Skip to main content
Erschienen in: Electrical Engineering 1/2021

16.09.2020 | Original Paper

Determination of electric motor losses and critical temperatures through an inverse approach

verfasst von: Amal Zeaiter, Etienne Videcoq, Matthieu Fénot

Erschienen in: Electrical Engineering | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, a practical numerical method is proposed to estimate losses of high specific power density electric motors, using few simulated temperature data. In such electric motors, these losses generate high heat fluxes inside the motor components that can be critically sensitive to temperature. Electromagnetic and mechanical friction phenomena are behind the occurring of these thermal dissipations. For both phenomena, losses could be difficult to compute with electrical or mechanical approaches. However, thermal management of electric motors requires a precise knowledge of those losses, in particular for high-performance motors such as those considered in future hybrid planes. To determine electric motor losses in a permanent magnet synchronous motor (PMSM) in real time, an inverse method using a lumped parameter thermal model (LPTM) is elaborated. In the first step, the dynamic profile of losses is determined through the inverse method, based on temperature data at easy-access points of the motor. In a second step, the identified losses are used to find temperatures at critical non-accessible hot spot points of the motor through forward LPTM. The method is applied for three useful cases, from the simplest case scenario, where only one type of losses has to be identified, to the most complicated case where all losses are simultaneously estimated. A global strategy for the choice of the number of future time steps used for regularization of the ill-posed problem is also proposed. Results show that this method enables adequate real-time supervision of the critical motor temperatures, mainly rotor and winding core.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bilgin B, Magne P, Malysz P, Yang Y, Pantelic V, Preindl M et al (2015) Making the case for electrified transportation. IEEE Trans Transp Electr 1(1):4–17CrossRef Bilgin B, Magne P, Malysz P, Yang Y, Pantelic V, Preindl M et al (2015) Making the case for electrified transportation. IEEE Trans Transp Electr 1(1):4–17CrossRef
2.
Zurück zum Zitat de Santiago J, Bernhoff H, Ekergård B, Eriksson S, Ferhatovic S, Waters R et al (2012) Electrical motor drivelines in commercial all-electric vehicles: a review. IEEE Trans Veh Technol 61(2):475–484CrossRef de Santiago J, Bernhoff H, Ekergård B, Eriksson S, Ferhatovic S, Waters R et al (2012) Electrical motor drivelines in commercial all-electric vehicles: a review. IEEE Trans Veh Technol 61(2):475–484CrossRef
3.
Zurück zum Zitat Siemens. Electric propulsion components with high power densities for aviation. Transformative Vertical Flight Workshop; 2015 Mar 8 Siemens. Electric propulsion components with high power densities for aviation. Transformative Vertical Flight Workshop; 2015 Mar 8
5.
Zurück zum Zitat Welstead J, Felder JL (2016) Conceptual design of a single-aisle turboelectric commercial transport with fuselage boundary layer ingestion. In: 54th AIAA Aerospace Sciences Meeting [Internet]. San Diego, California, USA: American Institute of Aeronautics and Astronautics; 2016. https://arc.aiaa.org/doi/10.2514/6.2016-1027 Welstead J, Felder JL (2016) Conceptual design of a single-aisle turboelectric commercial transport with fuselage boundary layer ingestion. In: 54th AIAA Aerospace Sciences Meeting [Internet]. San Diego, California, USA: American Institute of Aeronautics and Astronautics; 2016. https://​arc.​aiaa.​org/​doi/​10.​2514/​6.​2016-1027
7.
Zurück zum Zitat Lefevre Y, El-Aabid S, Llibre J-F, Henaux C, Touhami S (2019) Performance assessment tool based on loadability concepts. Int J Appl Electromagn Mech 59(2):687–694CrossRef Lefevre Y, El-Aabid S, Llibre J-F, Henaux C, Touhami S (2019) Performance assessment tool based on loadability concepts. Int J Appl Electromagn Mech 59(2):687–694CrossRef
8.
Zurück zum Zitat Popescu M, Staton DA, Boglietti A, Cavagnino A, Hawkins D, Goss J (2016) modern heat extraction systems for power traction machines—a review. IEEE Trans Ind Appl 52(3):2167–2175CrossRef Popescu M, Staton DA, Boglietti A, Cavagnino A, Hawkins D, Goss J (2016) modern heat extraction systems for power traction machines—a review. IEEE Trans Ind Appl 52(3):2167–2175CrossRef
9.
Zurück zum Zitat Nategh S, Boglietti A, Liu Y, Barber D, Brammer R, Lindberg D, Aglen O (2020) A review on different aspects of traction motor design for railway applications. IEEE Trans Ind Appl 56(3):2148–2157CrossRef Nategh S, Boglietti A, Liu Y, Barber D, Brammer R, Lindberg D, Aglen O (2020) A review on different aspects of traction motor design for railway applications. IEEE Trans Ind Appl 56(3):2148–2157CrossRef
10.
Zurück zum Zitat de Paula Machado Bazzo T, Kölzer JF, Carlson R, Wurtz F, Gerbaud L (2017) Multiphysics design optimization of a permanent magnet synchronous generator. IEEE Trans Ind Electron 64(12):9815–9823CrossRef de Paula Machado Bazzo T, Kölzer JF, Carlson R, Wurtz F, Gerbaud L (2017) Multiphysics design optimization of a permanent magnet synchronous generator. IEEE Trans Ind Electron 64(12):9815–9823CrossRef
11.
Zurück zum Zitat Farsane K, Desevaux P, Panday PK (2000) Experimental study of the cooling of a closed type electric motor. Appl Therm Eng 20(14):1321–1334CrossRef Farsane K, Desevaux P, Panday PK (2000) Experimental study of the cooling of a closed type electric motor. Appl Therm Eng 20(14):1321–1334CrossRef
13.
Zurück zum Zitat Khelifa M, Mordjaoui M, Medoued A (2017) An inverse problem methodology for design and optimization of an interior permanent magnetic BLDC motor. Int J Hydrog Energy 42(28):17733–17740CrossRef Khelifa M, Mordjaoui M, Medoued A (2017) An inverse problem methodology for design and optimization of an interior permanent magnetic BLDC motor. Int J Hydrog Energy 42(28):17733–17740CrossRef
14.
Zurück zum Zitat Davin T, Pellé J, Harmand S, Yu R (2017) Motor cooling modeling: an inverse method for the identification of convection coefficients. J Therm Sci Eng Appl 9(4):041009–041009–13CrossRef Davin T, Pellé J, Harmand S, Yu R (2017) Motor cooling modeling: an inverse method for the identification of convection coefficients. J Therm Sci Eng Appl 9(4):041009–041009–13CrossRef
15.
Zurück zum Zitat Vansompel H, Yarantseva A, Sergeant P, Crevecoeur G (2019) An inverse thermal modeling approach for thermal parameter and loss identification in an axial flux permanent magnet machine. IEEE Trans Ind Electron 66(3):1727–1735CrossRef Vansompel H, Yarantseva A, Sergeant P, Crevecoeur G (2019) An inverse thermal modeling approach for thermal parameter and loss identification in an axial flux permanent magnet machine. IEEE Trans Ind Electron 66(3):1727–1735CrossRef
16.
Zurück zum Zitat Nair DG, Rasilo P, Arkkio A (2018) Sensitivity analysis of inverse thermal modelling to determine power losses in electrical machines. IEEE Trans Magn 54(11):1–5CrossRef Nair DG, Rasilo P, Arkkio A (2018) Sensitivity analysis of inverse thermal modelling to determine power losses in electrical machines. IEEE Trans Magn 54(11):1–5CrossRef
17.
Zurück zum Zitat Nair DG, Arkkio A (2017) Inverse thermal modeling to determine power losses in induction motor. IEEE Trans Magn 53(6):1–4CrossRef Nair DG, Arkkio A (2017) Inverse thermal modeling to determine power losses in induction motor. IEEE Trans Magn 53(6):1–4CrossRef
18.
Zurück zum Zitat Marinova I, Mattev V (2012) Inverse source problem for thermal fields. COMPEL Int J Comput Math Electr Electron Eng 31(3):996–1006CrossRef Marinova I, Mattev V (2012) Inverse source problem for thermal fields. COMPEL Int J Comput Math Electr Electron Eng 31(3):996–1006CrossRef
19.
Zurück zum Zitat Hey J, Malloy AC, Martinez-Botas R, Lamperth M (2016) On-line monitoring of electromagnetic losses in an electric motor indirectly through temperature measurement. IEEE Trans Energy Conv 31(4):1347–1355CrossRef Hey J, Malloy AC, Martinez-Botas R, Lamperth M (2016) On-line monitoring of electromagnetic losses in an electric motor indirectly through temperature measurement. IEEE Trans Energy Conv 31(4):1347–1355CrossRef
20.
Zurück zum Zitat Huang C-H, Lo H-C (2006) A three-dimensional inverse problem in estimating the internal heat flux of housing for high speed motors. Appl Therm Eng 26(14):1515–1529CrossRef Huang C-H, Lo H-C (2006) A three-dimensional inverse problem in estimating the internal heat flux of housing for high speed motors. Appl Therm Eng 26(14):1515–1529CrossRef
21.
Zurück zum Zitat Scott EP, Beck JV (1989) Analysis of order of the sequential regularization solutions of inverse heat conduction problems. ASME J Heat Transf 111:218–224CrossRef Scott EP, Beck JV (1989) Analysis of order of the sequential regularization solutions of inverse heat conduction problems. ASME J Heat Transf 111:218–224CrossRef
22.
Zurück zum Zitat Osman AM, Dowding KJ, Beck JV (1997) Numerical solution of the general two-dimensional inverse heat conduction problem. ASME J Heat Transf 119:38–45CrossRef Osman AM, Dowding KJ, Beck JV (1997) Numerical solution of the general two-dimensional inverse heat conduction problem. ASME J Heat Transf 119:38–45CrossRef
23.
Zurück zum Zitat Touhami S, Lefevre Y, Llibre JF (2019) Original optimization procedures of halbach permanent magnet segmented array. In: 19th international symposium on electromagnetic fields in mechatronics, electrical and electronic engineering (ISEF), France Touhami S, Lefevre Y, Llibre JF (2019) Original optimization procedures of halbach permanent magnet segmented array. In: 19th international symposium on electromagnetic fields in mechatronics, electrical and electronic engineering (ISEF), France
24.
Zurück zum Zitat Touhami S, Zeaiter A, Fénot M, Lefèvre Y, Llibre JF, Videcoq E (2020) Electro-thermal models and design approach for high specific power electric motor for hybrid aircraft. In: Aerospace Europe Conference, Bordeaux, France, Feb. 2020, Accessed: Apr. 22, 2020. https://aerospace-europe2020.eu/ Touhami S, Zeaiter A, Fénot M, Lefèvre Y, Llibre JF, Videcoq E (2020) Electro-thermal models and design approach for high specific power electric motor for hybrid aircraft. In: Aerospace Europe Conference, Bordeaux, France, Feb. 2020, Accessed: Apr. 22, 2020. https://​aerospace-europe2020.​eu/​
25.
Zurück zum Zitat Gai Y, Kimiabeigi M, Chuan Chong Y, Widmer JD, Deng X, Popescu M et al (2019) Cooling of automotive traction motors: schemes, examples, and computation methods. IEEE Trans Ind Electron 66(3):1681–1692CrossRef Gai Y, Kimiabeigi M, Chuan Chong Y, Widmer JD, Deng X, Popescu M et al (2019) Cooling of automotive traction motors: schemes, examples, and computation methods. IEEE Trans Ind Electron 66(3):1681–1692CrossRef
26.
Zurück zum Zitat Tighe C, Gerada C, Pickering S (2016) Assessment of cooling methods for increased power density in electrical machines. In: 2016 XXII international conference on electrical machines (ICEM). 2016. p. 2626–2632 Tighe C, Gerada C, Pickering S (2016) Assessment of cooling methods for increased power density in electrical machines. In: 2016 XXII international conference on electrical machines (ICEM). 2016. p. 2626–2632
27.
Zurück zum Zitat Nategh S, Barber D, Boglietti A, Lindberg D, Aglen O, Brammer R (2018) A study on thermal effects of different potting strategies in traction motors. In: 2018 IEEE international conference on electrical systems for aircraft, railway, ship propulsion and road vehicles & international transportation electrification conference (ESARS-ITEC) [Internet]. Nottingham: IEEE; 2018. pp 1–6. https://ieeexplore.ieee.org/document/8607600/ Nategh S, Barber D, Boglietti A, Lindberg D, Aglen O, Brammer R (2018) A study on thermal effects of different potting strategies in traction motors. In: 2018 IEEE international conference on electrical systems for aircraft, railway, ship propulsion and road vehicles & international transportation electrification conference (ESARS-ITEC) [Internet]. Nottingham: IEEE; 2018. pp 1–6. https://​ieeexplore.​ieee.​org/​document/​8607600/​
28.
Zurück zum Zitat Zeaiter A, Fénot M (2018) Thermal sensitivity analysis of a high power density electric motor for aeronautical application. In: 2018 IEEE international conference on electrical systems for aircraft, railway, ship propulsion and road vehicles international transportation electrification conference (ESARS-ITEC). 2018. pp 1–6 Zeaiter A, Fénot M (2018) Thermal sensitivity analysis of a high power density electric motor for aeronautical application. In: 2018 IEEE international conference on electrical systems for aircraft, railway, ship propulsion and road vehicles international transportation electrification conference (ESARS-ITEC). 2018. pp 1–6
29.
Zurück zum Zitat Beck JV, Blackwell B, St. Clair CR (1985) Inverse heat conduction: ill-posed problems. Wiley, New YorkMATH Beck JV, Blackwell B, St. Clair CR (1985) Inverse heat conduction: ill-posed problems. Wiley, New YorkMATH
30.
Zurück zum Zitat Videcoq E, Petit D, Piteau A (2003) Experimental modelling and estimation of time varying thermal sources. Int J Therm Sci 42(3):255–265CrossRef Videcoq E, Petit D, Piteau A (2003) Experimental modelling and estimation of time varying thermal sources. Int J Therm Sci 42(3):255–265CrossRef
31.
Zurück zum Zitat Beck JV, Blackwell B, Haji-Sheikh A (1996) Comparison of some inverse heat conduction methods using experimental data. Int J Heat Mass Transf 39(17):3649–3657CrossRef Beck JV, Blackwell B, Haji-Sheikh A (1996) Comparison of some inverse heat conduction methods using experimental data. Int J Heat Mass Transf 39(17):3649–3657CrossRef
32.
Zurück zum Zitat Blanc G, Raynaud M, Chau TH (1998) A guide for the use of the function specification method for 2D inverse heat conduction problems. Rev Générale Therm 37(1):17–30CrossRef Blanc G, Raynaud M, Chau TH (1998) A guide for the use of the function specification method for 2D inverse heat conduction problems. Rev Générale Therm 37(1):17–30CrossRef
Metadaten
Titel
Determination of electric motor losses and critical temperatures through an inverse approach
verfasst von
Amal Zeaiter
Etienne Videcoq
Matthieu Fénot
Publikationsdatum
16.09.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering / Ausgabe 1/2021
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-020-01098-0

Weitere Artikel der Ausgabe 1/2021

Electrical Engineering 1/2021 Zur Ausgabe

Neuer Inhalt