Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 6/2021

22.03.2021 | Original Research Article

Effect of Cooling Rate on Microstructure Evolution and Plastic Flow of Ti-6Al-4V

verfasst von: S. L. Semiatin, N. C. Levkulich, J. S. Tiley

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 6/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of cooling rate following subtransus solution treatment on microstructure evolution and plastic flow of Ti-6Al-4V was established. For this purpose, three types of tests were performed using samples of Ti-6Al-4V with an initial structure of equiaxed α in a matrix of β and a cooling rate of 11, 42, or 180 K/min: (i) Static cooling following solution treatment without or with a prestrain, (ii) constant-strain-rate hot compression during concurrent cooling, and (iii) static cooling to a specified temperature followed by constant-strain-rate isothermal hot compression. The volume fraction of equiaxed α developed during cooling was strongly dependent on cooling rate, but pre- or concurrent deformation resulted in relatively-small changes in this quantity. In addition, the cooling rate through its effect on the growth kinetics of equiaxed α had a noticeable effect on plastic-flow behavior under both isothermal and non-isothermal conditions. In both instances, the retention of the high-temperature microstructure (characterized by a low fraction of equiaxed α) during rapid cooling gave rise to lower flow stresses than samples with equilibrium equiaxed phase fractions. By contrast, when secondary α was formed during cooling, higher flow stresses were generated due to a Hall-Petch-like effect. The results were interpreted using models for the diffusional growth of equiaxed α, the onset of nucleation of secondary α, and predictions of the plastic-flow response of equiaxed two-phase microstructures based on a self-consistent approach. Unlike previous findings which indicated a large increase in the rate of dissolution of equiaxed α due to concurrent deformation/pipe diffusion during heating transients, the present work did not reveal a corresponding enhancement of growth during cooling.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S.L. Semiatin and G.D. Lahoti: Metall. Trans. A, 1981, vol. 12A, pp. 1705-1717.CrossRef S.L. Semiatin and G.D. Lahoti: Metall. Trans. A, 1981, vol. 12A, pp. 1705-1717.CrossRef
2.
Zurück zum Zitat T. Seshacharyulu, S.C. Madeiros, W.G. Frazier, and Y.V.R.K. Prasad: Mater. Sci. Eng. A, 2000, vol. A284, pp. 184-194.CrossRef T. Seshacharyulu, S.C. Madeiros, W.G. Frazier, and Y.V.R.K. Prasad: Mater. Sci. Eng. A, 2000, vol. A284, pp. 184-194.CrossRef
3.
Zurück zum Zitat J. Cao, F. Li, T. Liu, B. Chen, and M. He: Mater. Design, 2011, vol. 32, pp. 1144-1151.CrossRef J. Cao, F. Li, T. Liu, B. Chen, and M. He: Mater. Design, 2011, vol. 32, pp. 1144-1151.CrossRef
4.
Zurück zum Zitat J.S. Jha, S.P. Toppo, R. Singh, A. Tewari, and S.K. Mishra: J. Mater. Proc. Technol., 2019, vol. 270, pp. 216-227.CrossRef J.S. Jha, S.P. Toppo, R. Singh, A. Tewari, and S.K. Mishra: J. Mater. Proc. Technol., 2019, vol. 270, pp. 216-227.CrossRef
5.
Zurück zum Zitat C.M. Young and O.D. Sherby: in Metal Forming-Interrelation between Theory and Practice, A.L. Hoffmanner, ed., Plenum Press, New York, 1971, pp. 429–51. C.M. Young and O.D. Sherby: in Metal Forming-Interrelation between Theory and Practice, A.L. Hoffmanner, ed., Plenum Press, New York, 1971, pp. 429–51.
6.
Zurück zum Zitat S. Fulop, K.C. Cadien, M.J. Luton, and M.J. McQueen: J. Testing Eval., 1977, vol. 5, pp. 419-426.CrossRef S. Fulop, K.C. Cadien, M.J. Luton, and M.J. McQueen: J. Testing Eval., 1977, vol. 5, pp. 419-426.CrossRef
7.
Zurück zum Zitat J.P.A. Immarigeon and P.H. Floyd: Metall. Trans. A, 1981, vol. 12A, pp. 1177- 1186.CrossRef J.P.A. Immarigeon and P.H. Floyd: Metall. Trans. A, 1981, vol. 12A, pp. 1177- 1186.CrossRef
8.
Zurück zum Zitat A.A. Guimaraes and J.J. Jonas: Metall. Trans., 1981, vol. 12A, pp. 1655-1666.CrossRef A.A. Guimaraes and J.J. Jonas: Metall. Trans., 1981, vol. 12A, pp. 1655-1666.CrossRef
9.
Zurück zum Zitat A.K. Koul and J-P.A. Immarigeon: Acta Metall., 1987, vol. 35, pp. 1791-1805.CrossRef A.K. Koul and J-P.A. Immarigeon: Acta Metall., 1987, vol. 35, pp. 1791-1805.CrossRef
10.
Zurück zum Zitat S.L. Semiatin, K.E. McClary, A.D. Rollett, C.G. Roberts, E.J. Payton, F. Zhang, and T.P. Gabb: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 2778-2798.CrossRef S.L. Semiatin, K.E. McClary, A.D. Rollett, C.G. Roberts, E.J. Payton, F. Zhang, and T.P. Gabb: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 2778-2798.CrossRef
11.
Zurück zum Zitat P.D. Nicolaou, R.E. Bailey, and S.L. Semiatin: in Handbook of Workability and Process Design, G.E. Dieter, H.A. Kuhn, and S.L. Semiatin, eds., ASM International, Materials Park, OH, 2003, pp. 68–85. P.D. Nicolaou, R.E. Bailey, and S.L. Semiatin: in Handbook of Workability and Process Design, G.E. Dieter, H.A. Kuhn, and S.L. Semiatin, eds., ASM International, Materials Park, OH, 2003, pp. 68–85.
12.
13.
14.
Zurück zum Zitat H.G. Suzuki and D. Eylon: Mater. Sci. Eng. A, 1998, vol. A243, pp. 126-133.CrossRef H.G. Suzuki and D. Eylon: Mater. Sci. Eng. A, 1998, vol. A243, pp. 126-133.CrossRef
15.
Zurück zum Zitat F.F. Noecker II and J.N. DuPont: Weld. J., 2009, vol. 88 (#1), pp. 7s–20s. F.F. Noecker II and J.N. DuPont: Weld. J., 2009, vol. 88 (#1), pp. 7s–20s.
16.
Zurück zum Zitat S. Shi, J.C. Lippold, and J. Ramirez: Weld. J. 2010, vol. 89 (#10), pp. 210s–217s. S. Shi, J.C. Lippold, and J. Ramirez: Weld. J. 2010, vol. 89 (#10), pp. 210s–217s.
17.
Zurück zum Zitat S.S. Babu, J. Livingston, and J.C. Lippold: Metall. Mater. Trans. A, 2013, vol. 44, pp. 3577-3591.CrossRef S.S. Babu, J. Livingston, and J.C. Lippold: Metall. Mater. Trans. A, 2013, vol. 44, pp. 3577-3591.CrossRef
18.
Zurück zum Zitat M. Saby, E. Massoni, and N. Bozzolo: Mater. Charact., 2014, vol. 89, pp. 88–92. M. Saby, E. Massoni, and N. Bozzolo: Mater. Charact., 2014, vol. 89, pp. 88–92.
19.
Zurück zum Zitat S.L. Semiatin, N.C. Levkulich, C.A. Heck, A.E. Mann, N. Bozzolo, A.L. Pilchak, and J.S. Tiley: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 2291-2305.CrossRef S.L. Semiatin, N.C. Levkulich, C.A. Heck, A.E. Mann, N. Bozzolo, A.L. Pilchak, and J.S. Tiley: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 2291-2305.CrossRef
20.
Zurück zum Zitat S.L. Semiatin, F. Montheillet, G. Shen, and J.J. Jonas: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2719-2727.CrossRef S.L. Semiatin, F. Montheillet, G. Shen, and J.J. Jonas: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2719-2727.CrossRef
21.
Zurück zum Zitat G. Shen, S.L. Semiatin, E. Kropp, and T. Altan: J. Mater. Proc. Technol., 1992, vol. 33, pp. 125–39.CrossRef G. Shen, S.L. Semiatin, E. Kropp, and T. Altan: J. Mater. Proc. Technol., 1992, vol. 33, pp. 125–39.CrossRef
22.
Zurück zum Zitat S.L. Semiatin, M. Obstalecki, E.J. Payton, A.L. Pilchak, P.A. Shade, N.C. Levkulich, J.M. Shank, D.C. Pagan, F. Zhang, and J.S. Tiley: Metall. Mater. Trans. A, 2019, vol.50A, pp. 2356-2370.CrossRef S.L. Semiatin, M. Obstalecki, E.J. Payton, A.L. Pilchak, P.A. Shade, N.C. Levkulich, J.M. Shank, D.C. Pagan, F. Zhang, and J.S. Tiley: Metall. Mater. Trans. A, 2019, vol.50A, pp. 2356-2370.CrossRef
23.
Zurück zum Zitat S.L. Semiatin, S.L. Knisley, P.N. Fagin, F. Zhang, and D.R. Barker: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2377-2386.CrossRef S.L. Semiatin, S.L. Knisley, P.N. Fagin, F. Zhang, and D.R. Barker: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2377-2386.CrossRef
24.
Zurück zum Zitat S.I. Oh, S.L. Semiatin, and J.J. Jonas: Metall. Trans. A, 1992, vol. 23A, pp. 963-975.CrossRef S.I. Oh, S.L. Semiatin, and J.J. Jonas: Metall. Trans. A, 1992, vol. 23A, pp. 963-975.CrossRef
25.
Zurück zum Zitat X. Gao, W. Zeng, S. Zhang, and Q. Wang: Acta Mater., 2017, vol. 122, pp. 298-309.CrossRef X. Gao, W. Zeng, S. Zhang, and Q. Wang: Acta Mater., 2017, vol. 122, pp. 298-309.CrossRef
26.
Zurück zum Zitat M. Meng, H. Yang, X.G. Fan, S.L. Yan, A.M. Zhao, and S. Zhu: J. Alloys Comp., 2017, vol. 691, pp. 67-80.CrossRef M. Meng, H. Yang, X.G. Fan, S.L. Yan, A.M. Zhao, and S. Zhu: J. Alloys Comp., 2017, vol. 691, pp. 67-80.CrossRef
27.
Zurück zum Zitat M. Meng, X.G. Fan, H. Yang, L.G. Guo, M. Zhan, and P.F. Gao: J. Alloys Comp., 2017, vol. 714, pp. 294-302.CrossRef M. Meng, X.G. Fan, H. Yang, L.G. Guo, M. Zhan, and P.F. Gao: J. Alloys Comp., 2017, vol. 714, pp. 294-302.CrossRef
28.
Zurück zum Zitat R.H. Buzolin, D. Weiss, A. Krumphals, M. Lasnik, and M.C. Poletti: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 3967-3980.CrossRef R.H. Buzolin, D. Weiss, A. Krumphals, M. Lasnik, and M.C. Poletti: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 3967-3980.CrossRef
29.
Zurück zum Zitat W.W. Mullins and R.F. Sekerka: J. Appl. Physics, 1963, vol. 34, pp. 323-329.CrossRef W.W. Mullins and R.F. Sekerka: J. Appl. Physics, 1963, vol. 34, pp. 323-329.CrossRef
30.
Zurück zum Zitat S.L. Semiatin and T.R. Bieler, Acta Mater., 2001, vol. 49, pp. 3565-3573.CrossRef S.L. Semiatin and T.R. Bieler, Acta Mater., 2001, vol. 49, pp. 3565-3573.CrossRef
32.
Zurück zum Zitat H.S. Carslaw and J.C. Jaeger: Conduction of Heat in Solids, Oxford University Press, London, 1959. H.S. Carslaw and J.C. Jaeger: Conduction of Heat in Solids, Oxford University Press, London, 1959.
33.
Zurück zum Zitat H.B. Aaron, D. Fainstein, and G.R. Kotler: J. Appl. Physics, 1970, vol. 41, pp. 4404-4410.CrossRef H.B. Aaron, D. Fainstein, and G.R. Kotler: J. Appl. Physics, 1970, vol. 41, pp. 4404-4410.CrossRef
34.
Zurück zum Zitat O. Grong and H.R. Shercliff: Progress in Materials Science, 2002, vol. 47, pp. 163-282.CrossRef O. Grong and H.R. Shercliff: Progress in Materials Science, 2002, vol. 47, pp. 163-282.CrossRef
35.
Zurück zum Zitat U. Zwicker: Titanium and Titanium Alloys, Springer Verlag, Berlin, 1974. U. Zwicker: Titanium and Titanium Alloys, Springer Verlag, Berlin, 1974.
36.
Zurück zum Zitat H. Wang, N. Warnken, and R.C. Reed: Mater. Sci. Eng. A, 2010, vol. A528, pp. 622-630.CrossRef H. Wang, N. Warnken, and R.C. Reed: Mater. Sci. Eng. A, 2010, vol. A528, pp. 622-630.CrossRef
37.
Zurück zum Zitat A.J. Ardell and M.A. Przystupa: High Temp. Mater. Proc., 1993, vol. 12 (#1-2), pp. 1–11. A.J. Ardell and M.A. Przystupa: High Temp. Mater. Proc., 1993, vol. 12 (#1-2), pp. 1–11.
38.
Zurück zum Zitat N. Ma, F. Yang, C. Shen, G. Wang, G.B. Viswanathan, P.C. Collins, D. Xu, H.L. Fraser, and Y. Wang: in Ti-2007 Science and Technology, M. Ninomi, S. Akiyama, M. Ikeda, M. Hagiwara, and K. Maruyama, eds., Japan Institute of Metals, Sendai, Japan, 2007, pp. 287–90. N. Ma, F. Yang, C. Shen, G. Wang, G.B. Viswanathan, P.C. Collins, D. Xu, H.L. Fraser, and Y. Wang: in Ti-2007 Science and Technology, M. Ninomi, S. Akiyama, M. Ikeda, M. Hagiwara, and K. Maruyama, eds., Japan Institute of Metals, Sendai, Japan, 2007, pp. 287–90.
39.
Zurück zum Zitat I. Katzarov, S. Malinov, and W. Sha: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1027-1040.CrossRef I. Katzarov, S. Malinov, and W. Sha: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1027-1040.CrossRef
40.
Zurück zum Zitat R.D. Doherty: in Physical Metallurgy, R.W. Cahn and P. Haasen, eds., North-Holland, Amsterdam, 1996, ch. 15. R.D. Doherty: in Physical Metallurgy, R.W. Cahn and P. Haasen, eds., North-Holland, Amsterdam, 1996, ch. 15.
41.
Zurück zum Zitat H.I. Aaronson and F.K. LeGoues: Metall. Trans. A, 1992, vol. 23, pp. 1915-1945.CrossRef H.I. Aaronson and F.K. LeGoues: Metall. Trans. A, 1992, vol. 23, pp. 1915-1945.CrossRef
42.
Zurück zum Zitat S.Q. Xiao and P. Haasen: Acta Metall. et Mater., 1991, vol. 39, pp. 651-659.CrossRef S.Q. Xiao and P. Haasen: Acta Metall. et Mater., 1991, vol. 39, pp. 651-659.CrossRef
43.
Zurück zum Zitat K.S. Chan, J.K. Lee, G.J. Shiflet, K.C. Russell, and H.I. Aaronson: Metall. Trans. A, 1978, vol. 9A, pp. 1016-1017.CrossRef K.S. Chan, J.K. Lee, G.J. Shiflet, K.C. Russell, and H.I. Aaronson: Metall. Trans. A, 1978, vol. 9A, pp. 1016-1017.CrossRef
44.
Zurück zum Zitat F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, Elsevier Science Ltd., Oxford, UK, 1996. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, Elsevier Science Ltd., Oxford, UK, 1996.
45.
Zurück zum Zitat F.R.N. Nabarro: Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., 1940, vol. 175 (#963), pp. 519–38. F.R.N. Nabarro: Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., 1940, vol. 175 (#963), pp. 519–38.
46.
Zurück zum Zitat M. Humbert, L. Germaine, N. Gey, P. Bocher, and M. Jahazi: Mater. Sci. Eng. A, 2006, vol. A430, pp. 157-164.CrossRef M. Humbert, L. Germaine, N. Gey, P. Bocher, and M. Jahazi: Mater. Sci. Eng. A, 2006, vol. A430, pp. 157-164.CrossRef
47.
Zurück zum Zitat R. Pederson, O.Babushkin, F. Skystedt, and R. Warren: Mater. Sci. Techn., 2003, vol. 19, pp. 1533-1538.CrossRef R. Pederson, O.Babushkin, F. Skystedt, and R. Warren: Mater. Sci. Techn., 2003, vol. 19, pp. 1533-1538.CrossRef
48.
Zurück zum Zitat S.L. Semiatin, S.L. Kim, F. Zhang, and J.S. Tiley: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 1715-1730.CrossRef S.L. Semiatin, S.L. Kim, F. Zhang, and J.S. Tiley: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 1715-1730.CrossRef
49.
Zurück zum Zitat S.L. Semiatin, F. Zhang, R. Larsen, L.A. Chapman, and D.U. Furrer: Integrating Materials and Manufacturing Innovation, 2016, vol. 5, no. 3, pp. 1-20. S.L. Semiatin, F. Zhang, R. Larsen, L.A. Chapman, and D.U. Furrer: Integrating Materials and Manufacturing Innovation, 2016, vol. 5, no. 3, pp. 1-20.
50.
Zurück zum Zitat S.L. Semiatin, T.M. Brown, T.A. Goff, P.N. Fagin, D.R. Barker, R.E. Turner, J.M. Murry, J.D. Miller, and F. Zhang: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3015-3018.CrossRef S.L. Semiatin, T.M. Brown, T.A. Goff, P.N. Fagin, D.R. Barker, R.E. Turner, J.M. Murry, J.D. Miller, and F. Zhang: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3015-3018.CrossRef
51.
Zurück zum Zitat S. Zherebtsov, G.A. Salishchev, and S.L. Semiatin: Phil. Mag. Lett., 2010, vol. 90 (#12), pp. 903–14. S. Zherebtsov, G.A. Salishchev, and S.L. Semiatin: Phil. Mag. Lett., 2010, vol. 90 (#12), pp. 903–14.
52.
Zurück zum Zitat L. Briottet, J.J. Jonas, and F. Montheillet: Acta Mater., 1996, vol. 44, pp. 1665-1672.CrossRef L. Briottet, J.J. Jonas, and F. Montheillet: Acta Mater., 1996, vol. 44, pp. 1665-1672.CrossRef
Metadaten
Titel
Effect of Cooling Rate on Microstructure Evolution and Plastic Flow of Ti-6Al-4V
verfasst von
S. L. Semiatin
N. C. Levkulich
J. S. Tiley
Publikationsdatum
22.03.2021
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 6/2021
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-021-06216-6

Weitere Artikel der Ausgabe 6/2021

Metallurgical and Materials Transactions A 6/2021 Zur Ausgabe

Topical Collection: Innovations in High Entropy Alloys and Bulk Metallic Glasses

Measurement of Lattice Distortion in NbTaTiV and NbTaTiVZr Using Electron Microscopy

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.