Skip to main content
Erschienen in: Microsystem Technologies 3/2023

21.02.2023 | Technical Paper

Droplet generation and breakup in a ribbed microfluidic T-junction for scalable emulsification process

verfasst von: Piyush Kumar, Manabendra Pathak

Erschienen in: Microsystem Technologies | Ausgabe 3/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present work reports a numerical investigation of droplet formation and breakup in a specially designed ribbed microfluidic T-junction. The ribbed microfluidic T-junction is proposed to enhance the operating conditions of droplet formation and splitting operations required in the emulsification process. Two sets of ribs are incorporated in the microfluidic T-junction to help the droplet formation at a low flow rate and to convert the unconfined droplet to a confined droplet for its further splitting in a sequential T-junction. The effects of different parameters on the confinement and the breakup mechanism for an unconfined droplet through the ribbed channel are studied. Transient deformation of an unconfined droplet, as it moves through the ribbed channel and consequent change in inertia and surface tension force help the confinement of the droplet. Confinement is required for a droplet with high viscosity for its breakup in the splitting channel. However, an unconfined droplet is broken in the splitting channel at a very low viscosity. Droplet breakup time decreases during the splitting with permanent obstruction. Vorticity along the droplet’s tip decreases with an increase in the flow rate ratio. The modified ribbed T-junction broadens the range of droplet splitting, i.e., at low flow rate ratios and high Capillary numbers required for various droplet-based microfluidic applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Adamson DN, Mustafi D, Zhang JX, Zheng B, Ismagilov RF (2006) Production of arrays of chemically distinct nanolitre plugs via repeated splitting in microfluidic devices. Lab Chip 6(9):1178–1186CrossRef Adamson DN, Mustafi D, Zhang JX, Zheng B, Ismagilov RF (2006) Production of arrays of chemically distinct nanolitre plugs via repeated splitting in microfluidic devices. Lab Chip 6(9):1178–1186CrossRef
Zurück zum Zitat Arias S, Montlaur A (2020) Numerical and experimental study of the squeezing-to-dripping transition in a T-junction. Microgravity Sci Technol 32(4):687–697CrossRef Arias S, Montlaur A (2020) Numerical and experimental study of the squeezing-to-dripping transition in a T-junction. Microgravity Sci Technol 32(4):687–697CrossRef
Zurück zum Zitat Bai L, Fu Y, Zhao S, Cheng Y (2016) Droplet formation in a microfluidic T-junction involving highly viscous fluid systems. Chem Eng Sci 145:141–148CrossRef Bai L, Fu Y, Zhao S, Cheng Y (2016) Droplet formation in a microfluidic T-junction involving highly viscous fluid systems. Chem Eng Sci 145:141–148CrossRef
Zurück zum Zitat Bashir S, Rees JM, Zimmerman WB (2014) Investigation of pressure profile evolution during confined microdroplet formation using a two-phase level set method. Int J Multiph Flow 60:40–49CrossRef Bashir S, Rees JM, Zimmerman WB (2014) Investigation of pressure profile evolution during confined microdroplet formation using a two-phase level set method. Int J Multiph Flow 60:40–49CrossRef
Zurück zum Zitat Celli GB, Abbaspourrad A (2018) Tailoring delivery system functionality using microfluidics. Annu Rev Food Sci Technol 9(1):481–501CrossRef Celli GB, Abbaspourrad A (2018) Tailoring delivery system functionality using microfluidics. Annu Rev Food Sci Technol 9(1):481–501CrossRef
Zurück zum Zitat Chen B, Li G, Wang W, Wang P (2015) 3D numerical simulation of droplet passive breakup in a micro-channel T-junction using the volume-of-fluid method. Appl Therm Eng 88:94–101CrossRef Chen B, Li G, Wang W, Wang P (2015) 3D numerical simulation of droplet passive breakup in a micro-channel T-junction using the volume-of-fluid method. Appl Therm Eng 88:94–101CrossRef
Zurück zum Zitat Cheng WL, Sadr R, Dai J, Han A (2018) Prediction of microdroplet breakup regime in asymmetric T-junction microchannels. Biomed Microdev 20(3):1–12CrossRef Cheng WL, Sadr R, Dai J, Han A (2018) Prediction of microdroplet breakup regime in asymmetric T-junction microchannels. Biomed Microdev 20(3):1–12CrossRef
Zurück zum Zitat Christopher GF, Nadia Noharuddin N, Taylor JA, Anna SL (2008) Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions. Phys Rev E 78(3):1–12CrossRef Christopher GF, Nadia Noharuddin N, Taylor JA, Anna SL (2008) Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions. Phys Rev E 78(3):1–12CrossRef
Zurück zum Zitat Fu T, Ma Y, Funfschilling D, Li HZ (2011) Dynamics of bubble breakup in a microfluidic T-junction divergence. Chem Eng Sci 66(18):4184–4195CrossRef Fu T, Ma Y, Funfschilling D, Li HZ (2011) Dynamics of bubble breakup in a microfluidic T-junction divergence. Chem Eng Sci 66(18):4184–4195CrossRef
Zurück zum Zitat Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM (2006) Formation of droplets and bubbles in a microfluidic T-junction - scaling and mechanism of break-up. Lab Chip 6(3):437–446CrossRef Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM (2006) Formation of droplets and bubbles in a microfluidic T-junction - scaling and mechanism of break-up. Lab Chip 6(3):437–446CrossRef
Zurück zum Zitat Guo F, Chen B (2009) Numerical study on Taylor bubble formation in a micro-channel T-junction using vof method. Microgravity Sci Technol 21:S51–S58CrossRef Guo F, Chen B (2009) Numerical study on Taylor bubble formation in a micro-channel T-junction using vof method. Microgravity Sci Technol 21:S51–S58CrossRef
Zurück zum Zitat Han W, Chen X (2019a) Effect of geometry configuration on the merged droplet formation in a double T-junction. Microgravity Sci Technol 31(6):855–864CrossRef Han W, Chen X (2019a) Effect of geometry configuration on the merged droplet formation in a double T-junction. Microgravity Sci Technol 31(6):855–864CrossRef
Zurück zum Zitat Han W, Chen X (2019b) New insights into the pressure during the merged droplet formation in the squeezing time. Chem Eng Res Des 145:213–225CrossRef Han W, Chen X (2019b) New insights into the pressure during the merged droplet formation in the squeezing time. Chem Eng Res Des 145:213–225CrossRef
Zurück zum Zitat Hoang DA, Portela LM, Kleijn CR, Kreutzer MT, Van Steijn V (2013) Dynamics of droplet breakup in a T-junction. J Fluid Mech 717:1–11CrossRefMATH Hoang DA, Portela LM, Kleijn CR, Kreutzer MT, Van Steijn V (2013) Dynamics of droplet breakup in a T-junction. J Fluid Mech 717:1–11CrossRefMATH
Zurück zum Zitat Jangir P, Jana AK (2019) CFD simulation of droplet splitting at microfluidic T-junctions in oil-water two-phase flow using conservative level set method. J Braz Soc Mech Sci Eng 41(2):1–16CrossRef Jangir P, Jana AK (2019) CFD simulation of droplet splitting at microfluidic T-junctions in oil-water two-phase flow using conservative level set method. J Braz Soc Mech Sci Eng 41(2):1–16CrossRef
Zurück zum Zitat Janssen PJA, Meijer HEH, Anderson PD (2012) Stability and breakup of confined threads. Phys Fluids 24(1):012102CrossRef Janssen PJA, Meijer HEH, Anderson PD (2012) Stability and breakup of confined threads. Phys Fluids 24(1):012102CrossRef
Zurück zum Zitat Jullien MC, Tsang-Mui-Ching MJ, Cohen C, Menetrier L, Tabeling P (2009) Droplet breakup in microfluidic T-junctions at small capillary numbers. Phys Fluids 21(7):1–7CrossRefMATH Jullien MC, Tsang-Mui-Ching MJ, Cohen C, Menetrier L, Tabeling P (2009) Droplet breakup in microfluidic T-junctions at small capillary numbers. Phys Fluids 21(7):1–7CrossRefMATH
Zurück zum Zitat Klausner JF, Mei R, Bernhard DM, Zeng LZ (1993) Vapour bubble departure in forced convection boiling. Int J Heat Mass Transf 36:651–662CrossRef Klausner JF, Mei R, Bernhard DM, Zeng LZ (1993) Vapour bubble departure in forced convection boiling. Int J Heat Mass Transf 36:651–662CrossRef
Zurück zum Zitat Kumar P, Pathak M (2020) Pressure transient during wettability mediated droplet formation in a microfluidic T-junction. Ind Eng Chem Res 59:11839–11850CrossRef Kumar P, Pathak M (2020) Pressure transient during wettability mediated droplet formation in a microfluidic T-junction. Ind Eng Chem Res 59:11839–11850CrossRef
Zurück zum Zitat Leshansky MA, Pismen ML (2009) Breakup of drops in a microfluidic T junction. Phys Fluids 21(2):023303CrossRefMATH Leshansky MA, Pismen ML (2009) Breakup of drops in a microfluidic T junction. Phys Fluids 21(2):023303CrossRefMATH
Zurück zum Zitat Leshansky AM, Afkhami S, Jullien M, Tabeling P (2012) Obstructed breakup of slender drops in a microfluidic T junction. Phys Rev Lett 108:1–5CrossRef Leshansky AM, Afkhami S, Jullien M, Tabeling P (2012) Obstructed breakup of slender drops in a microfluidic T junction. Phys Rev Lett 108:1–5CrossRef
Zurück zum Zitat Li X, He L, He Y, Gu H, Liu M (2019) Numerical study of droplet formation in the ordinary and modified T-junctions. Phys Fluids 31(8):082101CrossRef Li X, He L, He Y, Gu H, Liu M (2019) Numerical study of droplet formation in the ordinary and modified T-junctions. Phys Fluids 31(8):082101CrossRef
Zurück zum Zitat Link DR, Anna SL, Weitz DA, Stone HA (2004) Geometrically mediated breakup of drops in microfluidic devices. Phys Rev Lett 92:1–4CrossRef Link DR, Anna SL, Weitz DA, Stone HA (2004) Geometrically mediated breakup of drops in microfluidic devices. Phys Rev Lett 92:1–4CrossRef
Zurück zum Zitat Malekzadeh S, Roohi E (2015) Investigation of different droplet formation regimes in a T-junction microchannel using the VOF technique in OpenFOAM. Microgravity Sci Technol 27(3):231–243CrossRef Malekzadeh S, Roohi E (2015) Investigation of different droplet formation regimes in a T-junction microchannel using the VOF technique in OpenFOAM. Microgravity Sci Technol 27(3):231–243CrossRef
Zurück zum Zitat Nagesh G, Wang H, Ting DSK, Ahamed MJ (2021) Development of a rapid manufacturable microdroplet generator with pneumatic control. Microsyst Technol 27(8):3095–3103CrossRef Nagesh G, Wang H, Ting DSK, Ahamed MJ (2021) Development of a rapid manufacturable microdroplet generator with pneumatic control. Microsyst Technol 27(8):3095–3103CrossRef
Zurück zum Zitat Nekouei M, Vanapalli SA (2017) Volume-of-fluid simulations in microfluidic T-junction devices: influence of viscosity ratio on droplet size. Phys Fluids 29(3):032007CrossRef Nekouei M, Vanapalli SA (2017) Volume-of-fluid simulations in microfluidic T-junction devices: influence of viscosity ratio on droplet size. Phys Fluids 29(3):032007CrossRef
Zurück zum Zitat Pathak M (2011) Numerical simulation of membrane emulsification: effect of flow properties in the transition from dripping to jetting. J Membr Sci 382(1–2):166–176CrossRef Pathak M (2011) Numerical simulation of membrane emulsification: effect of flow properties in the transition from dripping to jetting. J Membr Sci 382(1–2):166–176CrossRef
Zurück zum Zitat Rallison JM (1984) The deformation of small viscous drop and bubbles in shear flows. Annu Rev Fluid Mech 16:45–66CrossRef Rallison JM (1984) The deformation of small viscous drop and bubbles in shear flows. Annu Rev Fluid Mech 16:45–66CrossRef
Zurück zum Zitat Shang L, Cheng Y, Wang J, Yu Y, Zhao Y, Chen Y, Gu Z (2016) Osmotic pressure-triggered cavitation in microcapsules. Lab Chip 16(2):251–255CrossRef Shang L, Cheng Y, Wang J, Yu Y, Zhao Y, Chen Y, Gu Z (2016) Osmotic pressure-triggered cavitation in microcapsules. Lab Chip 16(2):251–255CrossRef
Zurück zum Zitat Skurtys O, Aguilera JM (2008) Applications of microfluidic devices in food engineering. Food Biophys 3(1):1–15CrossRef Skurtys O, Aguilera JM (2008) Applications of microfluidic devices in food engineering. Food Biophys 3(1):1–15CrossRef
Zurück zum Zitat Song H, Tice JD, Ismagilov RF (2003) A microfluidic system for controlling reaction networks in time. Angew Chem Int Ed 42(7):768–772CrossRef Song H, Tice JD, Ismagilov RF (2003) A microfluidic system for controlling reaction networks in time. Angew Chem Int Ed 42(7):768–772CrossRef
Zurück zum Zitat Sontti SG, Atta A (2017) CFD analysis of microfluidic droplet formation in non-Newtonian liquid. Chem Eng J 330:245–261CrossRef Sontti SG, Atta A (2017) CFD analysis of microfluidic droplet formation in non-Newtonian liquid. Chem Eng J 330:245–261CrossRef
Zurück zum Zitat Thorsen T, Roberts RW, Arnold FH, Quake SR (2001) Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 86(18):4163–4166CrossRef Thorsen T, Roberts RW, Arnold FH, Quake SR (2001) Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 86(18):4163–4166CrossRef
Zurück zum Zitat Tice JD, Song H, Lyon AD, Ismagilov RF (2003) Formation of droplets and mixing in multiphase microfluidics at low values of the reynolds and the capillary numbers. Langmuir 19(22):9127–9133CrossRef Tice JD, Song H, Lyon AD, Ismagilov RF (2003) Formation of droplets and mixing in multiphase microfluidics at low values of the reynolds and the capillary numbers. Langmuir 19(22):9127–9133CrossRef
Zurück zum Zitat Van Der Graaf S, Nisisako T, Schroën CGPH, Van Der Sman RGM, Boom RM (2006) Lattice Boltzmann simulations of droplet formation in a T-shaped microchannel. Langmuir 22(9):4144–4152CrossRef Van Der Graaf S, Nisisako T, Schroën CGPH, Van Der Sman RGM, Boom RM (2006) Lattice Boltzmann simulations of droplet formation in a T-shaped microchannel. Langmuir 22(9):4144–4152CrossRef
Zurück zum Zitat Wang K, Lu YC, Shao HW, Luo GS (2008) Heat-transfer performance of a liquid-liquid microdsipersed system. Ind Eng Chm Res 47:9754–9758CrossRef Wang K, Lu YC, Shao HW, Luo GS (2008) Heat-transfer performance of a liquid-liquid microdsipersed system. Ind Eng Chm Res 47:9754–9758CrossRef
Zurück zum Zitat Xu JH, Li SW, Tan J, Luo GS (2008) Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping. Microfluidics Nanofluidics. 5(6):711–717CrossRef Xu JH, Li SW, Tan J, Luo GS (2008) Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping. Microfluidics Nanofluidics. 5(6):711–717CrossRef
Zurück zum Zitat Zeng W, Li S, Fu H (2018) Modeling of the pressure fluctuations induced by the process of droplet formation in a T-junction microdroplet generator. Sens Actuat A Phys. 272:11–17CrossRef Zeng W, Li S, Fu H (2018) Modeling of the pressure fluctuations induced by the process of droplet formation in a T-junction microdroplet generator. Sens Actuat A Phys. 272:11–17CrossRef
Zurück zum Zitat Zheng B, Ismagilov RF (2005) A microfluidic approach for screening submicroliter volumes against multiple reagents by using preformed arrays of nanoliter plugs in a three-phase liquid/liquid/gas flow. Angew Chem - Int Edn. 44(17):2520–2523CrossRef Zheng B, Ismagilov RF (2005) A microfluidic approach for screening submicroliter volumes against multiple reagents by using preformed arrays of nanoliter plugs in a three-phase liquid/liquid/gas flow. Angew Chem - Int Edn. 44(17):2520–2523CrossRef
Metadaten
Titel
Droplet generation and breakup in a ribbed microfluidic T-junction for scalable emulsification process
verfasst von
Piyush Kumar
Manabendra Pathak
Publikationsdatum
21.02.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 3/2023
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-023-05428-7

Weitere Artikel der Ausgabe 3/2023

Microsystem Technologies 3/2023 Zur Ausgabe