Skip to main content
Erschienen in: Journal of Computational Neuroscience 3/2009

01.12.2009

Dissecting cooperative calmodulin binding to CaM kinase II: a detailed stochastic model

verfasst von: Michael J. Byrne, John A. Putkey, M. Neal Waxham, Yoshihisa Kubota

Erschienen in: Journal of Computational Neuroscience | Ausgabe 3/2009

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Calmodulin (CaM) is a major Ca2+ binding protein involved in two opposing processes of synaptic plasticity of CA1 pyramidal neurons: long-term potentiation (LTP) and depression (LTD). The N- and C-terminal lobes of CaM bind to its target separately but cooperatively and introduce complex dynamics that cannot be well understood by experimental measurement. Using a detailed stochastic model constructed upon experimental data, we have studied the interaction between CaM and Ca2+-CaM-dependent protein kinase II (CaMKII), a key enzyme underlying LTP. The model suggests that the accelerated binding of one lobe of CaM to CaMKII, when the opposing lobe is already bound to CaMKII, is a critical determinant of the cooperative interaction between Ca2+, CaM, and CaMKII. The model indicates that the target-bound Ca2+ free N-lobe has an extended lifetime and may regulate the Ca2+ response of CaMKII during LTP induction. The model also reveals multiple kinetic pathways which have not been previously predicted for CaM-dissociation from CaMKII.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Babu, Y. S., Dack, J. S., Greenhough, T. J., Bugg, C. E., Means, A. R., & Cook, W. J. (1985). Three-dimensional structure of calmodulin. Nature, 315, 37–40.CrossRefPubMed Babu, Y. S., Dack, J. S., Greenhough, T. J., Bugg, C. E., Means, A. R., & Cook, W. J. (1985). Three-dimensional structure of calmodulin. Nature, 315, 37–40.CrossRefPubMed
Zurück zum Zitat Barth, A., Martin, S. R., & Mayley, P. M. (1998). Specificity and symmetry in the interaction of calmodulin domains with the skeletal muscle light chain kinase target sequence. Journal of Biological Chemistry, 273, 2174–2183.CrossRefPubMed Barth, A., Martin, S. R., & Mayley, P. M. (1998). Specificity and symmetry in the interaction of calmodulin domains with the skeletal muscle light chain kinase target sequence. Journal of Biological Chemistry, 273, 2174–2183.CrossRefPubMed
Zurück zum Zitat Bayley, P. M., Findlay, W. A., & Martin, S. R. (1996). Target recognition by calmodulin: dissecting the kinetics and affinity of interaction using short peptide sequences. Protein Science, 5, 1215–1228.CrossRefPubMed Bayley, P. M., Findlay, W. A., & Martin, S. R. (1996). Target recognition by calmodulin: dissecting the kinetics and affinity of interaction using short peptide sequences. Protein Science, 5, 1215–1228.CrossRefPubMed
Zurück zum Zitat Black, D. J., Leonard, J., & Persechini, A. (2006). Biphasic Ca2+-dependent switching in a calmodulin-IQ domain complex. Biochemistry, 45, 6987–6995.CrossRefPubMed Black, D. J., Leonard, J., & Persechini, A. (2006). Biphasic Ca2+-dependent switching in a calmodulin-IQ domain complex. Biochemistry, 45, 6987–6995.CrossRefPubMed
Zurück zum Zitat Bortz, A. A., Kalos, M. H., & Lebowitz, J. L. (1975). A new algorithm for Monte Carlo simulation of Ising Spin Systems. Journal of Computational Physics, 17, 10–18.CrossRef Bortz, A. A., Kalos, M. H., & Lebowitz, J. L. (1975). A new algorithm for Monte Carlo simulation of Ising Spin Systems. Journal of Computational Physics, 17, 10–18.CrossRef
Zurück zum Zitat Bradshaw, J. M., Kubota, Y., Meyer, T., & Schulman, H. (2003). An ultrasensitive Ca2+/calmodulin-dependent protein kinase II-protein phosphatase 1 switch facilitates specificity in postsynaptic calcium signaling. Proceeding of the National Academy of Science USA, 100, 10512–10517.CrossRef Bradshaw, J. M., Kubota, Y., Meyer, T., & Schulman, H. (2003). An ultrasensitive Ca2+/calmodulin-dependent protein kinase II-protein phosphatase 1 switch facilitates specificity in postsynaptic calcium signaling. Proceeding of the National Academy of Science USA, 100, 10512–10517.CrossRef
Zurück zum Zitat Brown, S. E., Martin, S. R., & Bayley, P. M. (1997). Kinetic control of the dissociation pathway of calmodulin-peptide complexes. Journal of Biological Chemistry, 272, 3389–3397.CrossRefPubMed Brown, S. E., Martin, S. R., & Bayley, P. M. (1997). Kinetic control of the dissociation pathway of calmodulin-peptide complexes. Journal of Biological Chemistry, 272, 3389–3397.CrossRefPubMed
Zurück zum Zitat Cantor, C. R., & Schimmel, P. R. (1980). Biophysical Chemistry. The Behavior of Biological Macromolecules, San Francisco, CA, Freeman: Part III. Cantor, C. R., & Schimmel, P. R. (1980). Biophysical Chemistry. The Behavior of Biological Macromolecules, San Francisco, CA, Freeman: Part III.
Zurück zum Zitat Champeil, P., Henao, F., & de Foresta, D. (1997). Dissociation of Ca2+ from sarcoplasmic reticulum Ca2+-ATPase and changes in fluorescence of optically selected Trp residues. Effect of KCL and NaCl and implications for substeps in Ca2+ dissociation. Biochemistry, 36, 12383–12393.CrossRefPubMed Champeil, P., Henao, F., & de Foresta, D. (1997). Dissociation of Ca2+ from sarcoplasmic reticulum Ca2+-ATPase and changes in fluorescence of optically selected Trp residues. Effect of KCL and NaCl and implications for substeps in Ca2+ dissociation. Biochemistry, 36, 12383–12393.CrossRefPubMed
Zurück zum Zitat Colquhoun, D., Dowsland, K. A., Beato, M., & Plested, A. J. R. (2004). How to impose microscopic reversibility in complex reaction mechanism. Biophysical Journal, 66, 3510–3518.CrossRef Colquhoun, D., Dowsland, K. A., Beato, M., & Plested, A. J. R. (2004). How to impose microscopic reversibility in complex reaction mechanism. Biophysical Journal, 66, 3510–3518.CrossRef
Zurück zum Zitat Dick, I. E., Tadross, M. R., Liang, H., Tay, L. H., Yang, W., & Yue, D. T. (2008). A modular switch for spatial Ca2+ selectivity in the calmodulin regulation of Cav channels. Nature, 451, 830–835.CrossRefPubMed Dick, I. E., Tadross, M. R., Liang, H., Tay, L. H., Yang, W., & Yue, D. T. (2008). A modular switch for spatial Ca2+ selectivity in the calmodulin regulation of Cav channels. Nature, 451, 830–835.CrossRefPubMed
Zurück zum Zitat Eberhart, R. C., & Kennedy, J. (1995). A new optimizer using particle swarm theory (pp. 39–43). Nagoya, Japan: Proceedings of the Sixth International Symposium on Micro Machine and Human Science. Eberhart, R. C., & Kennedy, J. (1995). A new optimizer using particle swarm theory (pp. 39–43). Nagoya, Japan: Proceedings of the Sixth International Symposium on Micro Machine and Human Science.
Zurück zum Zitat Evenas, J., Thulin, E., Malmendal, A., Forsen, S., & Carlstrom, G. (1997). NMR studies of the E140Q mutant of the carboxy-terminal domain of calmodulin reveal global conformational exchange in the Ca2+-saturated state. Biochemistry, 36, 3448–3457.CrossRefPubMed Evenas, J., Thulin, E., Malmendal, A., Forsen, S., & Carlstrom, G. (1997). NMR studies of the E140Q mutant of the carboxy-terminal domain of calmodulin reveal global conformational exchange in the Ca2+-saturated state. Biochemistry, 36, 3448–3457.CrossRefPubMed
Zurück zum Zitat Fichthorn, K. A., & Weinberg, W. H. (1991). Theoretical foundations of dynamical Monte Carlo simulations. Journal of Chemical Physics, 95, 1090–1096.CrossRef Fichthorn, K. A., & Weinberg, W. H. (1991). Theoretical foundations of dynamical Monte Carlo simulations. Journal of Chemical Physics, 95, 1090–1096.CrossRef
Zurück zum Zitat Forest, A., Swulius, M., Bradshaw, M., Gaertner, T. R., & Waxham, M. N. (2008). Role of the N- and C-Lobes of Calmodulin in the Activation of Ca2+/calmodulin-dependent Protein Kinase II. Biochemistry, 47, 10587–10599.CrossRefPubMed Forest, A., Swulius, M., Bradshaw, M., Gaertner, T. R., & Waxham, M. N. (2008). Role of the N- and C-Lobes of Calmodulin in the Activation of Ca2+/calmodulin-dependent Protein Kinase II. Biochemistry, 47, 10587–10599.CrossRefPubMed
Zurück zum Zitat Forsen, S., & Linse, S. (1995). Cooperativity: over the Hill. Trends in Biochemical Sciences, 20, 495–497.CrossRefPubMed Forsen, S., & Linse, S. (1995). Cooperativity: over the Hill. Trends in Biochemical Sciences, 20, 495–497.CrossRefPubMed
Zurück zum Zitat Franks, K. M., & Sejnowski, T. J. (2002). Complexity of calcium signaling in synaptic spines. Bioessays, 24, 1130–1144.CrossRefPubMed Franks, K. M., & Sejnowski, T. J. (2002). Complexity of calcium signaling in synaptic spines. Bioessays, 24, 1130–1144.CrossRefPubMed
Zurück zum Zitat Gaertner, T. R., Kolodziej, S. J., Wang, D., Kobayashi, R., Koomean, J. M., Stoops, J. K., et al. (2004). Comparative analyses of the three-dimensional and enzymatic properties of α, β, γ, and δ isoforms Ca2+-calmodulin-dependent protein kinase II. Journal of Biological Chemistry, 279, 12484–12494.CrossRefPubMed Gaertner, T. R., Kolodziej, S. J., Wang, D., Kobayashi, R., Koomean, J. M., Stoops, J. K., et al. (2004). Comparative analyses of the three-dimensional and enzymatic properties of α, β, γ, and δ isoforms Ca2+-calmodulin-dependent protein kinase II. Journal of Biological Chemistry, 279, 12484–12494.CrossRefPubMed
Zurück zum Zitat Gaertner, T. R., Putkey, J. A., & Waxham, M. N. (2004). RC3/Neurogranin and Ca2+/calmodulin-dependent protein kinase II produce opposing effects on the affinity of calmodulin for calcium. Journal of Biological Chemistry, 279, 39374–39382.CrossRefPubMed Gaertner, T. R., Putkey, J. A., & Waxham, M. N. (2004). RC3/Neurogranin and Ca2+/calmodulin-dependent protein kinase II produce opposing effects on the affinity of calmodulin for calcium. Journal of Biological Chemistry, 279, 39374–39382.CrossRefPubMed
Zurück zum Zitat Gillespie, D. T. (1976). A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics, 22, 403–434.CrossRef Gillespie, D. T. (1976). A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics, 22, 403–434.CrossRef
Zurück zum Zitat Haiech, J., & Kilhoffer, M. C. (2002). Deconvolution of calcium-binding curves. Facts and fantasies. Methods in Molecular Biology, 173, 25–42.PubMed Haiech, J., & Kilhoffer, M. C. (2002). Deconvolution of calcium-binding curves. Facts and fantasies. Methods in Molecular Biology, 173, 25–42.PubMed
Zurück zum Zitat Hudmon, A., & Schulman, H. (2002). Neuronal Ca2+/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function. Annual Review of Biochemistry, 71, 473–510.CrossRefPubMed Hudmon, A., & Schulman, H. (2002). Neuronal Ca2+/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function. Annual Review of Biochemistry, 71, 473–510.CrossRefPubMed
Zurück zum Zitat Keller, C. H., Olwin, B. B., LaPorte, D. C., & Storm, D. R. (1982). Determination of the free-energy coupling for binding of calcium ions and troponin I to calmodulin. Biochemistry, 21, 156–62.CrossRefPubMed Keller, C. H., Olwin, B. B., LaPorte, D. C., & Storm, D. R. (1982). Determination of the free-energy coupling for binding of calcium ions and troponin I to calmodulin. Biochemistry, 21, 156–62.CrossRefPubMed
Zurück zum Zitat Kim, S. A., Heinze, K. G., Waxham, M. N., & Schwille, P. (2004). Intracellular calmodulin availability accessed with two-photon cross-correlation. Proceeding of the National Academy of Science USA, 101, 105–110.CrossRef Kim, S. A., Heinze, K. G., Waxham, M. N., & Schwille, P. (2004). Intracellular calmodulin availability accessed with two-photon cross-correlation. Proceeding of the National Academy of Science USA, 101, 105–110.CrossRef
Zurück zum Zitat Kim, S. A., Heinze, K. G., Bacia, K., Waxham, M. N., & Schwille, P. (2005). Two-photon cross-correlation analysis of intracellular reactions with variable stoichiometry. Biophysical Journal, 88, 4319–4336.CrossRefPubMed Kim, S. A., Heinze, K. G., Bacia, K., Waxham, M. N., & Schwille, P. (2005). Two-photon cross-correlation analysis of intracellular reactions with variable stoichiometry. Biophysical Journal, 88, 4319–4336.CrossRefPubMed
Zurück zum Zitat Kubota, Y., Putkey, J. A., & Waxham, M. N. (2007). Neurogranin controls the spatiotemporal pattern of postsynaptic Ca2+/CaM signaling. Biophysical Journal, 93, 3848–3859.CrossRefPubMed Kubota, Y., Putkey, J. A., & Waxham, M. N. (2007). Neurogranin controls the spatiotemporal pattern of postsynaptic Ca2+/CaM signaling. Biophysical Journal, 93, 3848–3859.CrossRefPubMed
Zurück zum Zitat Levin, M. D., Shimizu, T. S., & Bray, D. (2002). Binding and diffusion of CheR molecules within a cluster of membrane receptors. Biophysical Journal, 82, 1809–1817.CrossRefPubMed Levin, M. D., Shimizu, T. S., & Bray, D. (2002). Binding and diffusion of CheR molecules within a cluster of membrane receptors. Biophysical Journal, 82, 1809–1817.CrossRefPubMed
Zurück zum Zitat Liang, H., DeMaria, C. D., Erickson, M. G., Mori, M. X., Alseikhan, B. A., & Yue, D. T. (2003). Unified mechanisms of Ca2+ regulation across the Ca2+ channel family. Neuron, 39, 951–960.CrossRefPubMed Liang, H., DeMaria, C. D., Erickson, M. G., Mori, M. X., Alseikhan, B. A., & Yue, D. T. (2003). Unified mechanisms of Ca2+ regulation across the Ca2+ channel family. Neuron, 39, 951–960.CrossRefPubMed
Zurück zum Zitat Linse, S., Helmersson, A., & Forsen, S. (1991). Calcium binding to calmodulin and its globular domains. Journal of Biological Chemistry, 266, 8050–8054.PubMed Linse, S., Helmersson, A., & Forsen, S. (1991). Calcium binding to calmodulin and its globular domains. Journal of Biological Chemistry, 266, 8050–8054.PubMed
Zurück zum Zitat Lisman, J., Schulman, H., & Cline, H. (2002). The molecular basis of CaMKII function in synaptic and behavioral memory. Nature Reviews Neuroscience, 3, 175–190.CrossRefPubMed Lisman, J., Schulman, H., & Cline, H. (2002). The molecular basis of CaMKII function in synaptic and behavioral memory. Nature Reviews Neuroscience, 3, 175–190.CrossRefPubMed
Zurück zum Zitat Majewska, A., Brown, E., Ross, J., & Yuste, R. (2000). Mechanisms of calcium decay kinetics in hippocampal spines: role of spine calcium pumps and calcium diffusion through the spine neck in biochemical compartmentalization. Journal of Neuroscience, 20, 1722–1734.PubMed Majewska, A., Brown, E., Ross, J., & Yuste, R. (2000). Mechanisms of calcium decay kinetics in hippocampal spines: role of spine calcium pumps and calcium diffusion through the spine neck in biochemical compartmentalization. Journal of Neuroscience, 20, 1722–1734.PubMed
Zurück zum Zitat Malenka, R. C., Kauer, J. A., Perkel, D. J., Mauk, M. D., Kelly, P. T., Nicoll, R. A., et al. (1989). An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation. Nature, 340, 554–557.CrossRefPubMed Malenka, R. C., Kauer, J. A., Perkel, D. J., Mauk, M. D., Kelly, P. T., Nicoll, R. A., et al. (1989). An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation. Nature, 340, 554–557.CrossRefPubMed
Zurück zum Zitat Malmendal, A., Evenas, J., Forsen, S., & Akke, M. (1999). Structural dynamics in the C-terminal domain of calmodulin at low calcium levels. Journal of Molecular Biology, 293, 883–899.CrossRefPubMed Malmendal, A., Evenas, J., Forsen, S., & Akke, M. (1999). Structural dynamics in the C-terminal domain of calmodulin at low calcium levels. Journal of Molecular Biology, 293, 883–899.CrossRefPubMed
Zurück zum Zitat Meyer, T., Hanson, P. I., Stryer, L., & Schulman, H. (1997). Calmodulin trapping by calcium-calmodulin-dependent protein kinase. Science, 256, 1199–1202.CrossRef Meyer, T., Hanson, P. I., Stryer, L., & Schulman, H. (1997). Calmodulin trapping by calcium-calmodulin-dependent protein kinase. Science, 256, 1199–1202.CrossRef
Zurück zum Zitat Mori, M. X., Erickson, M. G., & Yue, D. T. (2004). Functional stoichiometry and local enrichment of calmodulin interacting with Ca2+ channels. Science, 304, 432–435.CrossRefPubMed Mori, M. X., Erickson, M. G., & Yue, D. T. (2004). Functional stoichiometry and local enrichment of calmodulin interacting with Ca2+ channels. Science, 304, 432–435.CrossRefPubMed
Zurück zum Zitat Mulkey, R. M., Endo, S., Shenolikar, S., & Malenka, R. C. (1994). Involvement of a calcineuroin/inhibotor-1 phosphatase cascade in hippocampal long-term depression. Nature, 369, 486–488.CrossRefPubMed Mulkey, R. M., Endo, S., Shenolikar, S., & Malenka, R. C. (1994). Involvement of a calcineuroin/inhibotor-1 phosphatase cascade in hippocampal long-term depression. Nature, 369, 486–488.CrossRefPubMed
Zurück zum Zitat Olwin, B. B., Keller, C. H., & Storm, D. R. (1982). Interaction of a fluorescent N-dansylaziridine derivative of troponin I with calmodulin in the absence and presence of calcium. Biochemistry, 21, 5669–5675.CrossRefPubMed Olwin, B. B., Keller, C. H., & Storm, D. R. (1982). Interaction of a fluorescent N-dansylaziridine derivative of troponin I with calmodulin in the absence and presence of calcium. Biochemistry, 21, 5669–5675.CrossRefPubMed
Zurück zum Zitat Putkey, J. A., Kleerekoper, Q., Gaertner, T. R., & Waxham, M. N. (2003). A new role for IQ motif protein in regulating calmodulin function. Journal of Biological Chemistry, 278, 49667–49670.CrossRefPubMed Putkey, J. A., Kleerekoper, Q., Gaertner, T. R., & Waxham, M. N. (2003). A new role for IQ motif protein in regulating calmodulin function. Journal of Biological Chemistry, 278, 49667–49670.CrossRefPubMed
Zurück zum Zitat Putkey, J. A., Waxham, M. N., Gaertner, T. R., Brewer, K., Goldsmith, M., Kubota, Y., et al. (2008). Acidic/IQ motif regulator of calmodulin. Journal of Biological Chemistry, 283, 1401–1410.CrossRefPubMed Putkey, J. A., Waxham, M. N., Gaertner, T. R., Brewer, K., Goldsmith, M., Kubota, Y., et al. (2008). Acidic/IQ motif regulator of calmodulin. Journal of Biological Chemistry, 283, 1401–1410.CrossRefPubMed
Zurück zum Zitat Rosenberg, O. S., Deindl, S., Sung, R.-J., Nairn, A. C., & Kuriyan, J. (2005). Structure of the autoinhibited kinase domain of CaMKII and SAXS analysis of the holoenzyme. Cell, 123, 849–860.CrossRefPubMed Rosenberg, O. S., Deindl, S., Sung, R.-J., Nairn, A. C., & Kuriyan, J. (2005). Structure of the autoinhibited kinase domain of CaMKII and SAXS analysis of the holoenzyme. Cell, 123, 849–860.CrossRefPubMed
Zurück zum Zitat Schuhmeier, R. P., Dietze, B., Ursu, F., Lehmann-Horn, F., & Melzer, W. (2003). Voltage-activated calcium signals in myotubes loaded with high concentrations of EGTA. Biophysical Journal, 84, 1065–1078.CrossRefPubMed Schuhmeier, R. P., Dietze, B., Ursu, F., Lehmann-Horn, F., & Melzer, W. (2003). Voltage-activated calcium signals in myotubes loaded with high concentrations of EGTA. Biophysical Journal, 84, 1065–1078.CrossRefPubMed
Zurück zum Zitat Seaton, B. A., Head, J. F., Engelman, D. M., & Richards, F. M. (1985). Calcium-induced increase in the radius of gyration and maximum dimension of calmodulin measured by small-angle X-ray scattering. Biochemistry, 24, 6740–6743.CrossRefPubMed Seaton, B. A., Head, J. F., Engelman, D. M., & Richards, F. M. (1985). Calcium-induced increase in the radius of gyration and maximum dimension of calmodulin measured by small-angle X-ray scattering. Biochemistry, 24, 6740–6743.CrossRefPubMed
Zurück zum Zitat Shifman, J. M., Choi, M. H., Mihalas, S., Mayo, S. L., & Kennedy, M. B. (2006). Ca2+/calmodulin-dependent protein kinase II (CaMKII) is activated by calmodulin with two bound calciums. Proceeding of the National Academy of Science U.S.A., 103, 13968–13978.CrossRef Shifman, J. M., Choi, M. H., Mihalas, S., Mayo, S. L., & Kennedy, M. B. (2006). Ca2+/calmodulin-dependent protein kinase II (CaMKII) is activated by calmodulin with two bound calciums. Proceeding of the National Academy of Science U.S.A., 103, 13968–13978.CrossRef
Zurück zum Zitat Sorensen, B. R., & Shea, M. A. (1998). Interactions between domains of apo calmodulin alter calcium binding and stability. Biochemistry, 37, 4244–4253.CrossRefPubMed Sorensen, B. R., & Shea, M. A. (1998). Interactions between domains of apo calmodulin alter calcium binding and stability. Biochemistry, 37, 4244–4253.CrossRefPubMed
Zurück zum Zitat Tadross, M. R., Dick, I. E., & Yue, D. T. (2008). Mechanism of local and global Ca2+ sensing by calmodulin in complex with a Ca2+ channel. Cell, 133, 1228–1240.CrossRefPubMed Tadross, M. R., Dick, I. E., & Yue, D. T. (2008). Mechanism of local and global Ca2+ sensing by calmodulin in complex with a Ca2+ channel. Cell, 133, 1228–1240.CrossRefPubMed
Zurück zum Zitat Torok, K., Tzortzopoulos, A., Grabarek, Z., Best, S. L., & Thorogate, R. (2001). Dual effect of ATP in the activation mechanism of brain Ca2+/calmodulin-dependent protein kinase II by Ca2+/calmodulin. Biochemistry, 40, 14878–14890.CrossRefPubMed Torok, K., Tzortzopoulos, A., Grabarek, Z., Best, S. L., & Thorogate, R. (2001). Dual effect of ATP in the activation mechanism of brain Ca2+/calmodulin-dependent protein kinase II by Ca2+/calmodulin. Biochemistry, 40, 14878–14890.CrossRefPubMed
Zurück zum Zitat Xia, Z., & Storm, D. R. (2005). The role of calmodulin as a signal integrator for synaptic plasticity. Nature Reviews Neuroscience, 6, 267–276.CrossRefPubMed Xia, Z., & Storm, D. R. (2005). The role of calmodulin as a signal integrator for synaptic plasticity. Nature Reviews Neuroscience, 6, 267–276.CrossRefPubMed
Metadaten
Titel
Dissecting cooperative calmodulin binding to CaM kinase II: a detailed stochastic model
verfasst von
Michael J. Byrne
John A. Putkey
M. Neal Waxham
Yoshihisa Kubota
Publikationsdatum
01.12.2009
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 3/2009
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-009-0173-3

Weitere Artikel der Ausgabe 3/2009

Journal of Computational Neuroscience 3/2009 Zur Ausgabe