Skip to main content
Erschienen in: Journal of Iron and Steel Research International 7/2018

01.07.2018 | Original Paper

Effect of milling duration on hydrogen storage thermodynamics and kinetics of ball-milled Ce–Mg–Ni-based alloy powders

verfasst von: Dian-chen Feng, Hao Sun, Xi-tao Wang, Yang-huan Zhang

Erschienen in: Journal of Iron and Steel Research International | Ausgabe 7/2018

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To improve the hydrogen storage performance of CeMg12-type alloys, partially substituting Mg with Ni in the alloy was conducted. The way to synthesize the target alloy powders was the mechanical milling method, by which the CeMg11Ni + x wt% Ni (x = 100, 200) alloy powders with nanocrystalline and amorphous structure were obtained. The influence of the milling time and Ni content on the hydrogen storage properties of the alloys was discussed. The X-ray diffractometer and high-resolution transmission electron microscope were used to investigate the microstructures of the ball-milled alloys. The hydrogenation/dehydrogenation dynamics were studied using a Sievert instrument and a differential scanning calorimeter which was linked with a H2 detector. The hydrogen desorption activation energies of the alloy hydrides were evaluated by Arrhenius and Kissinger equations. From the results point of views, there is a little decline in the thermodynamic parameters (enthalpy and entropy changes) with the increase in Ni content. However, the alloys desorption and absorption dynamics are improved distinctly. What is more, the variation of milling time results in a dramatic influence on the hydrogen storage performances of alloys. Various maximum values of the hydrogen capacities correspond to different milling time, which are 5.805 and 6.016 wt% for the CeMg11Ni + x wt% Ni (x = 100, 200) alloys, respectively. The kinetics tests suggest that the hydrogen absorption rates increase firstly and then decrease with prolonging the milling time. The improvement of the gaseous hydrogen storage kinetics results from the decrease in the activation energy caused by the increase in Ni content and milling time.
Literatur
[1]
Zurück zum Zitat J.L. Gao, Y. Qi, Y.Q. Li, H.W. Shang, D.L. Zhao, Y.H. Zhang, J. Iron Steel Res. Int. 24 (2017) 198–205. J.L. Gao, Y. Qi, Y.Q. Li, H.W. Shang, D.L. Zhao, Y.H. Zhang, J. Iron Steel Res. Int. 24 (2017) 198–205.
[2]
Zurück zum Zitat D. Mori, K. Hirose, Int. J. Hydrogen Energy 34 (2009) 4569–4574. D. Mori, K. Hirose, Int. J. Hydrogen Energy 34 (2009) 4569–4574.
[3]
Zurück zum Zitat R. Lan, J.T.S. Irvine, S. Tao, Int. J. Hydrogen Energy 37 (2012) 1482–1494. R. Lan, J.T.S. Irvine, S. Tao, Int. J. Hydrogen Energy 37 (2012) 1482–1494.
[4]
Zurück zum Zitat P. Dibandjo, C. Zlotea, R. Gadiou, C.M. Ghimbeu, F. Cuevas, M. Latroche, E. Leroy, C. Vix-Guterl, Int. J. Hydrogen Energy 38 (2013) 952–965. P. Dibandjo, C. Zlotea, R. Gadiou, C.M. Ghimbeu, F. Cuevas, M. Latroche, E. Leroy, C. Vix-Guterl, Int. J. Hydrogen Energy 38 (2013) 952–965.
[5]
Zurück zum Zitat Y.H. Zhang, Z.C. Jia, Z.M. Yuan, T. Yang, Y. Qi, D.L. Zhao, J. Iron Steel Res. Int. 22 (2015) 757–770. Y.H. Zhang, Z.C. Jia, Z.M. Yuan, T. Yang, Y. Qi, D.L. Zhao, J. Iron Steel Res. Int. 22 (2015) 757–770.
[6]
Zurück zum Zitat L. Schlapbach, A. Züttel, Nature 414 (2001) 353–358. L. Schlapbach, A. Züttel, Nature 414 (2001) 353–358.
[7]
Zurück zum Zitat Z.M. Yuan, T. Yang, W.G. Bu, H.W. Shang, Y. Qi, Y.H. Zhang, Int. J. Hydrogen Energy 41 (2016) 5994–6003. Z.M. Yuan, T. Yang, W.G. Bu, H.W. Shang, Y. Qi, Y.H. Zhang, Int. J. Hydrogen Energy 41 (2016) 5994–6003.
[8]
Zurück zum Zitat J. Milliken, Hydrogen, fuel cells and infrastructure technologies program: multiyear research, development and demonstration plan, Published: 2007-10-01 (Accessed: 2017-03-19), http://www.eere.energy.gov/hydrogenandfuelcells/mypp. J. Milliken, Hydrogen, fuel cells and infrastructure technologies program: multiyear research, development and demonstration plan, Published: 2007-10-01 (Accessed: 2017-03-19), http://​www.​eere.​energy.​gov/​hydrogenandfuelc​ells/​mypp.​
[9]
Zurück zum Zitat L.E. Klebanoff, J.O. Keller, Int. J. Hydrogen Energy 38 (2013) 4533–4576. L.E. Klebanoff, J.O. Keller, Int. J. Hydrogen Energy 38 (2013) 4533–4576.
[10]
Zurück zum Zitat S.S. Makridis, E.I. Gkanas, G. Panagakos, E.S. Kikkinides, A.K. Stubos, P. Wagener, S. Barcikowski, Int. J. Hydrogen Energy 38 (2013) 11530–11535. S.S. Makridis, E.I. Gkanas, G. Panagakos, E.S. Kikkinides, A.K. Stubos, P. Wagener, S. Barcikowski, Int. J. Hydrogen Energy 38 (2013) 11530–11535.
[11]
Zurück zum Zitat Y.H. Zhang, Z.M. Yuan, W.G. Bu, F. Hu, Y. Cai, D.L. Zhao, Acta Metall. Sin. (Engl. Lett.) 29 (2016) 577–586. Y.H. Zhang, Z.M. Yuan, W.G. Bu, F. Hu, Y. Cai, D.L. Zhao, Acta Metall. Sin. (Engl. Lett.) 29 (2016) 577–586.
[12]
Zurück zum Zitat Y.H. Zhang, Z.H. Hou, Y. Cai, H.W. Shang, Y. Qi, D.L. Zhao, J. Iron Steel Res. Int. 24 (2017) 296–305. Y.H. Zhang, Z.H. Hou, Y. Cai, H.W. Shang, Y. Qi, D.L. Zhao, J. Iron Steel Res. Int. 24 (2017) 296–305.
[13]
Zurück zum Zitat Y. Wang, S.Z. Qiao, X. Wang, Int. J. Hydrogen Energy 33 (2008) 5066–5072. Y. Wang, S.Z. Qiao, X. Wang, Int. J. Hydrogen Energy 33 (2008) 5066–5072.
[14]
Zurück zum Zitat D.C. Feng, H. Sun, Z.H. Hou, D.L. Zhao, X.T. Wang, Y.H. Zhang, J. Iron Steel Res. Int. 24 (2017) 50–58. D.C. Feng, H. Sun, Z.H. Hou, D.L. Zhao, X.T. Wang, Y.H. Zhang, J. Iron Steel Res. Int. 24 (2017) 50–58.
[15]
Zurück zum Zitat Y.F. Liu, H.G. Pan, M.X. Gao, Q.D. Wang, J. Mater. Chem. 21 (2011) 4743–4755. Y.F. Liu, H.G. Pan, M.X. Gao, Q.D. Wang, J. Mater. Chem. 21 (2011) 4743–4755.
[16]
Zurück zum Zitat E.A. Lass, Int. J. Hydrogen Energy 36 (2011) 10787–10796. E.A. Lass, Int. J. Hydrogen Energy 36 (2011) 10787–10796.
[17]
Zurück zum Zitat M.Y. Song, S.N. Kwon, H.R. Park, S.H. Hong, Int. J. Hydrogen Energy 36 (2011) 13587–13594. M.Y. Song, S.N. Kwon, H.R. Park, S.H. Hong, Int. J. Hydrogen Energy 36 (2011) 13587–13594.
[18]
Zurück zum Zitat S. Kalinichenka, L. Röntzsch, T. Riedl, T. Weißgärber, B. Kieback, Int. J. Hydrogen Energy 36 (2011) 10808–10815. S. Kalinichenka, L. Röntzsch, T. Riedl, T. Weißgärber, B. Kieback, Int. J. Hydrogen Energy 36 (2011) 10808–10815.
[19]
Zurück zum Zitat A. Teresiak, A. Gebert, M. Savyak, M. Uhlemann, C. Mickel, N. Mattern, J. Alloy. Compd. 398 (2005) 156–164. A. Teresiak, A. Gebert, M. Savyak, M. Uhlemann, C. Mickel, N. Mattern, J. Alloy. Compd. 398 (2005) 156–164.
[20]
Zurück zum Zitat S. Kalinichenka, L. Röntzsch, T. Riedl, T. Gemming, T. Weißgärber, B. Kieback, Int. J. Hydrogen Energy 36 (2011) 1592–1600. S. Kalinichenka, L. Röntzsch, T. Riedl, T. Gemming, T. Weißgärber, B. Kieback, Int. J. Hydrogen Energy 36 (2011) 1592–1600.
[21]
Zurück zum Zitat M.Y. Song, Y.J. Kwak, H.S. Shin, S.H. Lee, B.G. Kim, Int. J. Hydrogen Energy 38 (2013) 1910–1917. M.Y. Song, Y.J. Kwak, H.S. Shin, S.H. Lee, B.G. Kim, Int. J. Hydrogen Energy 38 (2013) 1910–1917.
[22]
Zurück zum Zitat T. Spassov, L. Lyubenova, U. Köster, M.D. Baró, Mater. Sci. Eng. A 375-377 (2004) 794–799. T. Spassov, L. Lyubenova, U. Köster, M.D. Baró, Mater. Sci. Eng. A 375-377 (2004) 794–799.
[23]
Zurück zum Zitat L.H. Kumar, B. Viswanathan, S.S. Murthy, J. Alloy. Compd. 461 (2008) 72–76. L.H. Kumar, B. Viswanathan, S.S. Murthy, J. Alloy. Compd. 461 (2008) 72–76.
[24]
Zurück zum Zitat A.A. Poletaev, R.V. Denys, J.P. Maehlen, J.K. Solberg, B.P. Tarasov, V.A. Yartys, Int. J. Hydrogen Energy 37 (2012) 3548–3557. A.A. Poletaev, R.V. Denys, J.P. Maehlen, J.K. Solberg, B.P. Tarasov, V.A. Yartys, Int. J. Hydrogen Energy 37 (2012) 3548–3557.
[25]
Zurück zum Zitat Q.A. Zhang, C.J. Jiang, D.D. Liu, Int. J. Hydrogen Energy 37 (2012) 10709–10714. Q.A. Zhang, C.J. Jiang, D.D. Liu, Int. J. Hydrogen Energy 37 (2012) 10709–10714.
[26]
Zurück zum Zitat Y. Wang, X. Wang, C.M. Li. Int. J. Hydrogen Energy 35 (2010) 3550–3554. Y. Wang, X. Wang, C.M. Li. Int. J. Hydrogen Energy 35 (2010) 3550–3554.
[27]
Zurück zum Zitat M. Abdellaoui, S. Mokbli, F. Cuevas, M. Latroche, A. Percheron-Guégan, H. Zarrouk, J. Alloy. Compd. 356-357 (2003) 557–561. M. Abdellaoui, S. Mokbli, F. Cuevas, M. Latroche, A. Percheron-Guégan, H. Zarrouk, J. Alloy. Compd. 356-357 (2003) 557–561.
[28]
Zurück zum Zitat H. Niu, D.O. Northwood, Int. J. Hydrogen Energy 27 (2002) 69–77. H. Niu, D.O. Northwood, Int. J. Hydrogen Energy 27 (2002) 69–77.
[29]
Zurück zum Zitat H. Falahati, D.P.J. Barz, Int. J. Hydrogen Energy 38 (2013) 8838–8851. H. Falahati, D.P.J. Barz, Int. J. Hydrogen Energy 38 (2013) 8838–8851.
[30]
Zurück zum Zitat Y.H. Zhang, Z.M. Yuan, T. Yang, W.G. Bu, Z.H. Hou, D.L. Zhao, J. Cent. South Univ. 24 (2017) 773–781. Y.H. Zhang, Z.M. Yuan, T. Yang, W.G. Bu, Z.H. Hou, D.L. Zhao, J. Cent. South Univ. 24 (2017) 773–781.
[31]
Zurück zum Zitat Z.M. Yuan, Y.H. Zhang, T. Yang, W.G. Bu, S.H. Guo, D.L. Zhao, Renew. Energy 116 (2018) 878–891. Z.M. Yuan, Y.H. Zhang, T. Yang, W.G. Bu, S.H. Guo, D.L. Zhao, Renew. Energy 116 (2018) 878–891.
[32]
Zurück zum Zitat Z.M. Yuan, W. Zhang, P.L. Zhang, Y.H. Zhang, W.G. Bu, S.H. Guo, D.L. Zhao, RSC Adv. 7 (2017) 56365–56374. Z.M. Yuan, W. Zhang, P.L. Zhang, Y.H. Zhang, W.G. Bu, S.H. Guo, D.L. Zhao, RSC Adv. 7 (2017) 56365–56374.
[33]
Zurück zum Zitat M. Anik, F. Karanfil, N. Küçükdeveci, Int. J. Hydrogen Energy 37 (2012) 299–308. M. Anik, F. Karanfil, N. Küçükdeveci, Int. J. Hydrogen Energy 37 (2012) 299–308.
[34]
Zurück zum Zitat T. Sadhasivam, M.S.L. Hudson, S.K. Pandey, A. Bhatnagar, M.K. Singh, K. Gurunathan, O.N. Srivastava, Int. J. Hydrogen Energy 38 (2013) 7353–7362. T. Sadhasivam, M.S.L. Hudson, S.K. Pandey, A. Bhatnagar, M.K. Singh, K. Gurunathan, O.N. Srivastava, Int. J. Hydrogen Energy 38 (2013) 7353–7362.
[35]
Zurück zum Zitat K.J. Laidler, Pure Appl. Chem. 68(1996) 149–192. K.J. Laidler, Pure Appl. Chem. 68(1996) 149–192.
[36]
Zurück zum Zitat J.F. Fernández, C.R. Sánchez, J. Alloy. Compd. 356-357 (2003) 348–352. J.F. Fernández, C.R. Sánchez, J. Alloy. Compd. 356-357 (2003) 348–352.
[37]
Zurück zum Zitat H.E. Kissinger, Anal. Chem. 29 (1957) 1702–1706. H.E. Kissinger, Anal. Chem. 29 (1957) 1702–1706.
Metadaten
Titel
Effect of milling duration on hydrogen storage thermodynamics and kinetics of ball-milled Ce–Mg–Ni-based alloy powders
verfasst von
Dian-chen Feng
Hao Sun
Xi-tao Wang
Yang-huan Zhang
Publikationsdatum
01.07.2018
Verlag
Springer Singapore
Erschienen in
Journal of Iron and Steel Research International / Ausgabe 7/2018
Print ISSN: 1006-706X
Elektronische ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-018-0102-7

Weitere Artikel der Ausgabe 7/2018

Journal of Iron and Steel Research International 7/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.