Skip to main content
Erschienen in: Journal of Iron and Steel Research International 7/2018

01.07.2018 | Original Paper

Prediction of alloy composition and microhardness by random forest in maraging stainless steels based on a cluster formula

verfasst von: Zhen Li, Dong-hui Wen, Yue Ma, Qing Wang, Guo-qing Chen, Rui-qian Zhang, Rui Tang, Huan He

Erschienen in: Journal of Iron and Steel Research International | Ausgabe 7/2018

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fe–Ni–Cr-based super-high-strength maraging stainless steels were generally realized by multiple-element alloying under a given heat treatment processing. A series of alloy compositions were designed with a uniform cluster formula of [Ni16Fe192](Cr32(Ni16–xyzmnMoxTiyNbzAlmVn)) (at.%) that was developed out of a unique alloy design tool, a cluster-plus-glue-atom model. Alloy rods with a diameter of 6 mm were prepared by copper-mold suction-cast processing under the argon atmosphere. These alloy samples were solid-solutioned at 1273 K for 1 h, followed by water-quenching, and then aged at 783 K for 3 h. The effect of the valence electron concentration, characterized with the number of valence electrons per unit cluster (VE/uc) formula of 16 atoms, on microhardness of these designed maraging stainless steels at both solid-solutioned and aged states was investigated. The relationship between alloy compositions and microhardness in maraging stainless steels was firstly established by the random forest (RF, a kind of machine learning methods) based on the experimental results. It was found that not only the microhardness of any given composition alloy within the frame of cluster formula, but also the alloy composition with a maximum microhardness for any given VE/uc, could be predicted in good agreement with the guidance of the relationship by RF. The contributions of minor-alloying elements to the microhardness of the aged alloys were also discussed.
Literatur
[1]
Zurück zum Zitat B. Pollard, in: D.L. Olson, T.A. Siewert, S. Liu, G.R. Edwards (Eds.), ASM Handbook, Materials Park, New York, 1993, pp. 482–494. B. Pollard, in: D.L. Olson, T.A. Siewert, S. Liu, G.R. Edwards (Eds.), ASM Handbook, Materials Park, New York, 1993, pp. 482–494.
[2]
Zurück zum Zitat P. Michaud, D. Delagnes, P. Lamesle, M.H. Mathon, C. Levaillant, Acta Mater. 55 (2007) 4877–4889.CrossRef P. Michaud, D. Delagnes, P. Lamesle, M.H. Mathon, C. Levaillant, Acta Mater. 55 (2007) 4877–4889.CrossRef
[3]
[4]
Zurück zum Zitat M. Schober, R. Schnitzer, H. Leitner, Ultramicroscopy 109 (2009) 553–562.CrossRef M. Schober, R. Schnitzer, H. Leitner, Ultramicroscopy 109 (2009) 553–562.CrossRef
[5]
Zurück zum Zitat M. Hattestrand, J.O. Nilsson, K. Stiller, P. Liu, M. Andersson, Acta Mater. 52 (2004) 1023–1037.CrossRef M. Hattestrand, J.O. Nilsson, K. Stiller, P. Liu, M. Andersson, Acta Mater. 52 (2004) 1023–1037.CrossRef
[6]
Zurück zum Zitat D. Isheim, M.S. Gagliano, M.E. Fine, D.N. Seidman, Acta Mater. 54 (2006) 841–849.CrossRef D. Isheim, M.S. Gagliano, M.E. Fine, D.N. Seidman, Acta Mater. 54 (2006) 841–849.CrossRef
[7]
Zurück zum Zitat W. Xu, P.E.J. Rivera-Diaz-del-Castillo, W. Yan, K. Yang, D.S. Martin, L.A.I. Kestens, S. Zwaag, Acta Mater. 58 (2010) 4067–4075.CrossRef W. Xu, P.E.J. Rivera-Diaz-del-Castillo, W. Yan, K. Yang, D.S. Martin, L.A.I. Kestens, S. Zwaag, Acta Mater. 58 (2010) 4067–4075.CrossRef
[8]
Zurück zum Zitat S. Ifergane, E. Sabatani, B. Carmeli, Z. Barkay, V. Ezersky, O. Beeri, N. Eliaz, Electrochim. Acta 178 (2015) 494–503.CrossRef S. Ifergane, E. Sabatani, B. Carmeli, Z. Barkay, V. Ezersky, O. Beeri, N. Eliaz, Electrochim. Acta 178 (2015) 494–503.CrossRef
[11]
Zurück zum Zitat W. Xu, P.E.J. Rivera-Diaz-del-Castillo, S. Zwaag, Phil. Mag. 89 (2009) 1647–1661.CrossRef W. Xu, P.E.J. Rivera-Diaz-del-Castillo, S. Zwaag, Phil. Mag. 89 (2009) 1647–1661.CrossRef
[12]
Zurück zum Zitat V. Trabadelo, S. Giménez, T. Gómez-Acebo, I. Iturriza, Scripta Mater. 53 (2005) 287–292.CrossRef V. Trabadelo, S. Giménez, T. Gómez-Acebo, I. Iturriza, Scripta Mater. 53 (2005) 287–292.CrossRef
[13]
Zurück zum Zitat Y. He, K. Yang, W. Sha, Metall. Mater. Trans. A 36 (2005) 2273–2287.CrossRef Y. He, K. Yang, W. Sha, Metall. Mater. Trans. A 36 (2005) 2273–2287.CrossRef
[15]
[16]
Zurück zum Zitat Z. Li, R.Q. Zhang, Q.F. Zha, Y.M. Wang, J.B. Qiang, C. Dong, Prog. Nat. Sci. Mater. Int. 24 (2014) 35–41.CrossRef Z. Li, R.Q. Zhang, Q.F. Zha, Y.M. Wang, J.B. Qiang, C. Dong, Prog. Nat. Sci. Mater. Int. 24 (2014) 35–41.CrossRef
[17]
Zurück zum Zitat J.S. Wrogel, D. Nguyen-Manh, M.Y. Lavrentiev, M. Muzyk, S.L. Dudarev, Phys. Rev. B 91 (2015) 024108.CrossRef J.S. Wrogel, D. Nguyen-Manh, M.Y. Lavrentiev, M. Muzyk, S.L. Dudarev, Phys. Rev. B 91 (2015) 024108.CrossRef
[18]
Zurück zum Zitat P. Erhart, A. Caro, M. Serrano de Caro, B. Sadigh, Phys. Rev. B 77 (2008) 134206.CrossRef P. Erhart, A. Caro, M. Serrano de Caro, B. Sadigh, Phys. Rev. B 77 (2008) 134206.CrossRef
[19]
Zurück zum Zitat S. Lefebver, F. Bley, M. Bessiere, M. Fayard, Acta Cryst. A 36 (1980) 1–7.CrossRef S. Lefebver, F. Bley, M. Bessiere, M. Fayard, Acta Cryst. A 36 (1980) 1–7.CrossRef
[20]
Zurück zum Zitat R.W. Cahn, P. Hassen, Physical metallurgy, 4th ed., Elsevier Science B.V., Amsterdam, 1996, pp. 48–50. R.W. Cahn, P. Hassen, Physical metallurgy, 4th ed., Elsevier Science B.V., Amsterdam, 1996, pp. 48–50.
[21]
Zurück zum Zitat U. Mizutani, Hume-Rothery rules for structurally complex alloy phases, CRC Press, New York, 2011. U. Mizutani, Hume-Rothery rules for structurally complex alloy phases, CRC Press, New York, 2011.
[23]
Zurück zum Zitat E.O. Hall, S.H. Algie, Metall. Rev. 11 (1966) 61–88. E.O. Hall, S.H. Algie, Metall. Rev. 11 (1966) 61–88.
[24]
Zurück zum Zitat T. Saito, T. Furuta, J.H. Hwang, S. Kuramoto, K. Nishino, N. Suzuki, R. Chen, A. Yamada, K. Ito, Y. Seno, T. Nonaka, H. Ikehata, N. Nagasako, C. Iwamoto, Y. Ikuhara, T. Sakuma, Science 300 (2003) 464–467.CrossRef T. Saito, T. Furuta, J.H. Hwang, S. Kuramoto, K. Nishino, N. Suzuki, R. Chen, A. Yamada, K. Ito, Y. Seno, T. Nonaka, H. Ikehata, N. Nagasako, C. Iwamoto, Y. Ikuhara, T. Sakuma, Science 300 (2003) 464–467.CrossRef
[25]
[27]
Zurück zum Zitat K.J. Archer, R.V. Kimes, Comput. Stat. Data Anal. 52 (2008) 2249–2260.CrossRef K.J. Archer, R.V. Kimes, Comput. Stat. Data Anal. 52 (2008) 2249–2260.CrossRef
[28]
Zurück zum Zitat M. Liu, M. Wang, J. Wang, D. Li, Sensors Actuat. B Chem. 177 (2013) 970–980.CrossRef M. Liu, M. Wang, J. Wang, D. Li, Sensors Actuat. B Chem. 177 (2013) 970–980.CrossRef
[29]
Zurück zum Zitat A. Cutler, J.R. Stevens, Random forests for microarrays, Methods in Enzymology; DNA Microarrays, Part B: Databases and Statistics, Academic Press, Pittsburgh, 2006, pp. 422–432. A. Cutler, J.R. Stevens, Random forests for microarrays, Methods in Enzymology; DNA Microarrays, Part B: Databases and Statistics, Academic Press, Pittsburgh, 2006, pp. 422–432.
[30]
Zurück zum Zitat S. Rana, S. Jasola, R. Kumar, Artif. Intell. Rev. 35 (2011) 211–222.CrossRef S. Rana, S. Jasola, R. Kumar, Artif. Intell. Rev. 35 (2011) 211–222.CrossRef
Metadaten
Titel
Prediction of alloy composition and microhardness by random forest in maraging stainless steels based on a cluster formula
verfasst von
Zhen Li
Dong-hui Wen
Yue Ma
Qing Wang
Guo-qing Chen
Rui-qian Zhang
Rui Tang
Huan He
Publikationsdatum
01.07.2018
Verlag
Springer Singapore
Erschienen in
Journal of Iron and Steel Research International / Ausgabe 7/2018
Print ISSN: 1006-706X
Elektronische ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-018-0104-5

Weitere Artikel der Ausgabe 7/2018

Journal of Iron and Steel Research International 7/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.