Skip to main content
Erschienen in: Journal of Computational Electronics 3/2017

08.07.2017

Design of high performance normally-off dual junction gate AlGaN/GaN heterostructure field effect transistors for high voltage application

verfasst von: Zhiyuan Bai, Jiangfeng Du, Zhiguang Jiang, Qi Yu

Erschienen in: Journal of Computational Electronics | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a novel normally-off dual junction gate AlGaN/GaN heterostructure field effect transistor (DJG-HFET) is proposed for reducing on-resistance, decreasing the subthreshold swing, enhancing threshold voltage and improving the breakdown voltage. The proposed DJG-HFET is simulated by a Lombardi mobility model calibrated by comparing with the experimental results of a p-type gate GaN-based HFET. The on-resistance can be reduced 34% while the on-state current can be increased 40% for common p-type gate GaN based HFETs by inducing a new channel under the gate at \(V_\mathrm{GS}=5 \,\hbox {V}\), and the leakage current remains 0.4 nA/mm when \(V_\mathrm{GS}=0\,\hbox {V}\) and \(V_\mathrm{DS}>600\,\hbox {V}\). The breakdown voltage of the proposed device is 910 V, which is 14% higher than that of common p-type gate GaN-based HFETs. The lowest \(R_\mathrm{on}\) of \(9.8\,\Omega \, \hbox {mm}\) and the highest \(V_\mathrm{th}\) of 2 V can be achieved by optimizing the design parameter of \( D_\mathrm{bg}\) and \(N_\mathrm{p}\).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhang, Y., Teo, K., Palacios, T.: Beyond thermal management: incorporating p-diamond back-barriers and cap layers into AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 63, 2340–2345 (2016)CrossRef Zhang, Y., Teo, K., Palacios, T.: Beyond thermal management: incorporating p-diamond back-barriers and cap layers into AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 63, 2340–2345 (2016)CrossRef
2.
Zurück zum Zitat Du, J., Liu, D., Bai, Z., et al.: Design optimization of a high-breakdown-voltage GaN-based vertical HFET with composite current-blocking layer. J. Comput. Electron. 15, 1334–1339 (2016) Du, J., Liu, D., Bai, Z., et al.: Design optimization of a high-breakdown-voltage GaN-based vertical HFET with composite current-blocking layer. J. Comput. Electron. 15, 1334–1339 (2016)
3.
Zurück zum Zitat Lin, S., Wang, M., Sang, F., et al.: A GaN HEMT structure allowing self-terminated, plasma-free etching for high-uniformity, high-mobility enhancement-mode devices. IEEE Electron Device Lett. 37, 377–380 (2016)CrossRef Lin, S., Wang, M., Sang, F., et al.: A GaN HEMT structure allowing self-terminated, plasma-free etching for high-uniformity, high-mobility enhancement-mode devices. IEEE Electron Device Lett. 37, 377–380 (2016)CrossRef
4.
Zurück zum Zitat Zhang, Z., Fu, K., Deng, X., et al.: Normally off AlGaN/GaN MIS-high-electron mobility transistors fabricated by using low pressure chemical vapor deposition \({\text{ Si }}_{3}{\text{ N }}_{4}\) gate dielectric and standard fluorine ion implantation. IEEE Electron Device Lett. 36, 1128–1131 (2015)CrossRef Zhang, Z., Fu, K., Deng, X., et al.: Normally off AlGaN/GaN MIS-high-electron mobility transistors fabricated by using low pressure chemical vapor deposition \({\text{ Si }}_{3}{\text{ N }}_{4}\) gate dielectric and standard fluorine ion implantation. IEEE Electron Device Lett. 36, 1128–1131 (2015)CrossRef
5.
Zurück zum Zitat Wang, Y., Wang, M., Xie, B., et al.: High-performance normally-off \(\text{ Al }_{2}\text{ O }_{3}\)/GaN MOSFET using a wet etching-based gate recess technique. IEEE Electron Device Lett. 34, 1370–1372 (2013)CrossRef Wang, Y., Wang, M., Xie, B., et al.: High-performance normally-off \(\text{ Al }_{2}\text{ O }_{3}\)/GaN MOSFET using a wet etching-based gate recess technique. IEEE Electron Device Lett. 34, 1370–1372 (2013)CrossRef
6.
Zurück zum Zitat Uemoto, Y., Hikita, M., Ueno, H., et al.: Gate injection transistor (GIT)—a normally-off AlGaN/GaN power transistor using conductivity modulation. IEEE Trans. Electron Devices 54, 3393–3399 (2007)CrossRef Uemoto, Y., Hikita, M., Ueno, H., et al.: Gate injection transistor (GIT)—a normally-off AlGaN/GaN power transistor using conductivity modulation. IEEE Trans. Electron Devices 54, 3393–3399 (2007)CrossRef
7.
Zurück zum Zitat Hilt, O., Knauer, A., Brunner, F., et al.: Normally-off AlGaN/GaN HFET with p-type GaN gate and AlGaN buffer. In: Proceedings of international symposium on power semiconductor, June 2010, pp. 347–350 Hilt, O., Knauer, A., Brunner, F., et al.: Normally-off AlGaN/GaN HFET with p-type GaN gate and AlGaN buffer. In: Proceedings of international symposium on power semiconductor, June 2010, pp. 347–350
8.
Zurück zum Zitat Hilt, O., Brunner, F., Cho, E., et al.: Normally-off high-voltage p-GaN gate GaN HFET with carbon-doped buffer. In: Proceedings of international symposium on power semiconductor, May 2011, pp. 239–242 Hilt, O., Brunner, F., Cho, E., et al.: Normally-off high-voltage p-GaN gate GaN HFET with carbon-doped buffer. In: Proceedings of international symposium on power semiconductor, May 2011, pp. 239–242
9.
Zurück zum Zitat Rossetto, I., Meneghini, M., Hilt, O., et al.: Time-dependent failure of GaN-on-Si power HEMTs with p-GaN gate. IEEE Trans. Electron Devices 63, 2334–2339 (2016)CrossRef Rossetto, I., Meneghini, M., Hilt, O., et al.: Time-dependent failure of GaN-on-Si power HEMTs with p-GaN gate. IEEE Trans. Electron Devices 63, 2334–2339 (2016)CrossRef
10.
Zurück zum Zitat Tapajna, M., Hilt, O., BahatTreidel, E., et al.: Investigation of gate-diode degradation in normally-off p-GaN/AlGaN/GaN highelectron-mobility transistors. Appl. Phys. Lett. 107, 193506 (2015)CrossRef Tapajna, M., Hilt, O., BahatTreidel, E., et al.: Investigation of gate-diode degradation in normally-off p-GaN/AlGaN/GaN highelectron-mobility transistors. Appl. Phys. Lett. 107, 193506 (2015)CrossRef
11.
Zurück zum Zitat Lidow, A., Witcher, J.B., Smalley, K.: Enhancement mode gallium nitride (eGaNTM) FET characteristics under long term stress. In: Proceedings of GOMACTech (2011) Lidow, A., Witcher, J.B., Smalley, K.: Enhancement mode gallium nitride (eGaNTM) FET characteristics under long term stress. In: Proceedings of GOMACTech (2011)
12.
Zurück zum Zitat Axelsson, O., Gustafsson, S., Hjelmgren, H., et al.: Application relevant evaluation of trapping effects in AlGaN/GaN HEMTs with Fe-doped buffer. IEEE Trans. Electron Devices 63, 326–332 (2016) Axelsson, O., Gustafsson, S., Hjelmgren, H., et al.: Application relevant evaluation of trapping effects in AlGaN/GaN HEMTs with Fe-doped buffer. IEEE Trans. Electron Devices 63, 326–332 (2016)
13.
Zurück zum Zitat Su, L., Lee, F., Huang, J.J.: Enhancement-mode GaN-based high-electron mobility transistors on the Si substrate with a p-type GaN cap layer. IEEE Trans. Electron Devices 61, 460–465 (2014)CrossRef Su, L., Lee, F., Huang, J.J.: Enhancement-mode GaN-based high-electron mobility transistors on the Si substrate with a p-type GaN cap layer. IEEE Trans. Electron Devices 61, 460–465 (2014)CrossRef
14.
Zurück zum Zitat Kaneko, S., Kuroda, M., Yanagihara, M., et al.: Current-collapse-free operations up to 850 V by GaN-GIT utilizing hole injection from drain. In: Proceedings of international symposium on power semiconductor, May 2015, pp. 41–44 Kaneko, S., Kuroda, M., Yanagihara, M., et al.: Current-collapse-free operations up to 850 V by GaN-GIT utilizing hole injection from drain. In: Proceedings of international symposium on power semiconductor, May 2015, pp. 41–44
15.
Zurück zum Zitat Benkhelifa, F., Müller, S., Polyakov, V.M., Ambacher, O.: Normally-off AlGaN/GaN/AlGaN double heterostructure FETs with a thick undoped GaN gate layer. IEEE Electron Device Lett. 36, 905–907 (2015)CrossRef Benkhelifa, F., Müller, S., Polyakov, V.M., Ambacher, O.: Normally-off AlGaN/GaN/AlGaN double heterostructure FETs with a thick undoped GaN gate layer. IEEE Electron Device Lett. 36, 905–907 (2015)CrossRef
16.
Zurück zum Zitat Lee, F., Su, L., Wang, C., et al.: Impact of gate metal on the performance of p-GaN/AlGaN/GaN high electron mobility transistors. IEEE Electron Device Lett. 36, 232–234 (2015)CrossRef Lee, F., Su, L., Wang, C., et al.: Impact of gate metal on the performance of p-GaN/AlGaN/GaN high electron mobility transistors. IEEE Electron Device Lett. 36, 232–234 (2015)CrossRef
17.
Zurück zum Zitat Römer, F., Witzigmann, B.: Acceptor activation model for III-nitride LEDs. J. Comput. Electron. 14, 456–463 (2015)CrossRef Römer, F., Witzigmann, B.: Acceptor activation model for III-nitride LEDs. J. Comput. Electron. 14, 456–463 (2015)CrossRef
18.
Zurück zum Zitat Adak, S., Sarkar, A., Swain, S., et al.: High performance AlInN/AlN/GaN p-GaN back barrier gate-recessed enhancement-mode HEMT. Superlattices Microstruct. 75, 347–357 (2014) Adak, S., Sarkar, A., Swain, S., et al.: High performance AlInN/AlN/GaN p-GaN back barrier gate-recessed enhancement-mode HEMT. Superlattices Microstruct. 75, 347–357 (2014)
19.
Zurück zum Zitat Ma, X., Zhu, J., Liao, X., et al.: Quantitative characterization of interface traps in \(\text{ Al }_{2}\text{ O }_{3}\)/AlGaN/GaN metal oxide semiconductor high electron mobility transistors by dynamic capacitance dispersion technique. Appl. Phys. Lett. 103, 033510 (2013)CrossRef Ma, X., Zhu, J., Liao, X., et al.: Quantitative characterization of interface traps in \(\text{ Al }_{2}\text{ O }_{3}\)/AlGaN/GaN metal oxide semiconductor high electron mobility transistors by dynamic capacitance dispersion technique. Appl. Phys. Lett. 103, 033510 (2013)CrossRef
20.
Zurück zum Zitat Liu, Z.H., Ng, G.I., Arulkumaran, S., et al.: Temperature-dependent forward gate current transport in atomic-layerdeposited \({\text{ Al }}_{2}{\text{ O }}_{3}\)/AlGaN/GaN metal insulator semiconductor high electron mobility transistor. Appl. Phys. Lett. 98, 163501 (2011)CrossRef Liu, Z.H., Ng, G.I., Arulkumaran, S., et al.: Temperature-dependent forward gate current transport in atomic-layerdeposited \({\text{ Al }}_{2}{\text{ O }}_{3}\)/AlGaN/GaN metal insulator semiconductor high electron mobility transistor. Appl. Phys. Lett. 98, 163501 (2011)CrossRef
21.
Zurück zum Zitat Ye, P.D., Yang, B., Ng, K.K., et al.: GaN metal-oxide-semiconductor high electron mobility transistor with atomic layer deposited \(\text{ Al }_{2}\text{ O }_{3}\) as gate dielectric. Appl. Phys. Lett. 86, 063501 (2005)CrossRef Ye, P.D., Yang, B., Ng, K.K., et al.: GaN metal-oxide-semiconductor high electron mobility transistor with atomic layer deposited \(\text{ Al }_{2}\text{ O }_{3}\) as gate dielectric. Appl. Phys. Lett. 86, 063501 (2005)CrossRef
22.
Zurück zum Zitat Bouzidi, M., Benzarti, Z., Halidou, I., et al.: Photoreflectance study of GaN grown on SiN treated sapphire substrate by MOVPE. Superlattices Microstruct. 84, 13–23 (2015)CrossRef Bouzidi, M., Benzarti, Z., Halidou, I., et al.: Photoreflectance study of GaN grown on SiN treated sapphire substrate by MOVPE. Superlattices Microstruct. 84, 13–23 (2015)CrossRef
23.
Zurück zum Zitat Atalla, M.R.M., Elahi, A.M.N., et al.: On the design of GaN vertical MESFETs on commercial LED sapphire wafers. Solid State Electron. 126, 23–31 (2016)CrossRef Atalla, M.R.M., Elahi, A.M.N., et al.: On the design of GaN vertical MESFETs on commercial LED sapphire wafers. Solid State Electron. 126, 23–31 (2016)CrossRef
24.
Zurück zum Zitat Chiu, H.-C., Wang, H.-C., Yang, C.-W., et al.: A novel micromachined AlGaN/GaN power HEMT with air-bridged matrix heat redistribution layer design. IEEE Electron Device Lett. 35, 163–165 (2014)CrossRef Chiu, H.-C., Wang, H.-C., Yang, C.-W., et al.: A novel micromachined AlGaN/GaN power HEMT with air-bridged matrix heat redistribution layer design. IEEE Electron Device Lett. 35, 163–165 (2014)CrossRef
25.
Zurück zum Zitat Drummond, T.J., Morkoc, H., Shur, M.: Model for modulation doped field effect transistor. IEEE Electron Device Lett. 3, 338–341 (1982)CrossRef Drummond, T.J., Morkoc, H., Shur, M.: Model for modulation doped field effect transistor. IEEE Electron Device Lett. 3, 338–341 (1982)CrossRef
26.
Zurück zum Zitat Wang, Z., Zhang, B., Chen, W., Li, Z.: A closed-form charge control model for the threshold voltage of depletion- and enhancement-mode AlGaN/GaN devices. IEEE Trans. Electron Devices 60, 1607–1612 (2013)CrossRef Wang, Z., Zhang, B., Chen, W., Li, Z.: A closed-form charge control model for the threshold voltage of depletion- and enhancement-mode AlGaN/GaN devices. IEEE Trans. Electron Devices 60, 1607–1612 (2013)CrossRef
27.
Zurück zum Zitat Roblin, P., Kang, S.C., Morkoc, H.: Analytic solution of the velocity-saturated MOSFET/MODFET wave equation and its application to the prediction of the microwave characteristics of MODFET’s. IEEE Trans. Electron Devices 37, 1608–1622 (1990)CrossRef Roblin, P., Kang, S.C., Morkoc, H.: Analytic solution of the velocity-saturated MOSFET/MODFET wave equation and its application to the prediction of the microwave characteristics of MODFET’s. IEEE Trans. Electron Devices 37, 1608–1622 (1990)CrossRef
28.
Zurück zum Zitat Mohamed, A.A., Granzner, R., Schwier, F.: Theoretical investigation of trigate AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 60, 3335–3341 (2013)CrossRef Mohamed, A.A., Granzner, R., Schwier, F.: Theoretical investigation of trigate AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 60, 3335–3341 (2013)CrossRef
29.
Zurück zum Zitat ATLAS User’s Manual. Silvaco Int., Santa Clara, CA, USA (2012) ATLAS User’s Manual. Silvaco Int., Santa Clara, CA, USA (2012)
30.
Zurück zum Zitat Ambacher, O., Majewski, J., Miskys, C., et al.: Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures. J. Phys. Condens. Matter 14, 3399–3434 (2002)CrossRef Ambacher, O., Majewski, J., Miskys, C., et al.: Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures. J. Phys. Condens. Matter 14, 3399–3434 (2002)CrossRef
31.
Zurück zum Zitat Bulutay, C.: Electron initiated impact ionization in AlGaN alloys. Semicond. Sci. Technol. 17, L59–L62 (2002)CrossRef Bulutay, C.: Electron initiated impact ionization in AlGaN alloys. Semicond. Sci. Technol. 17, L59–L62 (2002)CrossRef
32.
Zurück zum Zitat Du, J., Yan, H., Yin, C., et al.: Simulation and characterization of millimeter-wave InAlN/GaN high electron mobility transistors using Lombardi mobility model. J. Appl. Phys. 115, 164510 (2014)CrossRef Du, J., Yan, H., Yin, C., et al.: Simulation and characterization of millimeter-wave InAlN/GaN high electron mobility transistors using Lombardi mobility model. J. Appl. Phys. 115, 164510 (2014)CrossRef
33.
Zurück zum Zitat Hwang, I., Choi, H., Lee, J.W., et al.: 1.6 kV, \(2.9~{\text{ m }}\Omega \,{\text{ cm }}^{2}\) Normally-off p-GaN HEMT Device. In: Proceedings of international symposium on power semiconductor, June 2012, pp. 41–44 Hwang, I., Choi, H., Lee, J.W., et al.: 1.6 kV, \(2.9~{\text{ m }}\Omega \,{\text{ cm }}^{2}\) Normally-off p-GaN HEMT Device. In: Proceedings of international symposium on power semiconductor, June 2012, pp. 41–44
34.
Zurück zum Zitat Perez-Tomas, A., Placidi, M., Perpina, X., et al.: GaN metal-oxide-semiconductor field-effect transistor inversion channel mobility modeling. J. Appl. Phys. 105, 114510 (2009)CrossRef Perez-Tomas, A., Placidi, M., Perpina, X., et al.: GaN metal-oxide-semiconductor field-effect transistor inversion channel mobility modeling. J. Appl. Phys. 105, 114510 (2009)CrossRef
35.
Zurück zum Zitat Lombardi, C., Manzini, S., Saporito, A., et al.: A physically based mobility model for numerical simulation of nonplanar devices. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 7, 1164 (1988)CrossRef Lombardi, C., Manzini, S., Saporito, A., et al.: A physically based mobility model for numerical simulation of nonplanar devices. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 7, 1164 (1988)CrossRef
36.
Zurück zum Zitat Liu, Z., Huang, Y., Yi, X., et al.: Analysis of photoluminescence thermal quenching: guidance for the design of highly effective p-type doping of nitrides. Sci. Rep. 6, 32033 (2016)CrossRef Liu, Z., Huang, Y., Yi, X., et al.: Analysis of photoluminescence thermal quenching: guidance for the design of highly effective p-type doping of nitrides. Sci. Rep. 6, 32033 (2016)CrossRef
37.
Zurück zum Zitat Im, K., Won, C., Jo, Y.W., et al.: High performance GaN-based nanochannel FinFETs with/without AlGaN/GaN heterostructure. IEEE Trans. Electron Devices 60, 3012–3018 (2013)CrossRef Im, K., Won, C., Jo, Y.W., et al.: High performance GaN-based nanochannel FinFETs with/without AlGaN/GaN heterostructure. IEEE Trans. Electron Devices 60, 3012–3018 (2013)CrossRef
Metadaten
Titel
Design of high performance normally-off dual junction gate AlGaN/GaN heterostructure field effect transistors for high voltage application
verfasst von
Zhiyuan Bai
Jiangfeng Du
Zhiguang Jiang
Qi Yu
Publikationsdatum
08.07.2017
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 3/2017
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-017-1029-0

Weitere Artikel der Ausgabe 3/2017

Journal of Computational Electronics 3/2017 Zur Ausgabe

Neuer Inhalt