Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 2/2021

08.01.2021

Determination of Mechanical Properties and Physical Characterization of HA-ZnO-\( {\mathbf{Fe}}_{3} {\mathbf{O}}_{4} \) Composites for Implant Applications

verfasst von: Ruchi Gupta, Vinay Pratap Singh

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The high biocompatibility of Hydroxyapatite (HA) makes it one of the most common ceramics used in bio-implants. However, its inferior mechanical properties can be improved through the formation of composites. In the present work, composites are fabricated by adding ZnO and Fe3O4 in HA through compaction and sintering in five different compositions to study their effect on HA. Their structural properties using scanning electron microscopy and x-ray diffraction are studied, while mechanical properties are studied using micro-hardness test and compression test. In experimental results, it was observed that 7.5% ZnO in HA has resulted in improved relative density (~ 99%), increased hardness (6.9 GPa) but with reduced compressive strength (25.6 MPa), hence it can be suitable for hard coatings on bio-implants. 20% porosity was observed in an HA-7.5%ZnO-20%\( Fe_{3} O_{4} \) composite with compressive strength (40 MPa) and hardness (4.1 GPa). Among all, this composition showed a maximum balance between mechanical properties and porosity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Y.H. Li, C. Yang, L.M. Kang, H.D. Zhao, W.W. Zhang, and Y.Y. Li, Biomedical Porous TiNbZrFe Alloys Fabricated Using NH4HCO3 as Pore-Forming Agent Through Powder Metallurgy Route, Powder Metall., 2015, 58(3), p 228–234CrossRef Y.H. Li, C. Yang, L.M. Kang, H.D. Zhao, W.W. Zhang, and Y.Y. Li, Biomedical Porous TiNbZrFe Alloys Fabricated Using NH4HCO3 as Pore-Forming Agent Through Powder Metallurgy Route, Powder Metall., 2015, 58(3), p 228–234CrossRef
2.
Zurück zum Zitat Ghiasi, B., Sefidbakht, Y., & Rezaei, M., Hydroxyapatite for Biomedicine and Drug Delivery, in Nanomaterials for Advanced Biological Applications, pp. 85–120, 2019. Ghiasi, B., Sefidbakht, Y., & Rezaei, M., Hydroxyapatite for Biomedicine and Drug Delivery, in Nanomaterials for Advanced Biological Applications, pp. 85–120, 2019.
3.
Zurück zum Zitat A. Dey, A.K. Mukhopadhyay, S. Gangadharan, M.K. Sinha, and D. Basu, Development of Hydroxyapatite Coating by Microplasma Spraying, Mater. Manuf. Process., 2009, 24(12), p 1321–1330CrossRef A. Dey, A.K. Mukhopadhyay, S. Gangadharan, M.K. Sinha, and D. Basu, Development of Hydroxyapatite Coating by Microplasma Spraying, Mater. Manuf. Process., 2009, 24(12), p 1321–1330CrossRef
4.
Zurück zum Zitat J.M. Ruan, J.P. Zou, J.N. Zhou, and J.Z. Hu, Porous Hydroxyapatite–Tricalcium Phosphate Bioceramics, Powder Metall., 2006, 49(1), p 66–69CrossRef J.M. Ruan, J.P. Zou, J.N. Zhou, and J.Z. Hu, Porous Hydroxyapatite–Tricalcium Phosphate Bioceramics, Powder Metall., 2006, 49(1), p 66–69CrossRef
5.
Zurück zum Zitat Pawłowski, L., Synthesis, Properties, and Applications of Hydroxyapatite, in Industrial Chemistry of Oxides for Emerging Applications, pp. 311–352, 2018. Pawłowski, L., Synthesis, Properties, and Applications of Hydroxyapatite, in Industrial Chemistry of Oxides for Emerging Applications, pp. 311–352, 2018.
6.
Zurück zum Zitat V.P. Orlovskii, V.S. Komlev, and S.M. Barinov, Hydroxyapatite and Hydroxyapatite-Based Ceramics, Inorg. Mater., 2002, 38(10), p 973–984CrossRef V.P. Orlovskii, V.S. Komlev, and S.M. Barinov, Hydroxyapatite and Hydroxyapatite-Based Ceramics, Inorg. Mater., 2002, 38(10), p 973–984CrossRef
7.
Zurück zum Zitat P. Mythili, J. Locs, K. Salma-Ancane, D. Loca, A. Largeteau, and L. Berzina-Cimdina, Fabrication, Properties, and Applications of Dense Hydroxyapatite: A Review, Journal of Functional Biomaterials, 2015, 6, p 1099–1140CrossRef P. Mythili, J. Locs, K. Salma-Ancane, D. Loca, A. Largeteau, and L. Berzina-Cimdina, Fabrication, Properties, and Applications of Dense Hydroxyapatite: A Review, Journal of Functional Biomaterials, 2015, 6, p 1099–1140CrossRef
8.
Zurück zum Zitat Yang, X., Hydroxyapatite: Design with Nature, in Orthopedic Biomaterials, pp. 141–165, 2017. Yang, X., Hydroxyapatite: Design with Nature, in Orthopedic Biomaterials, pp. 141–165, 2017.
9.
Zurück zum Zitat K.V. Sabanna, S. Kondaka, and K.P. Lingamaneni, Hydroxyapatite—Past, Present, and Future in Bone Regeneration, Bone and Tissue Regeneration Insights, 2016, 7, p 9–19 K.V. Sabanna, S. Kondaka, and K.P. Lingamaneni, Hydroxyapatite—Past, Present, and Future in Bone Regeneration, Bone and Tissue Regeneration Insights, 2016, 7, p 9–19
10.
Zurück zum Zitat Y. Lu, W. Dong, J. Ding, W. Wang, and A. Wang, Hydroxyapatite Nanomaterials: Synthesis, Properties, and Functional Applications, Nanomaterials from Clay Minerals, A. Wang and W. Wang, Ed., Elsevier, Amsterdam, 2019, p 485–536CrossRef Y. Lu, W. Dong, J. Ding, W. Wang, and A. Wang, Hydroxyapatite Nanomaterials: Synthesis, Properties, and Functional Applications, Nanomaterials from Clay Minerals, A. Wang and W. Wang, Ed., Elsevier, Amsterdam, 2019, p 485–536CrossRef
12.
Zurück zum Zitat G. Zhou, Y. Li, W. Xiao, L. Zhang, Y. Zuo, J. Xue, and J.A. Jansen, Synthesis, characterization, and antibacterial activities of a novel nanohydroxyapatite/zinc oxide complex, J. Biomed. Mater. Res., Part A, 2008, 85A(4), p 929–937CrossRef G. Zhou, Y. Li, W. Xiao, L. Zhang, Y. Zuo, J. Xue, and J.A. Jansen, Synthesis, characterization, and antibacterial activities of a novel nanohydroxyapatite/zinc oxide complex, J. Biomed. Mater. Res., Part A, 2008, 85A(4), p 929–937CrossRef
13.
Zurück zum Zitat S. Varun, H. Abshar, and L.M. Pandey, Effect of Zn/ZnO Integration with Hydroxyapatite: A Review, Mater. Technol., 2017, 33, p 76–92 S. Varun, H. Abshar, and L.M. Pandey, Effect of Zn/ZnO Integration with Hydroxyapatite: A Review, Mater. Technol., 2017, 33, p 76–92
14.
Zurück zum Zitat M. Fumiaki, K. Yoshiteru, and S. Yoko, Formation and Structure of Zinc-Substituted Calcium Hydroxyapatite, Mater. Res. Bull., 2005, 40, p 209–220CrossRef M. Fumiaki, K. Yoshiteru, and S. Yoko, Formation and Structure of Zinc-Substituted Calcium Hydroxyapatite, Mater. Res. Bull., 2005, 40, p 209–220CrossRef
15.
Zurück zum Zitat B. Basu, S. Naresh, K. Kahraman, and E. Suvaci, Sintering, Microstructure, Mechanical, and Antimicrobial Properties Of HAp-ZnO Biocomposites, J. Biomed. Mater. Res. B: Appl. Biomater., 2010, 95(2), p 430–440 B. Basu, S. Naresh, K. Kahraman, and E. Suvaci, Sintering, Microstructure, Mechanical, and Antimicrobial Properties Of HAp-ZnO Biocomposites, J. Biomed. Mater. Res. B: Appl. Biomater., 2010, 95(2), p 430–440
16.
Zurück zum Zitat E. Zhang, H. Chen, and F. Shen, Biocorrosion Properties and Blood and Cell Compatibility of Pure Iron as a Biodegradable Biomaterial, J. Mater. Sci. Mater. Med., 2010, 21, p 2151–2163CrossRef E. Zhang, H. Chen, and F. Shen, Biocorrosion Properties and Blood and Cell Compatibility of Pure Iron as a Biodegradable Biomaterial, J. Mater. Sci. Mater. Med., 2010, 21, p 2151–2163CrossRef
17.
Zurück zum Zitat Q. Chang, D.L. Chen, H.Q. Ru, X.Y. Yue, L. Yub, and C.P. Zhang, Toughening Mechanisms in Iron-Containing Hydroxyapatite/Titanium Composites, Biomaterials, 2010, 31, p 1493–1501CrossRef Q. Chang, D.L. Chen, H.Q. Ru, X.Y. Yue, L. Yub, and C.P. Zhang, Toughening Mechanisms in Iron-Containing Hydroxyapatite/Titanium Composites, Biomaterials, 2010, 31, p 1493–1501CrossRef
18.
Zurück zum Zitat H. Maleki-Ghaleh, E. Aghaie, A. Nadernezhad, M. Zargarzadeh, A. Khakzad, M.S. Shakeri, K.Y. Beygi, and M.H. Siadati, Influence of Fe3O4 Nanoparticles in Hydroxyapatite Scaffolds on Proliferation of Primary Human Fibroblast Cells, J. Mater. Eng. Perform., 2016, 25(6), p 2331–2339CrossRef H. Maleki-Ghaleh, E. Aghaie, A. Nadernezhad, M. Zargarzadeh, A. Khakzad, M.S. Shakeri, K.Y. Beygi, and M.H. Siadati, Influence of Fe3O4 Nanoparticles in Hydroxyapatite Scaffolds on Proliferation of Primary Human Fibroblast Cells, J. Mater. Eng. Perform., 2016, 25(6), p 2331–2339CrossRef
20.
Zurück zum Zitat S.S.A. Abidi and Q. Murtaza, Synthesis and Characterization of Nano-hydroxyapatite Powder Using Wet Chemical Precipitation Reaction, J. Mater. Sci. Technol., 2013, 30(4), p 307–310CrossRef S.S.A. Abidi and Q. Murtaza, Synthesis and Characterization of Nano-hydroxyapatite Powder Using Wet Chemical Precipitation Reaction, J. Mater. Sci. Technol., 2013, 30(4), p 307–310CrossRef
21.
Zurück zum Zitat J.A. Nordin, D.H. Prajitno, S. Saidin, H. Nur, and H. Hermawan, Structure Property Relationships of Iron-Hydroxyapatite Ceramic Matrix Nanocomposite Fabricated Using Mechanosynthesis Method, Mater. Sci. Eng. C, 2015, 51, p 294–299CrossRef J.A. Nordin, D.H. Prajitno, S. Saidin, H. Nur, and H. Hermawan, Structure Property Relationships of Iron-Hydroxyapatite Ceramic Matrix Nanocomposite Fabricated Using Mechanosynthesis Method, Mater. Sci. Eng. C, 2015, 51, p 294–299CrossRef
22.
Zurück zum Zitat M.V. Vasic, B. Antic, M. Boskovic, A. Antic, and J. Blanusa, Hydroxyapatite/Iron Oxide Nanocomposite Prepared by High Energy Ball Milling, Process. Appl. Ceram., 2019, 13(2), p 210–217CrossRef M.V. Vasic, B. Antic, M. Boskovic, A. Antic, and J. Blanusa, Hydroxyapatite/Iron Oxide Nanocomposite Prepared by High Energy Ball Milling, Process. Appl. Ceram., 2019, 13(2), p 210–217CrossRef
23.
Zurück zum Zitat M. Ajeesh, B.F. Francis, J. Annie, and P.R. Harikrishna Varma, Nano Iron Oxide—Hyrdroxyapatite Composite Ceramics with Enhanced Radiopacity, J. Mater: Mater. Med., 2010, 21, p 1427–1434 M. Ajeesh, B.F. Francis, J. Annie, and P.R. Harikrishna Varma, Nano Iron Oxide—Hyrdroxyapatite Composite Ceramics with Enhanced Radiopacity, J. Mater: Mater. Med., 2010, 21, p 1427–1434
24.
Zurück zum Zitat W. Junhu, N. Toru, and Y. Kunio, Syntheses, Structures and Photophysical Properties of Iron Containing Hydroxyapatite Prepared by a Modified Pseudo-Body Solution, J. Mater. Sci. Mater. Med., 2008, 19, p 2663–2667CrossRef W. Junhu, N. Toru, and Y. Kunio, Syntheses, Structures and Photophysical Properties of Iron Containing Hydroxyapatite Prepared by a Modified Pseudo-Body Solution, J. Mater. Sci. Mater. Med., 2008, 19, p 2663–2667CrossRef
25.
Zurück zum Zitat D. Lifei, S. Yang, P. Zhang, and D. Huiling, Pinning Effect of Different Shape Second-Phase Particles on Grain Growth in Polycrystalline: Numerical and Analytical Investigations, Compos. Interfaces, 2018, 25(4), p 357–368CrossRef D. Lifei, S. Yang, P. Zhang, and D. Huiling, Pinning Effect of Different Shape Second-Phase Particles on Grain Growth in Polycrystalline: Numerical and Analytical Investigations, Compos. Interfaces, 2018, 25(4), p 357–368CrossRef
26.
Zurück zum Zitat M. Asmani, C. Kermel, A. Leriche, and M. Ourak, Influence of Porosity on Young’s Modulus and Poisson’s Ratio in Alumina Ceramics, J. Eur. Ceram. Soc., 2001, 21(8), p 1081–1086CrossRef M. Asmani, C. Kermel, A. Leriche, and M. Ourak, Influence of Porosity on Young’s Modulus and Poisson’s Ratio in Alumina Ceramics, J. Eur. Ceram. Soc., 2001, 21(8), p 1081–1086CrossRef
27.
Zurück zum Zitat R. Kumar, K.H. Prakash, P. Cheang, and K.A. Khor, Microstructure and Mechanical Properties of Spark Plasma Sintered Zirconia-Hydroxyapatite Nano-composite Powders, Acta Mater., 2005, 53, p 2327–2335CrossRef R. Kumar, K.H. Prakash, P. Cheang, and K.A. Khor, Microstructure and Mechanical Properties of Spark Plasma Sintered Zirconia-Hydroxyapatite Nano-composite Powders, Acta Mater., 2005, 53, p 2327–2335CrossRef
28.
Zurück zum Zitat Q. Tang and J. Gong, Effect of Porosity on the Micro-hardness Testing of Brittle Ceramics: A Case Study on the System of NiO–ZrO2, Ceram. Int., 2013, 39, p 8751–8759CrossRef Q. Tang and J. Gong, Effect of Porosity on the Micro-hardness Testing of Brittle Ceramics: A Case Study on the System of NiO–ZrO2, Ceram. Int., 2013, 39, p 8751–8759CrossRef
29.
Zurück zum Zitat D.S. Metsger, M.R. Rieger, and D.W. Foreman, Mechanical Properties Of Sintered Hydroxyapatite and Tricalcium Phosphate Ceramic, J. Mater. Sci. - Mater. Med., 1999, 10, p 9–17CrossRef D.S. Metsger, M.R. Rieger, and D.W. Foreman, Mechanical Properties Of Sintered Hydroxyapatite and Tricalcium Phosphate Ceramic, J. Mater. Sci. - Mater. Med., 1999, 10, p 9–17CrossRef
30.
Zurück zum Zitat K. Pal and S. Pal, Development of Porous Hydroxyapatite Scaffolds, Mater. Manuf. Process., 2006, 21(3), p 325–328CrossRef K. Pal and S. Pal, Development of Porous Hydroxyapatite Scaffolds, Mater. Manuf. Process., 2006, 21(3), p 325–328CrossRef
31.
Zurück zum Zitat J. Wu, C. Ruan, Y. Ma, Y. Wang, and Y. Luo, Vital role of Hydroxyapatite Particle Shape in Regulating the Porosity and Mechanical Properties of the Sintered Scaffolds, J. Mater. Sci. Technol., 2018, 34(3), p 503–507CrossRef J. Wu, C. Ruan, Y. Ma, Y. Wang, and Y. Luo, Vital role of Hydroxyapatite Particle Shape in Regulating the Porosity and Mechanical Properties of the Sintered Scaffolds, J. Mater. Sci. Technol., 2018, 34(3), p 503–507CrossRef
32.
Zurück zum Zitat K.A. Hing, S.M. Best, and W. Bonfield, Characterization of Porous Hydroxyapatite, J. Mater. Sci. Mater. Med., 1999, 10, p 135–145CrossRef K.A. Hing, S.M. Best, and W. Bonfield, Characterization of Porous Hydroxyapatite, J. Mater. Sci. Mater. Med., 1999, 10, p 135–145CrossRef
33.
Zurück zum Zitat S. Pramanik, A.K. Agarwal, and K.N. Rai, Development of High Strength Hydroxyapatite for Hard Tissue Replacement, Trends Biomater. Artif. Organs, 2005, 19(1), p 46–51 S. Pramanik, A.K. Agarwal, and K.N. Rai, Development of High Strength Hydroxyapatite for Hard Tissue Replacement, Trends Biomater. Artif. Organs, 2005, 19(1), p 46–51
35.
Zurück zum Zitat W. Wei-wei, Y.-b. Zhu, W. Chen, S. Li, B. Yin, J.-z. Wang, X.-j. Zhang, G.-b. Liu, H. Zu-sheng, and Y.-z. Zhang, Bone Hardness of Different Anatomical Regions of Human Radius and its Impact on the Pullout Strength of Screws, Orthop. Surg., 2019, 11(2), p 270–276CrossRef W. Wei-wei, Y.-b. Zhu, W. Chen, S. Li, B. Yin, J.-z. Wang, X.-j. Zhang, G.-b. Liu, H. Zu-sheng, and Y.-z. Zhang, Bone Hardness of Different Anatomical Regions of Human Radius and its Impact on the Pullout Strength of Screws, Orthop. Surg., 2019, 11(2), p 270–276CrossRef
Metadaten
Titel
Determination of Mechanical Properties and Physical Characterization of HA-ZnO- Composites for Implant Applications
verfasst von
Ruchi Gupta
Vinay Pratap Singh
Publikationsdatum
08.01.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 2/2021
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-05385-6

Weitere Artikel der Ausgabe 2/2021

Journal of Materials Engineering and Performance 2/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.