. A, 2014, 593, p 153–162CrossRef
12.
Zurück zum Zitat R.S. Rajpurohit, G.S. Rao, K. Chattopadhyay, N.C. Santhi Srinivas, and V. Singh, Ratcheting Fatigue Behavior of Zircaloy-2 at Room Temperature, J. Nucl. Mater., 2016, 477, p 67–76CrossRef R.S. Rajpurohit, G.S. Rao, K. Chattopadhyay, N.C. Santhi Srinivas, and V. Singh, Ratcheting Fatigue Behavior of Zircaloy-2 at Room Temperature, J. Nucl. Mater., 2016, 477, p 67–76CrossRef
13.
Zurück zum Zitat S.K. Paul, N. Stanford, A. Taylor, and T. Hilditch, The Effect of Low Cycle Fatigue, Ratcheting and Mean Stress Relaxation on Stress-Strain Response and Microstructural Development in a Dual Phase Steel, Int. J. Fatigue, 2015, 80, p 341–348CrossRef S.K. Paul, N. Stanford, A. Taylor, and T. Hilditch, The Effect of Low Cycle Fatigue, Ratcheting and Mean Stress Relaxation on Stress-Strain Response and Microstructural Development in a Dual Phase Steel, Int. J. Fatigue, 2015, 80, p 341–348CrossRef
14.
Zurück zum Zitat G. Kang and Y. Liu, Uniaxial Ratchetting and Low-Cycle Fatigue Failure of the Steel with Cyclic Stabilizing or Softening Feature, Mater. Sci. Eng. A, 2008, 472, p 258–268CrossRef G. Kang and Y. Liu, Uniaxial Ratchetting and Low-Cycle Fatigue Failure of the Steel with Cyclic Stabilizing or Softening Feature, Mater. Sci. Eng. A, 2008, 472, p 258–268CrossRef
15.
Zurück zum Zitat X. Yang, Low Cycle Fatigue and Cyclic Stress Ratcheting Failure Behavior of Carbon Steel 45 Under Uniaxial Cyclic Loading, Int. J. Fatigue, 2005, 27, p 1124–1132CrossRef X. Yang, Low Cycle Fatigue and Cyclic Stress Ratcheting Failure Behavior of Carbon Steel 45 Under Uniaxial Cyclic Loading, Int. J. Fatigue, 2005, 27, p 1124–1132CrossRef
16.
Zurück zum Zitat A. Arcari, R. De Vita, and N.E. Dowling, Mean Stress Relaxation During Cyclic Straining of High Strength Aluminum Alloys, Int. J. Fatigue, 2009, 31, p 1742–1750CrossRef A. Arcari, R. De Vita, and N.E. Dowling, Mean Stress Relaxation During Cyclic Straining of High Strength Aluminum Alloys, Int. J. Fatigue, 2009, 31, p 1742–1750CrossRef
17.
Zurück zum Zitat H. Hao, D. Ye, Y. Chen, M. Feng, and J. Liu, A Study on the Mean Stress Relaxation Behavior of 2124-T851 Aluminum Alloy During Low-Cycle Fatigue at Different Strain Ratios, Mater. Des., 2015, 67, p 272–279CrossRef H. Hao, D. Ye, Y. Chen, M. Feng, and J. Liu, A Study on the Mean Stress Relaxation Behavior of 2124-T851 Aluminum Alloy During Low-Cycle Fatigue at Different Strain Ratios, Mater. Des., 2015, 67, p 272–279CrossRef
18.
Zurück zum Zitat W. Hu, C.H. Wang, S. Barter, Analysis of Cyclic Mean Stress Relaxation and Strain Ratchetting Behaviour of Aluminium 7050, 1999 W. Hu, C.H. Wang, S. Barter, Analysis of Cyclic Mean Stress Relaxation and Strain Ratchetting Behaviour of Aluminium 7050, 1999
19.
Zurück zum Zitat C.K. Lin and C.C. Chu, Mean Stress Effects on Low-Cycle Fatigue for a Precipitation-Hardening Martensitic Stainless Steel in Different Tempers, Fatigue Fract. Eng. Mater. Struct., 2000, 23, p 545–553CrossRef C.K. Lin and C.C. Chu, Mean Stress Effects on Low-Cycle Fatigue for a Precipitation-Hardening Martensitic Stainless Steel in Different Tempers, Fatigue Fract. Eng. Mater. Struct., 2000, 23, p 545–553CrossRef
20.
Zurück zum Zitat D. Fang and A. Berkovits, Mean Stress Models for Low-Cycle Fatigue of a Nickel-Base Superalloy, Int. J. Fatigue, 1994, 16, p 429–437CrossRef D. Fang and A. Berkovits, Mean Stress Models for Low-Cycle Fatigue of a Nickel-Base Superalloy, Int. J. Fatigue, 1994, 16, p 429–437CrossRef
21.
Zurück zum Zitat F. Ellyin, Effect of Tensile-Mean-Strain on Plastic Strain Energy and Cyclic Response, J. Eng. Mater. Technol. Trans. ASME, 1985, 107, p 119–125CrossRef F. Ellyin, Effect of Tensile-Mean-Strain on Plastic Strain Energy and Cyclic Response, J. Eng. Mater. Technol. Trans. ASME, 1985, 107, p 119–125CrossRef
22.
Zurück zum Zitat S.K. Koh and R.I. Stephens, Mean Stress Effects on Low Cycle Fatigue for a High Strength Steel, Fatigue Fract. Eng. Mater. Struct., 1991, 14, p 413–428CrossRef S.K. Koh and R.I. Stephens, Mean Stress Effects on Low Cycle Fatigue for a High Strength Steel, Fatigue Fract. Eng. Mater. Struct., 1991, 14, p 413–428CrossRef
23.
Zurück zum Zitat T. Wehner and A. Fatemi, Effects of Mean Stress on Fatigue Behaviour of a Hardened Carbon Steel, Int. J. Fatigue, 1991, 13, p 241–248CrossRef T. Wehner and A. Fatemi, Effects of Mean Stress on Fatigue Behaviour of a Hardened Carbon Steel, Int. J. Fatigue, 1991, 13, p 241–248CrossRef
24.
Zurück zum Zitat W.Z. Zhuang and G.R. Halford, Investigation of Residual Stress Relaxation Under Cyclic Load, Int. J. Fatigue, 2001, 23, p S31–S37CrossRef W.Z. Zhuang and G.R. Halford, Investigation of Residual Stress Relaxation Under Cyclic Load, Int. J. Fatigue, 2001, 23, p S31–S37CrossRef
25.
Zurück zum Zitat J.K. Park and A.J. Ardell, Precipitate Microstructure of Peak-Aged 7075 Al, Scr. Metall., 1988, 22, p 1115–1119CrossRef J.K. Park and A.J. Ardell, Precipitate Microstructure of Peak-Aged 7075 Al, Scr. Metall., 1988, 22, p 1115–1119CrossRef
26.
Zurück zum Zitat P. Li, N.J. Marchand, and B. Ilschner, Crack Initiation Mechanisms in Low Cycle Fatigue of Aluminium Alloy 7075-T6, Mater. Sci. Eng. A, 1989, 119, p 41–50CrossRef P. Li, N.J. Marchand, and B. Ilschner, Crack Initiation Mechanisms in Low Cycle Fatigue of Aluminium Alloy 7075-T6, Mater. Sci. Eng. A, 1989, 119, p 41–50CrossRef
27.
Zurück zum Zitat H.S. Turkmen, R.E. Loge, P.R. Dawson, and M.P. Miller, On the Mechanical Behaviour of AA 7075-T6 During Cyclic Loading, Int. J. Fatigue, 2003, 25, p 267–281CrossRef H.S. Turkmen, R.E. Loge, P.R. Dawson, and M.P. Miller, On the Mechanical Behaviour of AA 7075-T6 During Cyclic Loading, Int. J. Fatigue, 2003, 25, p 267–281CrossRef
28.
Zurück zum Zitat M.E. Mercer, S.L. Dickerson, and J.C. Gibeling, Cyclic Deformation of Dispersion-Strengthened Aluminum Alloys, Mater. Sci. Eng. A, 1995, 203, p 46–58CrossRef M.E. Mercer, S.L. Dickerson, and J.C. Gibeling, Cyclic Deformation of Dispersion-Strengthened Aluminum Alloys, Mater. Sci. Eng. A, 1995, 203, p 46–58CrossRef
29.
Zurück zum Zitat Y. Jiang and P. Kurath, An Investigation of Cyclic Transient Behavior and Implications on Fatigue Life Estimates, J. Eng. Mater. Technol., 1997, 119, p 161–170CrossRef Y. Jiang and P. Kurath, An Investigation of Cyclic Transient Behavior and Implications on Fatigue Life Estimates, J. Eng. Mater. Technol., 1997, 119, p 161–170CrossRef
30.
Zurück zum Zitat A. Arcari and N.E. Dowling, Modeling Mean Stress Relaxation in Variable Amplitude Loading for 7075-T6511 and 7249-T76511 High Strength Aluminum Alloys, Int. J. Fatigue, 2012, 42, p 238–247CrossRef A. Arcari and N.E. Dowling, Modeling Mean Stress Relaxation in Variable Amplitude Loading for 7075-T6511 and 7249-T76511 High Strength Aluminum Alloys, Int. J. Fatigue, 2012, 42, p 238–247CrossRef
31.
Zurück zum Zitat D. Agius, K.I. Kourousis, C. Wallbrink, W. Hu, C.H. Wang, and Y.F. Dafalias, Aluminum Alloy 7075 Ratcheting and Plastic Shakedown Evaluation with the Multiplicative Armstrong–Frederick Model, AIAA J., 2017, 55(7), p 2461–2470CrossRef D. Agius, K.I. Kourousis, C. Wallbrink, W. Hu, C.H. Wang, and Y.F. Dafalias, Aluminum Alloy 7075 Ratcheting and Plastic Shakedown Evaluation with the Multiplicative Armstrong–Frederick Model, AIAA J., 2017, 55(7), p 2461–2470CrossRef
32.
Zurück zum Zitat T. Zhao and Y. Jiang, Fatigue of 7075-T651 Aluminum Alloy, Int. J. Fatigue, 2008, 30, p 834–849CrossRef T. Zhao and Y. Jiang, Fatigue of 7075-T651 Aluminum Alloy, Int. J. Fatigue, 2008, 30, p 834–849CrossRef
33.
Zurück zum Zitat W.P. Hu, C. Wallbrink, Fatigue Life Analysis of Specimens Subjected to Infrequent Severe Loading Using a Nonlinear Kinematic Hardening Cyclic Plasticity Model. In: 11th International Fatigue Congress, FATIGUE 2014ed., Adv. Mater. Res, 2014, p 512–517 W.P. Hu, C. Wallbrink, Fatigue Life Analysis of Specimens Subjected to Infrequent Severe Loading Using a Nonlinear Kinematic Hardening Cyclic Plasticity Model. In: 11th International Fatigue Congress, FATIGUE 2014ed., Adv. Mater. Res, 2014, p 512–517
34.
Zurück zum Zitat D. Agius, M. Kajtaz, K.I. Kourousis, C. Wallbrink, C.H. Wang, W. Hu, and J. Silva, Sensitivity and Optimisation of the Chaboche Plasticity Model Parameters in Strain-Life Fatigue Predictions, Mater. Des., 2017, 118, p 107–121CrossRef D. Agius, M. Kajtaz, K.I. Kourousis, C. Wallbrink, C.H. Wang, W. Hu, and J. Silva, Sensitivity and Optimisation of the Chaboche Plasticity Model Parameters in Strain-Life Fatigue Predictions, Mater. Des., 2017, 118, p 107–121CrossRef
35.
Zurück zum Zitat F.V. Antunes and D.M. Rodrigues, Numerical Simulation of Plasticity Induced Crack Closure: Identification and Discussion of Parameters, Eng. Fract. Mech., 2008, 75, p 3101–3120CrossRef F.V. Antunes and D.M. Rodrigues, Numerical Simulation of Plasticity Induced Crack Closure: Identification and Discussion of Parameters, Eng. Fract. Mech., 2008, 75, p 3101–3120CrossRef
36.
Zurück zum Zitat ASTM E8/E8M-15a, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International 2015 ASTM E8/E8M-15a, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International 2015
37.
Zurück zum Zitat ASTM E606/E606M-12, Standard Test Method for Strain-Controlled Fatigue Testing, ASTM International 2012 ASTM E606/E606M-12, Standard Test Method for Strain-Controlled Fatigue Testing, ASTM International 2012
38.
Zurück zum Zitat ASTM E466-07, Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials, ASTM International 2007 ASTM E466-07, Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials, ASTM International 2007
39.
Zurück zum Zitat A. Fatemi, A. Plaseied, A.K. Khosrovaneh, and D. Tanner, Application of Bi-Linear Log–Log S-N Model to Strain-Controlled Fatigue Data of Aluminum Alloys and its Effect on Life Predictions, Int. J. Fatigue, 2005, 27, p 1040–1050CrossRef A. Fatemi, A. Plaseied, A.K. Khosrovaneh, and D. Tanner, Application of Bi-Linear Log–Log S-N Model to Strain-Controlled Fatigue Data of Aluminum Alloys and its Effect on Life Predictions, Int. J. Fatigue, 2005, 27, p 1040–1050CrossRef
40.
Zurück zum Zitat M.A. Meggiolaro and J.T.P. Castro, Statistical Evaluation of Strain-Life Fatigue Crack Initiation Predictions, Int. J. Fatigue, 2004, 26, p 463–476CrossRef M.A. Meggiolaro and J.T.P. Castro, Statistical Evaluation of Strain-Life Fatigue Crack Initiation Predictions, Int. J. Fatigue, 2004, 26, p 463–476CrossRef
41.
Zurück zum Zitat J.-F. Li, Z.-W. Peng, C.-X. Li, Z.-Q. Jia, W.-J. Chen, and Z.-Q. Zheng, Mechanical Properties, Corrosion Behaviors and Microstructures of 7075 Aluminium Alloy with Various Aging Treatments, Trans. Nonferr. Metals Soc. China, 2008, 18, p 755–762CrossRef J.-F. Li, Z.-W. Peng, C.-X. Li, Z.-Q. Jia, W.-J. Chen, and Z.-Q. Zheng, Mechanical Properties, Corrosion Behaviors and Microstructures of 7075 Aluminium Alloy with Various Aging Treatments, Trans. Nonferr. Metals Soc. China, 2008, 18, p 755–762CrossRef
42.
Zurück zum Zitat K.T.V. Rao and R.O. Ritchie, Fatigue of Aluminium-Lithium Alloys, Int. Mater. Rev., 1992, 37, p 153–186CrossRef K.T.V. Rao and R.O. Ritchie, Fatigue of Aluminium-Lithium Alloys, Int. Mater. Rev., 1992, 37, p 153–186CrossRef
43.
Zurück zum Zitat S.D. Antolovich and R.W. Armstrong, Plastic Strain Localization in Metals: Origins and Consequences, Prog. Mater Sci., 2014, 59, p 1–160CrossRef S.D. Antolovich and R.W. Armstrong, Plastic Strain Localization in Metals: Origins and Consequences, Prog. Mater Sci., 2014, 59, p 1–160CrossRef
44.
Zurück zum Zitat B.T. Ma, Z.G. Wang, A.L. Radin, and C. Laird, Asymmetry Behavior Between Tension And Compression in the Cyclic Deformation of Copper Single Crystals and Other Ductile Metals, Mater. Sci. Eng. A, 1990, 129, p 197–206CrossRef B.T. Ma, Z.G. Wang, A.L. Radin, and C. Laird, Asymmetry Behavior Between Tension And Compression in the Cyclic Deformation of Copper Single Crystals and Other Ductile Metals, Mater. Sci. Eng. A, 1990, 129, p 197–206CrossRef
45.
Zurück zum Zitat J.M. Meininger, S.L. Dickerson, and J.C. Gibeling, Observations of Tension/Compression Asymmetry in the Cyclic Deformation of Aluminum Alloy 7075, Fatigue Fract. Eng. Mater. Struct., 1996, 19, p 85–97CrossRef J.M. Meininger, S.L. Dickerson, and J.C. Gibeling, Observations of Tension/Compression Asymmetry in the Cyclic Deformation of Aluminum Alloy 7075, Fatigue Fract. Eng. Mater. Struct., 1996, 19, p 85–97CrossRef
46.
Zurück zum Zitat A. Ghosh and N.P. Gurao, Effect of Crystallographic Texture on the Planar Anisotropy of Ratcheting Response in 316 Stainless Steel Sheet, Mater. Des., 2016, 109, p 186–196CrossRef A. Ghosh and N.P. Gurao, Effect of Crystallographic Texture on the Planar Anisotropy of Ratcheting Response in 316 Stainless Steel Sheet, Mater. Des., 2016, 109, p 186–196CrossRef
47.
Zurück zum Zitat C. Calabrese and C. Laird, Cyclic Stress—Strain Response of Two-Phase Alloys Part I. Microstructures Containing Particles Penetrable by Dislocations, Mater. Sci. Eng., 1974, 13, p 141–157CrossRef C. Calabrese and C. Laird, Cyclic Stress—Strain Response of Two-Phase Alloys Part I. Microstructures Containing Particles Penetrable by Dislocations, Mater. Sci. Eng., 1974, 13, p 141–157CrossRef
48.
Zurück zum Zitat T.H. Sanders, D.A. Mauney, and J.T. Staley, Strain Control Fatigue as a Tool to Interpret Fatigue Initiation of Aluminum Alloys, Fundamental Aspects of Structural Alloy Designed, R.I. Jaffee and B.A. Wilcox, Ed., Springer, New York, 1977, p 487–519 CrossRef T.H. Sanders, D.A. Mauney, and J.T. Staley, Strain Control Fatigue as a Tool to Interpret Fatigue Initiation of Aluminum Alloys, Fundamental Aspects of Structural Alloy Designed, R.I. Jaffee and B.A. Wilcox, Ed., Springer, New York, 1977, p 487–519 CrossRef
49.
Zurück zum Zitat A. Deschamps, F. Livet, and Y. Bréchet, Influence of Predeformation on Ageing in an Al-Zn-Mg alloy—I. Microstructure Evolution and Mechanical Properties, Acta Materialia, 1998, 47, p 281–292CrossRef A. Deschamps, F. Livet, and Y. Bréchet, Influence of Predeformation on Ageing in an Al-Zn-Mg alloy—I. Microstructure Evolution and Mechanical Properties, Acta Materialia, 1998, 47, p 281–292CrossRef
50.
Zurück zum Zitat C.-H. Lee, V.N.V. Do, and K.-H. Chang, Analysis of Uniaxial Ratcheting Behavior and Cyclic Mean Stress Relaxation of a Duplex Stainless Steel, Int. J. Plast., 2014, 62, p 17–33CrossRef C.-H. Lee, V.N.V. Do, and K.-H. Chang, Analysis of Uniaxial Ratcheting Behavior and Cyclic Mean Stress Relaxation of a Duplex Stainless Steel, Int. J. Plast., 2014, 62, p 17–33CrossRef
51.
Zurück zum Zitat A.H. Cottrell, Dislocations and Plastic Flow in Crystals, Oxford University Press, New York, 1953 A.H. Cottrell, Dislocations and Plastic Flow in Crystals, Oxford University Press, New York, 1953
52.
Zurück zum Zitat C. Guillemer, M. Clavel, and G. Cailletaud, Cyclic Behavior of Extruded Magnesium: Experimental, Microstructural and Numerical Approach, Int. J. Plast, 2011, 27, p 2068–2084CrossRef C. Guillemer, M. Clavel, and G. Cailletaud, Cyclic Behavior of Extruded Magnesium: Experimental, Microstructural and Numerical Approach, Int. J. Plast, 2011, 27, p 2068–2084CrossRef
53.
Zurück zum Zitat S.S. Sohn, S.Y. Han, S.Y. Shin, J.-H. Bae, and S. Lee, Effects of Microstructure and Pre-Strain on Bauschinger Effect in API, X70 and X80 Linepipe Steels, Met. Mater. Int., 2013, 19, p 423–431CrossRef S.S. Sohn, S.Y. Han, S.Y. Shin, J.-H. Bae, and S. Lee, Effects of Microstructure and Pre-Strain on Bauschinger Effect in API, X70 and X80 Linepipe Steels, Met. Mater. Int., 2013, 19, p 423–431CrossRef
54.
Zurück zum Zitat H.-F. Chai and C. Laird, Mechanisms of Cyclic Softening and Cyclic Creep in Low Carbon Steel, Mater. Sci. Eng., 1987, 93, p 159–174CrossRef H.-F. Chai and C. Laird, Mechanisms of Cyclic Softening and Cyclic Creep in Low Carbon Steel, Mater. Sci. Eng., 1987, 93, p 159–174CrossRef
55.
Zurück zum Zitat G. Kang, Y. Dong, Y. Liu, H. Wang, and X. Cheng, Uniaxial Ratchetting of 20 Carbon Steel: Macroscopic and Microscopic Experimental Observations, Mater. Sci. Eng. A, 2011, 528, p 5610–5620CrossRef G. Kang, Y. Dong, Y. Liu, H. Wang, and X. Cheng, Uniaxial Ratchetting of 20 Carbon Steel: Macroscopic and Microscopic Experimental Observations, Mater. Sci. Eng. A, 2011, 528, p 5610–5620CrossRef
Metadaten
Titel
Cyclic Elastoplastic Performance of Aluminum 7075-T6 Under Strain- and Stress-Controlled Loading
verfasst von
Dylan Agius
Chris Wallbrink
Kyriakos I. Kourousis
Publikationsdatum
02.11.2017
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 12/2017
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-017-3047-2

Weitere Artikel der Ausgabe 12/2017

Journal of Materials Engineering and Performance 12/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.