Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 6/2016

02.05.2016

Influence of Fe3O4 Nanoparticles in Hydroxyapatite Scaffolds on Proliferation of Primary Human Fibroblast Cells

verfasst von: H. Maleki-Ghaleh, E. Aghaie, A. Nadernezhad, M. Zargarzadeh, A. Khakzad, M. S. Shakeri, Y. Beygi Khosrowshahi, M. H. Siadati

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 6/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Modern techniques for expanding stem cells play a substantial role in tissue engineering: the raw material that facilitates regeneration of damaged tissues and treats diseases. The environmental conditions and bioprocessing methods are the primary determinants of the rate of cultured stem cell proliferation. Bioceramic scaffolds made of calcium phosphate are effective substrates for optimal cell proliferation. The present study investigates the effects of two bioceramic scaffolds on proliferating cells in culture media. One scaffold was made of hydroxyapatite and the other was a mixture of hydroxyapatite and ferromagnetic material (Fe3O4 nanoparticles). Disk-shaped (10 mm × 2 mm) samples of the two scaffolds were prepared. Primary human fibroblast proliferation was 1.8- and 2.5-fold faster, respectively, when cultured in the presence of hydroxyapatite or ferrous nanoparticle/hydroxyapatite mixtures. Optical microscopy images revealed that the increased proliferation was due to enhanced cell-cell contact. The presence of magnetic Fe3O4 nanoparticles in the ceramic scaffolds significantly increased cell proliferation compared to hydroxyapatite scaffolds and tissue culture polystyrene.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A.J. Mothe and C.H. Tator, Advances in Stem Cell Therapy for Spinal Cord Injury, J. Clin. Invest., 2012, 122(11), p 3824–3834CrossRef A.J. Mothe and C.H. Tator, Advances in Stem Cell Therapy for Spinal Cord Injury, J. Clin. Invest., 2012, 122(11), p 3824–3834CrossRef
2.
Zurück zum Zitat F. Berthiaume, T.J. Maguire, and M.L. Yarmush, Tissue Engineering and Regenerative Medicine: History, Progress, and Challenges, Ann. Rev. Chem. Biomol. Eng., 2011, 2, p 403–430CrossRef F. Berthiaume, T.J. Maguire, and M.L. Yarmush, Tissue Engineering and Regenerative Medicine: History, Progress, and Challenges, Ann. Rev. Chem. Biomol. Eng., 2011, 2, p 403–430CrossRef
3.
Zurück zum Zitat M. Mimeault and S.K. Batra, Concise Review: Recent Advances on the Significance of Stem Cells in Tissue Regeneration and Cancer Therapies, Stem Cells, 2006, 24, p 2319–2345CrossRef M. Mimeault and S.K. Batra, Concise Review: Recent Advances on the Significance of Stem Cells in Tissue Regeneration and Cancer Therapies, Stem Cells, 2006, 24, p 2319–2345CrossRef
4.
Zurück zum Zitat A.M. Parr, C.H. Tator, and A. Keating, Bone Marrow-Derived Mesenchymal Stromal Cells for the Repair of Central Nervous System Injury, Bone Marrow Transpl., 2007, 40, p 609–619CrossRef A.M. Parr, C.H. Tator, and A. Keating, Bone Marrow-Derived Mesenchymal Stromal Cells for the Repair of Central Nervous System Injury, Bone Marrow Transpl., 2007, 40, p 609–619CrossRef
5.
Zurück zum Zitat K.E. Hatzistergos, H. Quevedo, B.N. Oskouei, H. Qinghua, G.S. Feigenbaum, I.S. Margitich, R. Mazhari et al., Bone Marrow Mesenchymal Stem Cells Stimulate Cardiac Stem Cell Proliferation and Differentiation Novelty and Significance, Circ. Res., 2010, 107, p 913–922CrossRef K.E. Hatzistergos, H. Quevedo, B.N. Oskouei, H. Qinghua, G.S. Feigenbaum, I.S. Margitich, R. Mazhari et al., Bone Marrow Mesenchymal Stem Cells Stimulate Cardiac Stem Cell Proliferation and Differentiation Novelty and Significance, Circ. Res., 2010, 107, p 913–922CrossRef
6.
Zurück zum Zitat M. Körbling and Z. Estrov, Adult Stem Cells for Tissue Repair—A New Therapeutic Concept, N. Engl. J. Med., 2003, 349, p 570–582CrossRef M. Körbling and Z. Estrov, Adult Stem Cells for Tissue Repair—A New Therapeutic Concept, N. Engl. J. Med., 2003, 349, p 570–582CrossRef
7.
Zurück zum Zitat C.P. Hodgkinson, J.A. Gomez, M. Mirotsou, and V.J. Dzau, Genetic Engineering of Mesenchymal Stem Cells and its Application in Human Disease Therapy, Hum. Gene Ther., 2010, 21, p 1513–1526CrossRef C.P. Hodgkinson, J.A. Gomez, M. Mirotsou, and V.J. Dzau, Genetic Engineering of Mesenchymal Stem Cells and its Application in Human Disease Therapy, Hum. Gene Ther., 2010, 21, p 1513–1526CrossRef
8.
Zurück zum Zitat S. Polgar, L. Karimi, and M.E. Morris, Stem Cell Therapy for Parkinson’ s disease: Are Double-Blind Randomized Control Trials the Best Design for Quantifying Therapy Outcomes?, J. Neurol. Neurophysiol., 2013, 4, p 170. doi:10.4172/2155-9562.1000170 S. Polgar, L. Karimi, and M.E. Morris, Stem Cell Therapy for Parkinson’ s disease: Are Double-Blind Randomized Control Trials the Best Design for Quantifying Therapy Outcomes?, J. Neurol. Neurophysiol., 2013, 4, p 170. doi:10.​4172/​2155-9562.​1000170
9.
Zurück zum Zitat I. García-Gómez, G. Elvira, A.G. Zapata, M.L. Lamana, M. Ramírez, J. García Castro, M. García Arranz, A. Vicente, J. Bueren, and D. García-Olmo, Mesenchymal Stem Cells: Biological Properties and Clinical Applications, Expert Opin. Biol. Ther., 2010, 10(10), p 1453–1468CrossRef I. García-Gómez, G. Elvira, A.G. Zapata, M.L. Lamana, M. Ramírez, J. García Castro, M. García Arranz, A. Vicente, J. Bueren, and D. García-Olmo, Mesenchymal Stem Cells: Biological Properties and Clinical Applications, Expert Opin. Biol. Ther., 2010, 10(10), p 1453–1468CrossRef
10.
Zurück zum Zitat L. Mazzini, K. Mareschi, I. Ferrero, E. Vassallo, G. Oliveri, N. Nasuelli, G.D. Oggioni, L. Testa, and F. Fagioli, Stem Cell Treatment in Amyotrophic Lateral Sclerosis, J. Neurol. Sci., 2008, 265, p 78–83CrossRef L. Mazzini, K. Mareschi, I. Ferrero, E. Vassallo, G. Oliveri, N. Nasuelli, G.D. Oggioni, L. Testa, and F. Fagioli, Stem Cell Treatment in Amyotrophic Lateral Sclerosis, J. Neurol. Sci., 2008, 265, p 78–83CrossRef
11.
Zurück zum Zitat Y. Ikada, Challenges in Tissue Engineering, J. R. Soc. Interface, 2006, 3, p 589–601CrossRef Y. Ikada, Challenges in Tissue Engineering, J. R. Soc. Interface, 2006, 3, p 589–601CrossRef
12.
Zurück zum Zitat A.D. Ebert and C.N. Svendsen, Human Stem Cells and Drug Screening: Opportunities and Challenges, Nat. Rev. Drug Discov., 2010, 9, p 367–372CrossRef A.D. Ebert and C.N. Svendsen, Human Stem Cells and Drug Screening: Opportunities and Challenges, Nat. Rev. Drug Discov., 2010, 9, p 367–372CrossRef
13.
Zurück zum Zitat Y. Ikada, Tissue Engineering: Fundamentals and Applications, Vol 46, Elsevier, San Diego, 2011 Y. Ikada, Tissue Engineering: Fundamentals and Applications, Vol 46, Elsevier, San Diego, 2011
14.
Zurück zum Zitat H. Patil, I.S. Chandel, A.K. Rastogi, and P. Srivastava, Studies on a Novel Bioreactor Design for Chondrocyte Culture, International Journal of Tissue Engineering, 2013, 2013, p 1–7CrossRef H. Patil, I.S. Chandel, A.K. Rastogi, and P. Srivastava, Studies on a Novel Bioreactor Design for Chondrocyte Culture, International Journal of Tissue Engineering, 2013, 2013, p 1–7CrossRef
15.
Zurück zum Zitat J.E. Hambor, Bioreactor Design and Bioprocess Controls for Industrialized Cell Processing, BioProcess Int., 2012, 10, p 22–33 J.E. Hambor, Bioreactor Design and Bioprocess Controls for Industrialized Cell Processing, BioProcess Int., 2012, 10, p 22–33
16.
Zurück zum Zitat M. Serra, C. Brito, C. Correia, and P.M. Alves, Process Engineering of Human Pluripotent Stem Cells for Clinical Application, Trends Biotechnol., 2012, 30, p 350–359CrossRef M. Serra, C. Brito, C. Correia, and P.M. Alves, Process Engineering of Human Pluripotent Stem Cells for Clinical Application, Trends Biotechnol., 2012, 30, p 350–359CrossRef
17.
Zurück zum Zitat A.C. Allori, A.M. Sailon, and S.M. Warren, Biological Basis of Bone Formation, Remodeling, and Repair—Part I: Biochemical Signaling Molecules, Tissue Eng. B, 2008, 14, p 259–273CrossRef A.C. Allori, A.M. Sailon, and S.M. Warren, Biological Basis of Bone Formation, Remodeling, and Repair—Part I: Biochemical Signaling Molecules, Tissue Eng. B, 2008, 14, p 259–273CrossRef
18.
Zurück zum Zitat G.M. Harbers and D.W. Grainger, Cell-Material Interactions: Fundamental Design Issues for Tissue Engineering and Clinical Considerations. An Introduction to Biomaterials, Taylor Francis Group, Boca Raton, FL, 2006, p 15–45 G.M. Harbers and D.W. Grainger, Cell-Material Interactions: Fundamental Design Issues for Tissue Engineering and Clinical Considerations. An Introduction to Biomaterials, Taylor Francis Group, Boca Raton, FL, 2006, p 15–45
19.
Zurück zum Zitat G. Huang, L. Wang, S.Q. Wang, Y. Han, W. Jinhui, Q. Zhang, X. Feng, and T.J. Lu, Engineering Three-Dimensional Cell Mechanical Microenvironment with Hydrogels, Biofabrication, 2012, 4, p 042001CrossRef G. Huang, L. Wang, S.Q. Wang, Y. Han, W. Jinhui, Q. Zhang, X. Feng, and T.J. Lu, Engineering Three-Dimensional Cell Mechanical Microenvironment with Hydrogels, Biofabrication, 2012, 4, p 042001CrossRef
20.
21.
Zurück zum Zitat T. Mygind, M. Stiehler, A. Baatrup, H. Li, X. Zou, A. Flyvbjerg et al., Mesenchymal Stem Cell Ingrowth and Differentiation on Coralline Hydroxyapatite Scaffolds, Biomaterials, 2007, 28(6), p 1036–1047CrossRef T. Mygind, M. Stiehler, A. Baatrup, H. Li, X. Zou, A. Flyvbjerg et al., Mesenchymal Stem Cell Ingrowth and Differentiation on Coralline Hydroxyapatite Scaffolds, Biomaterials, 2007, 28(6), p 1036–1047CrossRef
22.
Zurück zum Zitat D. Turhani, E. Watzinger, M. Weissenbock, B. Cvikl, D. Thurnher, G. Wittwer et al., Analysis of Cell-Seeded 3-Dimensional Bone Constructs Manufactured In Vitro with Hydroxyapatite Granules Obtained from Red Algae, J. Oral Maxillofac. Surg., 2005, 63, p 673–681CrossRef D. Turhani, E. Watzinger, M. Weissenbock, B. Cvikl, D. Thurnher, G. Wittwer et al., Analysis of Cell-Seeded 3-Dimensional Bone Constructs Manufactured In Vitro with Hydroxyapatite Granules Obtained from Red Algae, J. Oral Maxillofac. Surg., 2005, 63, p 673–681CrossRef
23.
Zurück zum Zitat F.H. Liu, Fabrication of Bioceramic Bone Scaffolds for Tissue Engineering, J. Mater. Eng. Perform., 2014, 23, p 3762–3769CrossRef F.H. Liu, Fabrication of Bioceramic Bone Scaffolds for Tissue Engineering, J. Mater. Eng. Perform., 2014, 23, p 3762–3769CrossRef
24.
Zurück zum Zitat J.G. Ocampo, M.E. Jaramillo, D.E. Sierra, and C.O. Orozco, Suspension Rheology, Porosity and Mechanical Strength of Porous Hydroxyapatite Obtained by Gel-casting and Infiltration, J. Mater. Eng. Perform., 2016, 25, p 431–442CrossRef J.G. Ocampo, M.E. Jaramillo, D.E. Sierra, and C.O. Orozco, Suspension Rheology, Porosity and Mechanical Strength of Porous Hydroxyapatite Obtained by Gel-casting and Infiltration, J. Mater. Eng. Perform., 2016, 25, p 431–442CrossRef
25.
Zurück zum Zitat F. Bistolfi, Radiazioni non ionizzanti, ordine, disordine e biostrutture, Minerva Medica, Torino, 1989, p 209–246 F. Bistolfi, Radiazioni non ionizzanti, ordine, disordine e biostrutture, Minerva Medica, Torino, 1989, p 209–246
26.
Zurück zum Zitat E. Neumann, Membrane Electroporation: Toward a Molecular Mechanism. Electricity and Magnetism in Biology and Medicine, University of Bielefeld, Bielefeld, 1992 E. Neumann, Membrane Electroporation: Toward a Molecular Mechanism. Electricity and Magnetism in Biology and Medicine, University of Bielefeld, Bielefeld, 1992
27.
Zurück zum Zitat Y. Mouneimne, Electroinsertion of Proteins into Membranes: A Novel Approach to the Study of Membrane Receptors, Harvard University, USA. Electricity and Magnetism in Biology and Medicine, University of Bielefeld, San Francisco, 1992 Y. Mouneimne, Electroinsertion of Proteins into Membranes: A Novel Approach to the Study of Membrane Receptors, Harvard University, USA. Electricity and Magnetism in Biology and Medicine, University of Bielefeld, San Francisco, 1992
28.
Zurück zum Zitat C.E. Lindgren, Capturing the Aura Integrating Science, Technology and Metaphysics, Motilal Banarsidass Publishe, New Delhi, 2008 C.E. Lindgren, Capturing the Aura Integrating Science, Technology and Metaphysics, Motilal Banarsidass Publishe, New Delhi, 2008
29.
Zurück zum Zitat N. Dekhtyar, N. Polyaka, R. Sammons, 14th Baltic Conference on Biomedical Engineering and Medical Physics, Vol. 20, Springer, Berlin, 2008 N. Dekhtyar, N. Polyaka, R. Sammons, 14th Baltic Conference on Biomedical Engineering and Medical Physics, Vol. 20, Springer, Berlin, 2008
30.
Zurück zum Zitat D. Kumar, J.P. Gittings, I.G. Turner, C.R. Bowen, A. . Bastida-Hidalgo, and S.H. Cartmell, Polarization of Hydroxyapatite: Influence on Osteoblast Cell Proliferation, Acta Biomater., 2010, 6, p 1549–1554CrossRef D. Kumar, J.P. Gittings, I.G. Turner, C.R. Bowen, A. . Bastida-Hidalgo, and S.H. Cartmell, Polarization of Hydroxyapatite: Influence on Osteoblast Cell Proliferation, Acta Biomater., 2010, 6, p 1549–1554CrossRef
31.
Zurück zum Zitat S. Bodhak, S. Bose, and A. Bandyopadhyay, Bone Cell-Material Interactions on Metal-Ion Doped Polarized Hydroxyapatite, Mater. Sci. Eng., C, 2011, 31, p 755–761CrossRef S. Bodhak, S. Bose, and A. Bandyopadhyay, Bone Cell-Material Interactions on Metal-Ion Doped Polarized Hydroxyapatite, Mater. Sci. Eng., C, 2011, 31, p 755–761CrossRef
32.
Zurück zum Zitat W.R. Adey, Electromagnetics in Biology and Medicine, Modern Radio Science, H. Matsumoto, Ed., Oxford University Press, Oxford, 1993, p 245–277 W.R. Adey, Electromagnetics in Biology and Medicine, Modern Radio Science, H. Matsumoto, Ed., Oxford University Press, Oxford, 1993, p 245–277
33.
Zurück zum Zitat T.Y. Tsong, Deciphering the Language of Cells, Trends Biochem. Sci., 1989, 14, p 89–92CrossRef T.Y. Tsong, Deciphering the Language of Cells, Trends Biochem. Sci., 1989, 14, p 89–92CrossRef
34.
Zurück zum Zitat Z.J. Sienkiewicz, N.A. Cridland, C.I. Kowalczuk, and R.D. Saunders, Biological Effects of Electromagnetic Fields and Radiation, The Review of Radio Science 1990–1992, M.R. Stone, Ed., Oxford Science Publications, Oxford, 1993, p 737–770 Z.J. Sienkiewicz, N.A. Cridland, C.I. Kowalczuk, and R.D. Saunders, Biological Effects of Electromagnetic Fields and Radiation, The Review of Radio Science 1990–1992, M.R. Stone, Ed., Oxford Science Publications, Oxford, 1993, p 737–770
35.
Zurück zum Zitat A. Kodama, N. Kamei, G. Kamei, W. Kongcharoensombat, S. Ohkawa, A. Nakabayashi, and M. Ochi, In Vivo Bioluminescence Imaging of Transplanted Bone Marrow Mesenchymal Stromal Cells Using a Magnetic Delivery System in a Rat Fracture Model, Br. J. Bone Joint Surg., 2012, 94, p 998–1006CrossRef A. Kodama, N. Kamei, G. Kamei, W. Kongcharoensombat, S. Ohkawa, A. Nakabayashi, and M. Ochi, In Vivo Bioluminescence Imaging of Transplanted Bone Marrow Mesenchymal Stromal Cells Using a Magnetic Delivery System in a Rat Fracture Model, Br. J. Bone Joint Surg., 2012, 94, p 998–1006CrossRef
36.
Zurück zum Zitat J.I. Jacobson, R. Gorman, W.S. Yamanashi, B.B. Saxena, and L. Clayton, Low-Amplitude, Extremely Low Frequency Magnetic Fields for the Treatment of Osteoarthritic Knees: A Double-Blind Clinical Study, Altern. Ther. Health Med., 2001, 7(5), p 54–64 J.I. Jacobson, R. Gorman, W.S. Yamanashi, B.B. Saxena, and L. Clayton, Low-Amplitude, Extremely Low Frequency Magnetic Fields for the Treatment of Osteoarthritic Knees: A Double-Blind Clinical Study, Altern. Ther. Health Med., 2001, 7(5), p 54–64
37.
Zurück zum Zitat R. Zboril, M. Mashlan, and D. Petridis, Iron(III) Oxides from Thermal Processes Synthesis, Structural and Magnetic Properties, Mössbauer Spectroscopy Characterization, and Applications, Chem. Mater., 2002, 14(3), p 969–982CrossRef R. Zboril, M. Mashlan, and D. Petridis, Iron(III) Oxides from Thermal Processes Synthesis, Structural and Magnetic Properties, Mössbauer Spectroscopy Characterization, and Applications, Chem. Mater., 2002, 14(3), p 969–982CrossRef
38.
Zurück zum Zitat H.M. Kothari, E.A. Kulp, S.J. Limmer, P. Poizot, E.W. Bohannan, and J.A. Switzer, Electrochemical Deposition and Characterization of Fe3O4 Films Produced by the Reduction of Fe(III)-Triethanolamine, J. Mater. Res., 2006, 21(1), p 293–301CrossRef H.M. Kothari, E.A. Kulp, S.J. Limmer, P. Poizot, E.W. Bohannan, and J.A. Switzer, Electrochemical Deposition and Characterization of Fe3O4 Films Produced by the Reduction of Fe(III)-Triethanolamine, J. Mater. Res., 2006, 21(1), p 293–301CrossRef
39.
Zurück zum Zitat M.E. Bahrololoom, M. Javidi, S. Javadpour, and J. Ma, Characterisation of Natural Hydroxyapatite Extracted from Bovine Cortical Bone Ash, J. Ceram. Process. Res., 2009, 10, p 129–138 M.E. Bahrololoom, M. Javidi, S. Javadpour, and J. Ma, Characterisation of Natural Hydroxyapatite Extracted from Bovine Cortical Bone Ash, J. Ceram. Process. Res., 2009, 10, p 129–138
40.
Zurück zum Zitat K. Haberko, M.M. Bucko, J. Brzezińska-Miecznik, M. Haberko, W. Mozgawa, T. Panz, A. Pyda, and J. Zar, ebski, Natural Hydroxyapatite—Its Behaviour During Heat Treatment, J. Eur. Ceram. Soc., 2006, 26, p 537–542CrossRef K. Haberko, M.M. Bucko, J. Brzezińska-Miecznik, M. Haberko, W. Mozgawa, T. Panz, A. Pyda, and J. Zar, ebski, Natural Hydroxyapatite—Its Behaviour During Heat Treatment, J. Eur. Ceram. Soc., 2006, 26, p 537–542CrossRef
41.
Zurück zum Zitat Y. Li, C.T. Nam, and C.P. Ooi, Iron (III) and Manganese (II) Substituted Hydroxyapatite Nanoparticles: Characterization and Cytotoxicity Analysis, J. Phys., 2009, 187(1), p 012024 Y. Li, C.T. Nam, and C.P. Ooi, Iron (III) and Manganese (II) Substituted Hydroxyapatite Nanoparticles: Characterization and Cytotoxicity Analysis, J. Phys., 2009, 187(1), p 012024
42.
Zurück zum Zitat R.P. Franke and F. Jung, Interaction of Blood Components and Blood Cells with Body Foreign, Surfaces, Ser. Biomech., 2012, 27, p 51–58 R.P. Franke and F. Jung, Interaction of Blood Components and Blood Cells with Body Foreign, Surfaces, Ser. Biomech., 2012, 27, p 51–58
43.
Zurück zum Zitat Genel Histoloji Erkocak, Dag Okan, Yay ltd. sti, Istanbul, 1983 Genel Histoloji Erkocak, Dag Okan, Yay ltd. sti, Istanbul, 1983
44.
Zurück zum Zitat R. Glicklis, L. Shapiro, R. Agbaria, J.C. Merchuk, and S. Cohen, Hepatocyte Behavior Within Three-Dimensional Porous Alginate Scaffolds, Biotechnol. Bioeng., 2000, 67, p 344–353CrossRef R. Glicklis, L. Shapiro, R. Agbaria, J.C. Merchuk, and S. Cohen, Hepatocyte Behavior Within Three-Dimensional Porous Alginate Scaffolds, Biotechnol. Bioeng., 2000, 67, p 344–353CrossRef
45.
Zurück zum Zitat E. McCafferty, Relationship Between the Isoelectric Point (pHpzc) and the Potential of Zero Charge (E pzc) for Passive Metals, Electrochim. Acta, 2010, 55, p 1630–1637CrossRef E. McCafferty, Relationship Between the Isoelectric Point (pHpzc) and the Potential of Zero Charge (E pzc) for Passive Metals, Electrochim. Acta, 2010, 55, p 1630–1637CrossRef
46.
Zurück zum Zitat M. Kosmulski, pH-Dependent Surface Charging and Points of Zero Charge, J. Colloid Interface Sci., 2006, 298, p 730–741CrossRef M. Kosmulski, pH-Dependent Surface Charging and Points of Zero Charge, J. Colloid Interface Sci., 2006, 298, p 730–741CrossRef
47.
Zurück zum Zitat M. Kosmulski, The pH-Dependent Surface Charging and Points of Zero Charge, J. Colloid Interface Sci., 2011, 353, p 1–15CrossRef M. Kosmulski, The pH-Dependent Surface Charging and Points of Zero Charge, J. Colloid Interface Sci., 2011, 353, p 1–15CrossRef
48.
Zurück zum Zitat F. Bistolfi, Campi magnetici in medicina, Ed. Minerva Medica, Torino, 1993 F. Bistolfi, Campi magnetici in medicina, Ed. Minerva Medica, Torino, 1993
49.
Zurück zum Zitat C.W. Smith and S. Best, Electromagnetic Man, J.M. Dent & Sonns, London, 1989 C.W. Smith and S. Best, Electromagnetic Man, J.M. Dent & Sonns, London, 1989
50.
Zurück zum Zitat F. Bistolfi, , Radiazioni non ionizzanti, ordine, disordine e biostruture, Ed. Minerva Medica, Torino, 1989 F. Bistolfi, , Radiazioni non ionizzanti, ordine, disordine e biostruture, Ed. Minerva Medica, Torino, 1989
51.
Zurück zum Zitat M. Cifra, J.Z. Fields, and A. Farhadi, Electromagnetic Cellular Interactions, Prog. Biophys. Mol. Biol., 2011, 105, p 223–246CrossRef M. Cifra, J.Z. Fields, and A. Farhadi, Electromagnetic Cellular Interactions, Prog. Biophys. Mol. Biol., 2011, 105, p 223–246CrossRef
52.
Zurück zum Zitat H. Fröhlich, The Extraordinary Dielectric Properties of Biological Materials and the Action of Enzymes, Proc. Natl. Acad. Sci., 1975, 72, p 4211–4215CrossRef H. Fröhlich, The Extraordinary Dielectric Properties of Biological Materials and the Action of Enzymes, Proc. Natl. Acad. Sci., 1975, 72, p 4211–4215CrossRef
53.
Zurück zum Zitat C. Rossi, A. Foletti, A. Magnani, and S. Lamponi, New Perspectives in Cell Communication: Bioelectromagnetic Interactions, Semin. Cancer Biol., 2011, 21, p 207–214CrossRef C. Rossi, A. Foletti, A. Magnani, and S. Lamponi, New Perspectives in Cell Communication: Bioelectromagnetic Interactions, Semin. Cancer Biol., 2011, 21, p 207–214CrossRef
54.
Zurück zum Zitat S. Seckiner Gorgun, Studies on the Interaction Between Electromagnetic Fields and Living Matter Neoplastic Cellular Culture, Front. Prospect., 1998, 7(2), p 1–21 S. Seckiner Gorgun, Studies on the Interaction Between Electromagnetic Fields and Living Matter Neoplastic Cellular Culture, Front. Prospect., 1998, 7(2), p 1–21
55.
Zurück zum Zitat L.-Y. Sun, D.-K. Hsieh, Y. Tzai-Chiu, H.-T. Chiu, L. Sheng-Fen, G.-H. Luo, T.K. Kuo, O.K. Lee, and T.W. Chiou, Effect of Pulsed Electromagnetic Field on the Proliferation and Differentiation Potential of Human Bone Marrow Mesenchymal Stem Cells, Bioelectromagnetics, 2009, 30, p 251–260CrossRef L.-Y. Sun, D.-K. Hsieh, Y. Tzai-Chiu, H.-T. Chiu, L. Sheng-Fen, G.-H. Luo, T.K. Kuo, O.K. Lee, and T.W. Chiou, Effect of Pulsed Electromagnetic Field on the Proliferation and Differentiation Potential of Human Bone Marrow Mesenchymal Stem Cells, Bioelectromagnetics, 2009, 30, p 251–260CrossRef
56.
Zurück zum Zitat M.A. Omar, Elementary Solid State Physics, Pearson Education India, New Delhi, 1999 M.A. Omar, Elementary Solid State Physics, Pearson Education India, New Delhi, 1999
57.
Zurück zum Zitat W. Adey, Biological Effects of Electromagnetic Fields, J. Cell. Biochem., 1993, 51, p 410–416CrossRef W. Adey, Biological Effects of Electromagnetic Fields, J. Cell. Biochem., 1993, 51, p 410–416CrossRef
Metadaten
Titel
Influence of Fe3O4 Nanoparticles in Hydroxyapatite Scaffolds on Proliferation of Primary Human Fibroblast Cells
verfasst von
H. Maleki-Ghaleh
E. Aghaie
A. Nadernezhad
M. Zargarzadeh
A. Khakzad
M. S. Shakeri
Y. Beygi Khosrowshahi
M. H. Siadati
Publikationsdatum
02.05.2016
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 6/2016
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-016-2086-4

Weitere Artikel der Ausgabe 6/2016

Journal of Materials Engineering and Performance 6/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.