Skip to main content
Erschienen in: Wireless Personal Communications 2/2023

23.02.2023

EEDCS: Energy Efficient Data Collection Schemes for IoT Enabled Wireless Sensor Network

verfasst von: Sudhakar Pandey, Krati Dubey, Rishav Dubey, Sanjay Kumar

Erschienen in: Wireless Personal Communications | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the data collection of WSN, the main challenge is that the communication has to be energy-efficient to overcome the limited battery constraint along with increasing the lifetime of the networks. A number of research articles are available in the literature for energy-efficient communication in WSN which is mostly based on the Auto regressive integrated moving average (ARIMA) model along with Principal component analysis (PCA) model. Although the previously proposed schemes have certain limitations like they assume in terms of the relationship between data elements is linear and the standard deviation is constant which is not practical solution. Whereas the PCA model may be only applicable in the complete data set. It means any lost element in the data set can degrade the accuracy of the data compression (DC) scheme. To consider the above-mentioned limitations in this study, we have propose an energy-efficient model for clustered WSN by minimizing transmission overheads. The proposed model is a sequence of two consecutive schemes for data prediction (DP) along with DC. The DP scheme is based on Bi-directional long short term memory (B-LSTM) model and the DC scheme is based on Probablistic principal component analysis (P-PCA) model. We have conducted an extensive simulation for the proposed scheme. Furthermore, we have compared our proposed scheme with the existing related schemes. The results show that the proposed scheme outperforms compared with other relater schemes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Jagannath, Jithin, et al. (2019). Machine learning for wireless communications in the Internet of Things: A comprehensive survey. Ad Hoc Networks, 93, 101913.CrossRef Jagannath, Jithin, et al. (2019). Machine learning for wireless communications in the Internet of Things: A comprehensive survey. Ad Hoc Networks, 93, 101913.CrossRef
3.
Zurück zum Zitat Biswash, Sanjay Kumar, & Jayakody, Dushantha Nalin K. (2020). Energy-efficient node-to-node communication scheme for fog-based cellular networks. IET Communications, 14(10), 1595–1602.CrossRef Biswash, Sanjay Kumar, & Jayakody, Dushantha Nalin K. (2020). Energy-efficient node-to-node communication scheme for fog-based cellular networks. IET Communications, 14(10), 1595–1602.CrossRef
4.
Zurück zum Zitat Biswash, S. K., & Addya, S. K. (Eds.). (2020). Cloud Network Management: An IoT Based Framework. CRC Press. Biswash, S. K., & Addya, S. K. (Eds.). (2020). Cloud Network Management: An IoT Based Framework. CRC Press.
5.
Zurück zum Zitat Majid, Mamoona, et al. (2022). Applications of wireless sensor networks and internet of things frameworks in the industry revolution 4.0: A systematic literature review. Sensors, 22(6), 2087.CrossRef Majid, Mamoona, et al. (2022). Applications of wireless sensor networks and internet of things frameworks in the industry revolution 4.0: A systematic literature review. Sensors, 22(6), 2087.CrossRef
6.
Zurück zum Zitat Rawat, Priyanka, et al. (2014). Wireless sensor networks: A survey on recent developments and potential synergies. The Journal of Supercomputing, 68(1), 1–48.CrossRef Rawat, Priyanka, et al. (2014). Wireless sensor networks: A survey on recent developments and potential synergies. The Journal of Supercomputing, 68(1), 1–48.CrossRef
7.
Zurück zum Zitat Biswash, Sanjay Kumar. (2022). Device and network driven cellular networks architecture and mobility management technique for fog computing-based mobile communication system. Journal of Network and Computer Applications, 200, 103317.CrossRef Biswash, Sanjay Kumar. (2022). Device and network driven cellular networks architecture and mobility management technique for fog computing-based mobile communication system. Journal of Network and Computer Applications, 200, 103317.CrossRef
8.
Zurück zum Zitat Kumar, D. Praveen., Amgoth, Tarachand, & Annavarapu, Chandra Sekhara Rao. (2019). Machine learning algorithms for wireless sensor networks: A survey. Information Fusion, 49, 1–25.CrossRef Kumar, D. Praveen., Amgoth, Tarachand, & Annavarapu, Chandra Sekhara Rao. (2019). Machine learning algorithms for wireless sensor networks: A survey. Information Fusion, 49, 1–25.CrossRef
9.
Zurück zum Zitat Agrawal, Deepika, & Pandey, Sudhakar. (2018). FUCA: Fuzzy-based unequal clustering algorithm to prolong the lifetime of wireless sensor networks. International Journal of Communication Systems, 31(2), e3448.CrossRef Agrawal, Deepika, & Pandey, Sudhakar. (2018). FUCA: Fuzzy-based unequal clustering algorithm to prolong the lifetime of wireless sensor networks. International Journal of Communication Systems, 31(2), e3448.CrossRef
10.
Zurück zum Zitat Pandey, Sudhakar, & Anand, Veena. (2017). Load-balanced clustering scheme with sink mobility for heterogeneous wireless sensor networks. National Academy Science Letters, 40(5), 335–341.CrossRef Pandey, Sudhakar, & Anand, Veena. (2017). Load-balanced clustering scheme with sink mobility for heterogeneous wireless sensor networks. National Academy Science Letters, 40(5), 335–341.CrossRef
11.
Zurück zum Zitat Pandey, Sudhakar, & Pal, Pankaj. (2014). SPIN-MI: Energy saving routing algorithm based on SPIN protocol in WSN. National Academy Science Letters, 37(4), 335–339.CrossRef Pandey, Sudhakar, & Pal, Pankaj. (2014). SPIN-MI: Energy saving routing algorithm based on SPIN protocol in WSN. National Academy Science Letters, 37(4), 335–339.CrossRef
12.
Zurück zum Zitat Kundaliya, Brijesh L., & Hadia, Sarman K. (2020). Routing algorithms for wireless sensor networks: Analysed and compared. Wireless Personal Communications, 110(1), 85–107.CrossRef Kundaliya, Brijesh L., & Hadia, Sarman K. (2020). Routing algorithms for wireless sensor networks: Analysed and compared. Wireless Personal Communications, 110(1), 85–107.CrossRef
13.
Zurück zum Zitat Randhawa, Sukhchandan, & Jain, Sushma. (2017). Data aggregation in wireless sensor networks: Previous research, current status and future directions. Wireless Personal Communications, 97(3), 3355–3425.CrossRef Randhawa, Sukhchandan, & Jain, Sushma. (2017). Data aggregation in wireless sensor networks: Previous research, current status and future directions. Wireless Personal Communications, 97(3), 3355–3425.CrossRef
14.
Zurück zum Zitat Kumar, S. & Kumar, S. (2015). Data aggregation using spatial and temporal data correlation. In 2015 International Conference on Futuristic Trends on Computational Analysis and Knowledge Management (ABLAZE). IEEE. Kumar, S. & Kumar, S. (2015). Data aggregation using spatial and temporal data correlation. In 2015 International Conference on Futuristic Trends on Computational Analysis and Knowledge Management (ABLAZE). IEEE.
15.
Zurück zum Zitat Li, J. et al. (2016). Data aggregation with principal component analysis in big data wireless sensor networks. In 2016 12th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN). IEEE. Li, J. et al. (2016). Data aggregation with principal component analysis in big data wireless sensor networks. In 2016 12th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN). IEEE.
16.
Zurück zum Zitat Diwakaran, S., Perumal, Balasubramani, & Vimala Devi, K. (2019). A cluster prediction model-based data collection for energy efficient wireless sensor network. The Journal of Supercomputing, 75(6), 3302–3316.CrossRef Diwakaran, S., Perumal, Balasubramani, & Vimala Devi, K. (2019). A cluster prediction model-based data collection for energy efficient wireless sensor network. The Journal of Supercomputing, 75(6), 3302–3316.CrossRef
19.
Zurück zum Zitat Monteiro, L. C., Delicato, F. C., Pirmez, L., Pires, P. F. & Miceli, C. (2017). DPCAS : Data Prediction with Cubic Adaptive Sampling for Wireless Sensor Networks 353–368. Monteiro, L. C., Delicato, F. C., Pirmez, L., Pires, P. F. & Miceli, C. (2017). DPCAS : Data Prediction with Cubic Adaptive Sampling for Wireless Sensor Networks 353–368.
20.
Zurück zum Zitat Song, Hongtao, et al. (2020). Autoregressive integrated moving average model-based secure data aggregation for wireless sensor networks. International Journal of Distributed Sensor Networks, 16(3), 1550147720912958.CrossRef Song, Hongtao, et al. (2020). Autoregressive integrated moving average model-based secure data aggregation for wireless sensor networks. International Journal of Distributed Sensor Networks, 16(3), 1550147720912958.CrossRef
21.
Zurück zum Zitat Das, K. (2017). Energy Efficient Data Prediction Model for the Sensor Cloud Environment 12–14. Das, K. (2017). Energy Efficient Data Prediction Model for the Sensor Cloud Environment 12–14.
22.
Zurück zum Zitat Rawat, A., Gupta, A., Singh, A. & Bhushan, S. (2019). Energy conservation and Missing value prediction model in Wireless Sensor Network. In 2019 4th International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU), Ghaziabad, India (pp. 1–5). https://doi.org/10.1109/IoT-SIU.2019.8777480. Rawat, A., Gupta, A., Singh, A. & Bhushan, S. (2019). Energy conservation and Missing value prediction model in Wireless Sensor Network. In 2019 4th International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU), Ghaziabad, India (pp. 1–5). https://​doi.​org/​10.​1109/​IoT-SIU.​2019.​8777480.
23.
Zurück zum Zitat Ramalingam, S., & Baskaran, K. (2021). An efficient data prediction model using hybrid Harris Hawk Optimization with random forest algorithm in wireless sensor network. Journal of Intelligent and Fuzzy Systems, 40(3), 5171–5195.CrossRef Ramalingam, S., & Baskaran, K. (2021). An efficient data prediction model using hybrid Harris Hawk Optimization with random forest algorithm in wireless sensor network. Journal of Intelligent and Fuzzy Systems, 40(3), 5171–5195.CrossRef
26.
27.
Zurück zum Zitat Dhami, Mandeep, Garg, Vishal, & Randhawa, Navdeep Singh. (2018). Enhanced lifetime with less energy consumption in WSN using genetic algorithm based approach. In 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). IEEE. Dhami, Mandeep, Garg, Vishal, & Randhawa, Navdeep Singh. (2018). Enhanced lifetime with less energy consumption in WSN using genetic algorithm based approach. In 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). IEEE.
28.
Zurück zum Zitat Thangarasu, G. et al. (2019). An Efficient Energy Consumption Technique in Integrated WSN-IoT Environment Operations. In 2019 IEEE Student Conference on Research and Development (SCOReD). IEEE. Thangarasu, G. et al. (2019). An Efficient Energy Consumption Technique in Integrated WSN-IoT Environment Operations. In 2019 IEEE Student Conference on Research and Development (SCOReD). IEEE.
29.
Zurück zum Zitat Schuster, Mike, & Paliwal, Kuldip K. (1997). Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 45(11), 2673–2681.CrossRef Schuster, Mike, & Paliwal, Kuldip K. (1997). Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 45(11), 2673–2681.CrossRef
30.
Zurück zum Zitat Tipping, Michael E., & Bishop, Christopher M. (1999). Probabilistic principal component analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61(3), 611–622.MathSciNetCrossRefMATH Tipping, Michael E., & Bishop, Christopher M. (1999). Probabilistic principal component analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61(3), 611–622.MathSciNetCrossRefMATH
Metadaten
Titel
EEDCS: Energy Efficient Data Collection Schemes for IoT Enabled Wireless Sensor Network
verfasst von
Sudhakar Pandey
Krati Dubey
Rishav Dubey
Sanjay Kumar
Publikationsdatum
23.02.2023
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2023
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-023-10190-0

Weitere Artikel der Ausgabe 2/2023

Wireless Personal Communications 2/2023 Zur Ausgabe